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Abstract

In Statistical theory, inclusion of an additional parameter to standard distributions is a usual

practice. In this study, a new distribution referred to as Alpha-Power Pareto distribution is

introduced by including an extra parameter. Several properties of the proposed distribution,

including moment generating function, mode, quantiles, entropies, mean residual life func-

tion, stochastic orders and order statistics are obtained. Parameters of the proposed distri-

bution have been estimated using maximum likelihood estimation technique. Two real

datasets have been considered to examine the usefulness of the proposed distribution. It

has been observed that the proposed distribution outperforms different variants of Pareto

distribution on the basis of model selection criteria.

Introduction

For the last few decades, improvement over standard distributions has become a common

practice in statistical theory. Usually, an additional parameter is added by using generators or

existing distributions are combined to obtain new distributions [1]. The purpose of such modi-

fication is to bring more tractability to the classical distributions for useful analysis of complex

data structures. [2] and [3] developed a methodology of adding a new parameter in existing

distributions. [4] presented an idea of beta generated distributions in which parent distribu-

tion is beta while baseline distribution can be the cumulative distribution function (cdf) of any

continuous random variable. [5] modified the idea of [4] and replaced beta distribution by

Kumaraswamy distribution. Further, [6] proposed the idea of T-X family of continuous distri-

butions in which probability density function (pdf) of beta distribution was replaced by the

pdf of any continuous random variable and instead of cdf, a function of cdf satisfying certain

conditions was used. [7] provided a detail review on methods of generating univariate continu-

ous distributions.

More recently, [8] presented a new method, called alpha power transformation (APT), for

including an extra parameter in continuous distribution. Basically, the idea was introduced to

incorporate skewness to the baseline distribution. The alpha power transformation is defined

as follows:
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Let F(x) be the cdf of any continuous random variable X, then cdf of APT family is given as

FAPTðxÞ ¼
aFðxÞ � 1

a� 1
if a > 0; a 6¼ 1

FðxÞ if a ¼ 1

(

ð1Þ

The corresponding probability density function is

fAPTðxÞ ¼
loga
a� 1
aFðxÞf ðxÞ if a > 0; a 6¼ 1

f ðxÞ if a ¼ 1

(

ð2Þ

Particularly, the generator was used to transform one parameter exponential distribution

into two parameter alpha power exponential distribution. Several properties of the proposed

distribution were studied including explicit expressions for survival function, hazard function,

quantiles, median, moments, moments generating functions, order statistics, mean residual

life function and entropies. Also, the shape behavior of pdf, hazard rate function and survival

function were examined. [9] and [1] have successfully used the above generator for transform-

ing two parameters Weibull distribution into three parameters alpha power Weibull distribu-

tion. The transformation has been applied by different researchers to obtain alpha power

transformed distributions including alpha power transformed generalized exponential distri-

bution [10], alpha power transformed Lindly distribution [11], alpha power transformed

extended exponential distribution [12], alpha power transformed inverse Lindly distribution

[13] etc.

Pareto distribution is a well-known distribution used to model heavy tailed phenomena

[14]. It has many applications in actuarial science, survival analysis, economics, life testing,

hydrology, finance, telecommunication, reliability analysis, physics and engineering [15–17].

Pareto distribution is successfully used by [18] for projection of losses in an insurance com-

pany, real state and liability experience of hospitals. [16] applied Pareto distribution to model

sea clutter intensity returns. [19] used Pareto distribution for investigation of wealth in society.

[20] considered generalized form of Pareto distribution to model exceedances over a margin

in flood control. Many types of Pareto distribution and its generalization are available in litera-

ture. The Pareto distribution of first kind as described by [21] has the cdf as follows:

FðxÞ ¼ 1 �
k
x

� �b

k > 0;b > 0; x � k ð3Þ

It has two parameters α and k, where k is the lower bound of the data. [18] normalized the

data by dividing each observation by the pre-selected lower bound that gives k = 1. Eventually,

the cdf and pdf of Pareto distribution can be written as

FðxÞ ¼ 1 � x� b x � 1; b > 0 ð4Þ

f ðx; bÞ ¼
b

xbþ1
x � 1; b > 0 ð5Þ

where β is the scale parameter. As the hazard rate function of Pareto distribution is decreasing

and has reversed J shaped pdf, it may occasionally be inadequate to fit the data well. Practically,

there can be various options for projection of risks and losses, for example, machine life cycle

and human mortality has more flexible behavior. That is why researchers proposed various

amendment and extensions of the Pareto distribution with different number of parameters

[17]. For example, Generalized P [22], Exponentiated P [23,24], Beta P [25], Beta Generalized

Alpha-Power Pareto distribution
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P [26], Weibull P [27,28], Kumaraswamy P [29], Kumaraswamy Generalized P [30], Exponen-

tiated Weibull P [31], The Burr X-P [17], Exponentiated Generalized P [14].

The aim of this study is to propose a new and more flexible distribution, which, we call

Alpha Power Pareto (APP) distribution, by introducing an additional parameter to Basic

Pareto distribution, to obtain an adequate fit. Numerous properties of the APP distribution are

studied in the following section along with more attractive expressions for quantile function,

median, mode, moments, order statistics, mean residual life function and stress strength

parameter. Lemma 1 and 2 contains expressions for stochastic ordering, Shannon and Renyi

entropies respectively. The next section provides method of maximum likelihood estimation

of parameters in addition to simulation studies. Two real data applications are used to check

the effectiveness of the proposed model. Conclusions are provided in the last section.

