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Abstract
Although next-generation sequencing-based panel testing is well practiced in the 
field of cancer medicine for the identification of target molecules in solid tumors, the 
clinical utility and clinical issues surrounding panel testing in hematological malignan-
cies have yet to be fully evaluated. We conducted a multicenter prospective clinical 
sequencing study to verify the feasibility of a panel test for hematological tumors, in-
cluding acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma, and 
diffuse large B-cell lymphoma. Out of 96 eligible patients, 79 patients (82%) showed 
potentially actionable findings, based on the clinical sequencing assays. We identi-
fied that genetic alterations with a strong clinical significance were found at a higher 
frequency in terms of diagnosis (n = 60; 63%) and prognosis (n = 61; 64%) than in 
terms of therapy (n = 8; 8%). Three patients who harbored a germline mutation in 
either DDX41 (n = 2) or BRCA2 (n = 1) were provided with genetic counseling. At 6 mo 
after sequencing, clinical actions based on the diagnostic (n = 5) or prognostic (n = 3) 
findings were reported, but no patients were enrolled in a clinical trial or received 
targeted therapies based on the sequencing results. These results suggest that panel 
testing for hematological malignancies would be feasible given the availability of use-
ful diagnostic and prognostic information. This study is registered with the UMIN 
Clinical Trial Registry (UMIN000029879, multiple myeloma; UMIN000031343, 
adult acute myeloid leukemia; UMIN000033144, diffuse large B-cell lymphoma; and 
UMIN000034243, childhood leukemia).

K E Y W O R D S

clinical sequencing, feasibility study, hematological malignancy, panel testing, potentially 
actionable finding

1  | INTRODUC TION

In the last decade, NGS technologies have revolutionized the under-
standing of the cancer genome through many genomic studies, which 
revealed recurrent driver mutations shared across different human 
cancers or that are specific to a certain type of cancer.1,2 These stud-
ies also clarified the complexity of intra-tumor and inter-tumor clonal 
structures and the process of clonal evolution from benign to malig-
nant states.3-5 NGS technologies have been further applied toward 
clinical management for cancer patients, leading to molecular diagno-
sis, precise prognostic stratification, and identification of molecular 
target therapy.6-8 Accurate, fast, and cost-effective target-enrichment 
NGS panel tests have accelerated a large-scale practical implementa-
tion of precision medicine for patients with cancer.9

Hematology has been the vanguard of genomic medicine 
since the 1980s, when Southern blot analysis was used to aid the 

diagnosis of lymphoma. Notably, identification of the BCR-ABL1 and 
PML-RARA fusion genes caused a paradigm shift in molecularly tar-
geted therapies against CML10 and acute promyelocytic leukemia,11 
and aided in making remarkable progress in long-term outcomes. 
It is also apparent that genetic classification has become quite de-
veloped in the field of hematology, and many genetic subtypes are 
listed in among 2017 classifications by the WHO.12,13 Recent com-
prehensive genomic studies further demonstrated the existence of 
patients with new genetic subtypes of morphologically diagnosed 
AML,14 ALL,15 and DLBCL.16 Based on the disease subtypes or useful 
genetic markers, risk-based stratified treatment has been practiced 
more commonly when managing patients with hematological malig-
nancies, suggesting that genomic information is indispensable for 
clinical practice with these disorders.

Although relatively large numbers of reports have shown the 
utility of panel sequencing for solid tumors,6,8,9,17 it remains unclear 
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whether it is an effective approach with clinical benefit for hema-
tological malignancies. In particular, few reports have discussed 
the value of panel testing in diagnostic and prognostic assessment, 
which are likely to provide useful information especially for patients 
with hematological malignancies.7,18,19 Therefore, we developed 
a DNA-panel testing method for hematological malignancies that 
can simultaneously detect various types of gene alterations includ-
ing single-nucleotide variants (SNVs), insertions/deletions (indels), 
CNVs, and immunoglobulin heavy chain locus (IGH) translocations. 
We then performed a prospective multicenter feasibility clinical se-
quencing (CSeq) study and assessed the clinical utility of the panel 
testing in a unified way across 96 patients with AML, ALL, MM, or 
DLBCL.

2  | MATERIAL S AND METHODS

2.1 | Patients

To evaluate the feasibility of target capture-based panel testing for 
hematological malignancies, adult patients with AML (n = 25), pedi-
atric patients with AML or ALL (n = 25), adult patients with MM 
(n = 25), and adult patients with DLBCL (n = 25) were enrolled in the 
CSeq study. The patient samples were collected as ancillary studies, 
which were designated as the CS-17-CSeq arm of the CS-17 study 
conducted by Japan Adult Leukemia Study Group for adult AML, the 
CSeq-17 arm of the JPLSG-CHM14 study conducted by the Japan 
Pediatric Leukemia/Lymphoma Study Group for pediatric leukemia, 
the MM-15-CSeq arm of the JSH-MM-15 prospective observational 
study conducted by JSH for MM, and the Lymphoma-CSeq study 
for DLBCL. Most patients were registered for the study with an ini-
tial diagnosis, except for 13 relapsed pediatric patients. The studies 
were approved by the ethics committees at all participating institu-
tions. Informed consent was obtained from all patients or guardians 
when children were enrolled. This study was conducted in accord-
ance with the Declaration of Helsinki. Before genetic testing was 
conducted, patients were asked whether they wanted to receive a 
report describing any germline mutations that might be found.

2.2 | Hybridization-based targeted CSeq assay

To detect somatic SNVs, indels, CNVs, and IGH translocations with 
clinical or preclinical relevance in managing hematological malig-
nancies, we designed a capture panel consisting of the entire cod-
ing regions of 330 genes [which included frequently mutated genes 
in hematological malignancies or targetable molecules in cancer 
(Table S1)], some IGH regions (Figure S1), and 1179 single-nucleo-
tide polymorphism baits. Tumor specimens were prepared from 
bone marrow (AML, ALL, and MM) or freshly resected tumor tis-
sues (DLBCL), and subjected to DNA extraction. To enrich the tumor 
cells from patients with MM, CD138-positive cells were selected 
before DNA extraction, using CD138 MicroBeads (Miltenyi Biotec). 

We used normal sample pairs (buccal mucosa or peripheral blood) as 
controls to discriminate between somatic and germline mutations. 
Sequencing libraries were prepared from 50-200 ng DNA using the 
SureSelect XT reagent (Agilent Technologies) according to the man-
ufacturer's instructions and subjected to NGS from both ends with 
the MiSeq or HiSeq2500 platform (Illumina).

2.3 | Bioinformatics analysis

We considered the NGS to be successful if the average sequence 
depth in the tumor sample was above 300×, based on a previous 
report.20 Using tumor cells and matched normal tissue, mutation 
calling was performed using the Genomon2 pipeline (https://genom 
on.readt hedocs.io/ja/lates t/), as previously described.5,21 Putative 
somatic mutations with (i) a Fisher exact test P-value of <.01, (ii) a 
VAF in the tumors of >.05, (iii) a sequencing depth in the tumor of 
≥50 were adopted, and filtered by excluding (i) synonymous SNVs 
or noncoding variants and (ii) variants only present in unidirectional 
reads. The remaining variants were interrogated for evidence that 
they were present at significantly higher VAFs than expected for er-
rors (P ≤ 10−3), for which the statistical significance was evaluated 
by empirical Bayesian mutation calling, as previously described.22

To detect IGH translocations and tandem duplication, we used 
Genomon-SV (https://github.com/Genom on-Proje ct/Genom onSV),23 
and searched for known variants by manual curation. Breakpoints of 
candidate alterations were inspected visually using the Integrative 
Genomics Viewer tool (http://softw are.broad insti tute.org/softw are/
igv/). Candidate FLT3-internal tandem duplication (FLT3-ITD) calls 
were validated by PCR analysis, and the FLT3-ITD allelic ratio was de-
termined as previously reported.24

CNVs were detected using the CNACS algorithm (https://github.
com/papae mmela b/toil_cnacs).5,21 Candidate focal CNVs (shorter 
than half of a chromosome arm, except for 17p deletions involving 
TP53) were manually reviewed and further filtered by removing the 
regions showing detection with <3 capture probes, as described pre-
viously.21 Gene amplification was defined as increase in the number 
of copies of a gene to more than 4 copies, and hyperdiploidy was 
defined as the presence of >50 chromosomes.

2.4 | Germline mutations

We defined reportable germline mutations in 22 genes, as follows: 
16 genes (APC, BRCA1, BRCA2, MSH2, MSH6, NF2, PMS2, PTEN, RB1, 
RET, STK11, TP53, TSC1, TSC2, VHL, and WT1) in the panel were 
responsible for hereditary cancers for which American College of 
Medical Genetics and Genomics (ACMG) recommends reporting as 
incidental or secondary findings,25 and 6 genes (ANKRD26, CEBPA, 
DDX41, ETV6, GATA2, and RUNX1) were associated with myeloid ne-
oplasms with a germline predisposition that were proposed as a di-
agnostic category by the WHO in the 2017 classification scheme.12 
Germline variants in all 22 genes were analyzed as described above, 

https://genomon.readthedocs.io/ja/latest/
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except for determining Fisher exact test P-values, which were omit-
ted because a single analysis was performed. Putative variants 
were further filtered based on known variants listed in the 1000 
Genomes Project (October 2014 release); the National Center for 
Biotechnology Information dbSNP database (build 131); Exome 
Aggregation Consortium (ExAC); the Human Genome Variation 
Database (April 2016 release); and 3.5KJPN (the ToMMo Japanese 
reference panel).26

2.5 | Analytical validation

We used 22 cell lines and 4 standard reference materials (HD728, 
HD731, HD753, and HD829; Horizon Discovery) for sensitiv-
ity analysis. For these specimens, the regions of interest (ROIs) 
for analytical validation were defined as follows: regions involv-
ing common somatic mutations that were verified by orthogonal 
methods including MLPA, information in the literature, the Catalog 
of Somatic Mutations in Cancer (version 87)27 or Cancer Cell Line 
Encyclopedia28 database, or manufacturer's validation data. As 
a result, the ROI comprised 89 genetic regions, and the PPA was 
evaluated for 26 specimens. For the analytical validation assays, the 
same analytical filter used for the germline mutation analysis was 
adopted, although the filter of tumor VAF >.05 was removed. For 
specificity analysis, 2 normal specimens from the Genome in a Bottle 
Consortium (RM8391 and RM8393) were used, and the sequencing 
specificity was determined for the same ROI, as verified by perform-
ing MLPA or searching the literature.29

2.6 | Analysis of clonality

To analyze the clonality of lymphoid malignancies, we designed a 
capture-based NGS panel consisting of coding regions for IGH, IGK, 
IGL, TRA, TRB, TRD, and TRG (M. Sanada, Y. Iijima, manuscript in 
preparation). The clonality was assessed using the Vidjil pipeline.30 
Candidate clonal rearrangements were validated by PCR analysis.

2.7 | Molecular tumor board for hematological 
malignancies

The multicenter molecular tumor board was composed of mul-
tidisciplinary members, and meetings were held once or twice 
a month to interpret the sequencing results of all patients, with 
the goal of identifying PAF. The tumor board included a hemato-
logical specialist, pathologists, genome researchers, bioinforma-
ticians, medical geneticists, and genetic counselors. Before the 
molecular tumor board was established, clinically important in-
formation, such as age, sex, diagnoses, and leukemia-associated 
translocation, was collected. Board members discussed analytical 
validity, clinical validity, and the clinical utility of the sequencing 
results. Based on the significance of clinical decision making, we 

categorized genetic alterations into 4 levels (Level A to Level D) ac-
cording to standard guidelines for evidence-based categorization 
of somatic variants.31 In the process of curating of genetic altera-
tions, professional guidelines, or crucial reports (Table S2) were 
used as a reference. The clinical utility was assessed regardless 
of the patients’ disease stage, clinical history, and accessibility to 
clinical trials for unapproved drugs. Candidate germline mutations 
were also reviewed by board members, and decisions were made 
as to whether to present the results to the patients.

2.8 | Definition of PAF

For the purposes of this study, we defined a PAF as any genomic 
finding obtained by the CSeq assay that was capable of providing (a) 
a disease subtype or change in diagnosis (evidence level A or B),31 (b) 
a risk category (evidence level A or B), or (c) a targetable molecular 
aberration (evidence level C or above).

3  | RESULTS

3.1 | Analytical validation of the CSeq assay

We first evaluated the analytical performance of the CSeq assay. 
The sensitivity of our assay, as determined from the PPA of the 
ROI, was 95.6% for SNVs (65/68), 100% for short indels (10/10), 
100% for large indels (7/7), 100% for CNVs (13/13), 72.2% for IGH 
translocations (13/18), and 93.3% overall for all variants combined 
(113/121) (Tables S3 and 1). The PPA for variants with a VAF of 
approximately 5% – the threshold set for SNVs and indels – was 
93.3% (42/45, Table S3). These results were considered accept-
able, except for the sensitivity of detecting IGH translocations. 
Specificity analysis was performed for 2 normal samples, and 
the CSeq assay showed no false-positive variant calls in the ROIs 
(Table 1).

3.2 | Feasibility of the CSeq assay

From November 2017 to April 2019, 100 patients with hematologi-
cal malignancies (0 y old to 87 y old) were enrolled in this study. Four 
patients were excluded from further analysis due to misdiagnosis 
(n = 3) or patient death before registration (n = 1). We performed 
target capture sequencing for DNA isolated from the remaining 
96 patients (Table 2). The average sequence depth in each tumor 
sample was 597× (range, 357×-837×), and all cases showed a depth 
above the set threshold (300×), making the sequencing success rate 
100% (Figure S2).

The median turnaround time, defined as the interval between 
the date of sample shipping and the date of returning the analysis 
report, was 41 d (range, 21-80 d), which was 1 or 2 wk longer than 
our anticipated timeline. The primary reason for the delay was the 
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waiting period for the next molecular tumor board meeting, which 
usually took place approximately 2-3 wk after completion of the bio-
informatic analysis.

Disease-specific mutational landscapes for AML, ALL, MM, 
and DLBCL are presented in Figure 1 in terms of the major driver 
mutations, and a full listing of the observed gene mutations is pro-
vided in Table S4. At least 1 genetic alteration was identified in 93 
of the 96 (96.9%) cases. The common driver alterations found with 
each disease were as follows: NPM1 mutations (n = 7) and Del (7q) 
(n = 7) in AML, CDKN2A deletion (n = 7) and IKZF1 deletion (n = 7) 
in ALL, Del(13q) (n = 12) and hyperdiploidy (n = 10) in MM, and 
CD79A/B mutations (n = 7) and MYD88 mutations (n = 7) in DLBCL. 
In addition, the CSeq assay also detected FLT3-ITD (n = 5) and IGH TA
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TA B L E  2   Clinical information of the patients enrolled in CSeq 
study

Characteristics
No. 
(n = 96)

Diagnosis

Acute myeloid leukemia 30

CBFB-MYH11 2

RUNX1-RUNX1T1 1

Other 27

Acute lymphoblastic leukemia 17

B-cell 15

BCR-ABL1 2

KMT2A-AFF1 1

KMT2A-MLLT3 1

TCF3-HLF 1

TCF3-PBX1 1

Other 9

T-cell 2

Multiple myeloma 24

Diffuse large B-cell lymphoma 25

non-GCB 13

GCB 12

Age, y

0-4 9

5-14 11

15-39 8

40-64 27

65-79 30

≥80 11

Gender

Male 54

Female 42

Disease status

Primary 83

Relapse 13
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translocations including IGH-CCND1 (n = 4), IGH-BCL6 (n = 4), IGH-
NSD2 (n = 3), and IGH-MYC (n = 3).

One of the purposes of this study was to estimate the prevalence 
of patients with PAF. The CSeq assay identified PAF in 26 of 30 pa-
tients (86.7%) with AML, 11 of 17 patients with ALL (64.7%), 20 of 
24 patients (83.3%) with MM, and 22 of 25 patients (88.0%) with 
DLBCL (Figure 1). Thus, a total 79 of 96 patients with hematological 
malignancies (82.2%) had PAF, demonstrating the high clinical effi-
cacy of this assay.

3.3 | Clinical utility of the CSeq assay in 
drug selection

We identified actionable alterations leading to drug selection in 44 
cases, most of which were considered as being of preclinical signifi-
cance (n = 36, evidence level C) (Figure 2 and Table S5). These al-
terations (n ≥ 3) and potential modes of targeted therapy (evidence 
level C) included RAS pathway mutations (n = 13, BRAF and MEK 

inhibition), CD79A/79B mutations (n = 7, PKC inhibition), MYD88 mu-
tations (n = 4, BTK inhibition), IGH-CCND1 (n = 4, BCL2 inhibition), 
TP53 mutations (n = 4, DNMT1 inhibition), and CREBBP mutations 
(n = 3, HDAC inhibition). Two types of alterations, namely FLT3-ITD 
(n = 5, FLT3 inhibition) and IDH1/2 mutations (n = 5, IDH1/2 inhibi-
tion) were identified with a clinical evidence of level A in 8 patients 
with AML (Table S5).

3.4 | Clinical diagnostic utility of the CSeq assay

Based on information from diagnostic guidelines and some crucial 
reports (Table S1), we tried to divide morphologically diagnosed 
disease into molecular subtypes after discussing the validity at the 
molecular tumor board meeting. Through our analysis, AML, 1 of 
the diseases with the most advanced molecular diagnosis, could 
be subclassified into 6 subtypes12,14,32: AML with NPM1 mutations 
(n = 7), AML with mutated chromatin, RNA-splicing genes, or both 
(n = 5), AML with TP53 mutations, chromosome aneuploidy, or 

F I G U R E  1   Major driver mutations detected by the CSeq assay. The figure shows the major driver mutations involved in the pathogenesis 
of hematological malignancies, including AML, ALL, MM, and DLBCL. Clinical information and clinical interpretations assessed by the 
molecular tumor board are described. PAF, potentially actionable findings
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both (n = 4), AML with biallelic CEBPA mutations (n = 3), myeloid 
leukemia associated with Down syndrome (ML-DS, n = 2), and my-
eloid neoplasms with DDX41 germline mutations (n = 2) (Figure 3 
and Table S4).

We also analyzed the diagnostic utility of CSeq analysis for 
patients with ALL, MM, and DLBCL. CSeq analysis revealed sub-
type-defining events in 4 cases with B-ALL (iAMP21; n = 1, IGH-
DUX4; n = 1, high-hyperdiploidy; n = 1, and KMT2A-MLLT3; n = 1). 
For patients with MM, 4 groups including hyperdiploidy (n = 8) 
and IGH-CCND1 (n = 4), IGH-NSD2 (n = 3), and IGH-MAFB (n = 1) 
translocations were identified, based on our analysis of CNVs and 
IGH translocations. We also classified DLBCL into 5 subtypes16; 
the MCD type (n = 6), the BN2 type (n = 3), the EZB type (n = 3), 
the high-grade B-cell lymphoma type (n = 2), and the N1 type 
(n = 1) (Figure 3 and Table S4). These results for DLBCL were al-
most consistent with pathological findings in cell of different or-
igins independently analyzed by a pathologist, since 5 of 6 MCD 
types were non-GCB (germinal center B-cell) types and 2 of 3 EZB 
type were GCB types (Table S4).16

Interestingly, the CSeq assay leads to diagnostic changes in 4 
cases. In 1 case with morphologically DLBCL, we identified both 
RHOA G17V and IDH2 R172W hot-spot mutations, which is strongly 
suggestive of angioimmunoblastic T-cell lymphoma (AITL).33 
Confirmation of clonality involving both T-cell receptor and immu-
noglobulin production in tumors enabled us to diagnose this case 
as composite lymphoma (AITL and DLBCL; Figure S3).34 In 1 case 
initially diagnosed as B-ALL and 2 cases initially diagnosed as DLBCL, 
identification of key diagnostic alterations lead to a new diagnosis of 
Burkitt lymphoma/leukemia, high-grade B-cell lymphoma with MYC 

and BCL6 rearrangements, and high-grade B-cell lymphoma, not oth-
erwise specified, respectively, according to the WHO’s 2017 classifi-
cation scheme (Figure 3 and Tables S4, S6).13

3.5 | Clinical utility of the CSeq assay in prognosis

The CSeq assay provided prognostic information with strong clini-
cal evidence (level A or B) for 24 patients with AML (80.0%), 8 
patients with ALL (47.0%), 19 patients with MM (79.1%), and 10 
patients with DLBCL (40.0%) (Figure 2 and Table S4). The most 
frequent genetic alterations associated with prognosis in each 
disease were NPM1 mutations in AML (n = 7, favorable risk or in-
termediate risk), IKZF1 loss in ALL (n = 7, adverse risk), hyperdip-
loidy in MM (n = 8, standard risk), and TP53 mutations/del (17p) in 
DLBCL (n = 7, adverse risk).

3.6 | Cancer-related germline mutations

We identified 2 AML patients who harbored both a DDX41 ger-
mline mutation (A500fs) and a DDX41 somatic mutation (R525H), 
and another AML patient harboring a deleterious BRCA2 germline 
mutation, and these results were validated by Sanger sequencing 
(Table 3). The former patient was diagnosed as having myeloid leu-
kemia with DDX41 mutations (evidence level A) and the latter was 
diagnosed as having a risk for developing hereditary breast and 
ovarian cancer (evidence level A). All 3 patients with germline muta-
tions received genetic counseling for future cancer risks (Table 3). 

F I G U R E  2   Clinical utility of the CSeq assay, as assessed by the evidence-based categorization system. The frequencies of patients with 
mutations having clinical implications (evaluated using the evidence-based categorization system) are shown
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No germline mutations were identified in patients with ALL, MM, 
and DLBCL.

3.7 | Sequencing results that strongly influenced 
clinical actions

At 6 mo after registration, all patients were prospectively surveyed 
regarding their clinical course, treatment regimen, and participation 
in a clinical trial. For the patients with targetable molecular aberra-
tions, we assessed whether treatment according to the CSeq reports 
was delivered or not. Although 44 patients received sequencing re-
sults regarding target therapy (evidence level A: 8 cases; evidence 
level C: 36 cases), no patients enrolled in clinical trials or received 
therapies based on sequencing results, except for 1 patient with an 
FLT3-ITD mutation that was already identified before registration 
(Table S5). Based on the prognostic information, 2 patients with 
AML underwent different treatment strategies; 1 patient selected 
chemotherapy rather than allogeneic stem cell transplantation; the 
other patient underwent a different treatment protocol (Table 3). 
Furthermore, although there is not enough clinical evidence in the 

management of DLBCL, the clinician also changed the treatment for 
2 patients with DLBCL according to diagnostic or prognostic infor-
mation; 1 patient underwent different treatment cycles, the other 
patient was given an additional radiation therapy. Patients diag-
nosed with composite lymphoma were treated and followed as hav-
ing AITL, rather than DLBCL.

4  | DISCUSSION

To assess the utility of genomic medicine in hematological malig-
nancies, we performed a multicenter prospective study of cap-
ture-based panel sequencing for patient with these disorders. This 
prospective study demonstrated the feasibility of the CSeq assay 
in that it showed: (i) a high incidence of cases with PAF as assessed 
by standard criteria, (ii) a permissible turnaround time, and (iii) se-
quencing results likely to have high specificity. However, despite the 
growing availability of genomic medicine, 2 major issues need to be 
resolved. First, manual curation of sequencing results in the context 
of diagnostic, prognostic, and therapeutic value requires substantial 
work by the curator and causes a long waiting period before the final 

F I G U R E  3   Subtype classification based on the CSeq assay results. Pie charts showing the molecular subtypes in patients with AML, ALL, 
MM, and DLBCL, based on the results of the CSeq assay. The mutation types of key genetic alterations are color-coded. NPM1, AML with 
NPM1 mutation; Chromatin/RNA-splicing, AML with mutated chromatin, RNA-splicing genes, or both; TP53, AML with TP53 mutations, 
chromosomal aneuploidy, or both; Biallelic CEBPA, AML with biallelic CEBPA mutations; ML-DS, myeloid leukemia associated with Down 
syndrome; DDX41, Myeloid neoplasms with germline DDX41 mutation; HGBL, high-grade B-cell lymphoma
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reports are returned to the patients, as reflected by the turnaround 
times in this study. Second, as illustrated in Table S5, the clinical util-
ity of CSeq assay for drug selection was limited. The primary reasons 
for not being able to act upon the therapeutic findings was limited 
access to unapproved drugs for patients with hematological malig-
nancies in Japan, as well as the disease conditions of the patients, 
most of who were enrolled at the time of initial diagnosis and did 
not require further treatment beyond standard chemotherapy. Both 
problems might be major barriers or bottlenecks against implement-
ing genomic medicine in patients with hematological malignancies. 
The application of artificial intelligence to genomic curation,35,36 es-
tablishing systems to share enormous genomic and clinical data sets 
for cancer patients,37 and developing easily available target thera-
peutics could be helpful in solving this problem.

This feasibility study clearly showed that the percentage of pa-
tients with genetic alterations considered to have strong clinical sig-
nificance (level A or level B) in terms of disease diagnosis (63%) or 
prognosis (64%) was higher than that considered in terms of therapy 
(8%) (Figure 2). Most actionable findings in the therapeutic cate-
gory were assigned as preclinical evidence (level C). Consistent with 
these findings, our follow-up survey revealed that the clinical actions 
taken by 8 patients were mainly based on the diagnostic or prog-
nostic information shown in Table 3. These results suggested that 
the current CSeq assay may be a useful tool for precision diagnosis 
and accurate disease prognosis, and, therefore, may be performed 
at the initial diagnosis. Appropriate timing of the panel test would 
depend on the cancer type, as the panel tests for solid tumors are 
usually performed at refractory or relapse stage to detect the target 
molecule.

The CSeq assay identified 3 cases with germline mutations. 
Interestingly, 2 of 3 patients harbored recurrent DDX41 somatic and 
germline mutations, which might indicate that the percentage of pa-
tients with DDX41 germline mutations is higher than expected.38,39 
Based on previous reports describing patients with donor cell leuke-
mia that harbored DDX41 germline mutations,40,41 the CSeq assay 
reported here suggested that patients may have a familial hereditary 
predisposition to leukemia and that it might be better not to select 
sibling donors for allogeneic stem cell transplantation, although the 
biological and clinical significance of this germline mutation is still 
fully unknown. Our results thus show that germline mutations and 
somatic mutations can potentially impact patient management if cli-
nicians carefully consider core ethical issues regarding the germline 
mutations.

The CSeq assay offers the advantage of detecting various 
types of gene alterations with a single DNA-sequencing platform 
including SNVs, indels, CNVs and IGH translocations, which can ef-
ficiently identify gene-mutation profiles and classify the molecular 
subtypes across hematological diseases. However, this assay has 
several limitations. First, CSeq assay did not detect gene fusions 
because the CSeq assay does not include RNA-based sequencing, 
a suitable method for detection of gene fusions. As shown by the 
low molecular-diagnostic yield of the CSeq assay for patients with 
ALL (Figure 3), this limitation would be especially true for ALL, as TA
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a wide variety of recurrent chromosome rearrangements define 
different disease subtypes for ALL.15,42,43 Second, this assay is 
less sensitive in detecting IGH translocations (Table 1), which was 
probably caused by insufficient disposition of IGH capture probes 
or a mapping failure due to tandemly repeated sequences in the 
IGH regions. Combining this assay with RNA sequencing as well as 
existing laboratory tests would provide more excellent sequencing 
performance and improve clinical decision making for patients with 
hematological malignancies. Third, this assay is not suitable for 
evaluating clonal hematopoiesis of indeterminate potential (CHIP), 
a risk factor of hematological malignancies and cardiovascular dis-
eases,3,44 because we used buccal mucosa as a control specimen 
for the patients with AML or ALL. Lastly, DLBCL tumor specimens 
were extracted not from formalin-fixed paraffin-embedded tissues 
but from freshly resected tumor tissues to ensure the sensitivity 
and specificity of this genomic analysis. This may differ from the 
actual clinical practice.

In conclusion, the CSeq assay enables detection of somatic and 
germline mutations in patients with hematological malignancies, 
which makes it a useful diagnostic and prognostic testing tool. Our 
findings suggest that using the panel test for hematological malig-
nancies would be feasible, but further optimization of NGS analysis 
and developing system that allows easy access to unapproved drugs 
may improve treatment outcomes for patients with these disorders.
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