Alpha Power Pareto (APP) distribution

Random variable X is said to have an APP distribution if its pdf is of the form

fAPPðxÞ ¼
bloga
a� 1

a1� x� bx� b� 1 a 6¼ 1

f ðxÞ a ¼ 1

(

ð6Þ

and 0 otherwise. By setting x-β = z in Eq (6), it can be easily verified that

Z 1

1

fAPPðxÞ ¼ 1

The corresponding cdf of APP distribution is

FAPPðxÞ ¼
a1� x� b � 1

a� 1
a 6¼ 1

1 � x� b a ¼ 1

(

ð7Þ

The survival (reliability) function and hazard rate function are obtained, respectively, as fol-

lows:

SAPPðxÞ ¼
a

a� 1
ð1 � a� x

� b

Þ a 6¼ 1

x� b a ¼ 1

(

ð8Þ

hAPPðxÞ ¼
bloga

1� a� x
� b a

� x� bx� b� 1 a 6¼ 1

b

x a ¼ 1

(

ð9Þ

Henceforth, a random variable X that follows the distribution in (6) is symbolized by

X~APP(α, β).
Figs 1 and 2 demonstrate the graphs of pdf and hazard function of APP distribution for dif-

ferent values of α when β is fixed. Clearly, the pdf of APP distribution is decreasing function

for α< 1 and uni-modal and positively skewed for α< 1.

Quantile function

Quantile function is defined as an inverse of the distribution function. Consider the identity

FðXÞ ¼ U ) X ¼ F� 1ðUÞ

where U follows standard Uniform distribution. The pth quantile of APP distribution is given

Alpha-Power Pareto distribution
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by

xp ¼ ½
logð a=ðpða � 1Þ þ 1ÞÞ

loga
�
� 1=b

ð10Þ

Median of APP distribution can be obtained by putting p = 1/2, that is,

x1=2 ¼ ½
log 2a

aþ1

� �

loga
�
� 1=b

ð11Þ

Fig 1. The PDF of APP distribution for various values of α and fixed β.

https://doi.org/10.1371/journal.pone.0218027.g001

Fig 2. Increasing, decreasing shapes of hazard function of APP distribution.

https://doi.org/10.1371/journal.pone.0218027.g002
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Mode

The mode of the distribution can be found by solving the following equation

d
dx

fAPP xð Þ ¼ 0

By taking the derivative of Eq (6) and equating it to zero and solving for x, mode becomes

x ¼
bþ 1

bloga

� �� 1=b

ð12Þ

In Table 1 mode of the APP distribution is calculated for different choices of α and β. These

results can be verified through Fig 1.

Moments

The moment generating function of APP distribution is given by

Mx tð Þ ¼ E etx½ � ¼
Z 1

1

etx
bloga
a � 1

a1� x� bx� b� 1dx ð13Þ

by substituting x-β = z and the following series representation

etx ¼
X1

r¼0

trxr

r!

a� z ¼
X1

k¼0

ð� logaÞk

k!
zk; ð14Þ

it can be easily verified that

Mx tð Þ ¼
ab

1 � a

X1

k¼0

X1

j¼0

ð� logaÞkþ1 tj

k!j!ðkb � jþ bÞ
ð15Þ

by taking derivative of Eq (15) and putting t = 0,1,2. . .r, E(X), E(X2 ),. . .E(Xr) of APP

Table 1. Mode for different choices of α and β.

β α Mode

2 40 1.568

30 1.505

20 1.413

10 1.238

5 1.035

https://doi.org/10.1371/journal.pone.0218027.t001
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distribution are obtained as

E Xð Þ ¼
ab

ð1 � aÞ

X1

k¼0

ð� logaÞkþ1

k!

1

ðkbþ b � 1Þ

� �

ð16Þ

E X2ð Þ ¼
ab

ð1 � aÞ

X1

k¼0

ð� logaÞkþ1

k!

2:1

ðkbþ b � 2Þ

� �

ð17Þ

E Xrð Þ ¼
ab

ð1 � aÞ

X1

k¼0

ð� logaÞkþ1

k!

r!
ðkbþ b � rÞ

� �

ð18Þ

Mean residual life function

Assuming that X is a continuous random variable with survival function given in Eq (8), the

mean residual life function is defined as the expected additional lifetime that a component has

survived until time t. The mean residual life function, say, μ(t) is given by

m tð Þ ¼
1

PðX > tÞ

Z 1

t
PðX > xÞdx ; t � 0

m tð Þ ¼
1

SðtÞ
EðtÞ �

Z t

0

xf ðxÞdx
� �

� t ; t � 0 ð19Þ

where

Z t

0

xf ðxÞdx ¼
baloga
a � 1

X1

k¼0

ð� logaÞk

k!ðkbþ b � 1Þ
� t� ðkbþb� 1Þ
� �

ð20Þ

Substituting Eqs (8), (16) and (20) in Eq (19), mðtÞ can be written as

m tð Þ ¼
baloga
ð1 � a� t

� b
Þ

X1

k¼0

ð� logaÞk

k!ðkbþ b � 1Þ
1þ t� ðkbþb� 1Þ
� �

� t ð21Þ

Stochastic ordering

Stochastic ordering plays a significant role for assessing the comparative behavior of continu-

ous random variable. It is known that if a distribution has likelihood ratio (lr) ordering, then it

possesses the same ordering in hazard rate (hr) and distribution (st). It is also known that if a

family of distribution has likelihood ratio ordering, then there exists a uniformly most power-

ful test [32].

Lemma 1: Let X1~APP(α1, β) and X2~APP(α2, β) be two independent random variables. If

α1 < α2 then

X1�lr X2 8 X

Alpha-Power Pareto distribution
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Proof: Likelihood ratio is given by

fX1
ðxÞ

fX2
ðxÞ
¼

loga1

loga2

� �
a2 � 1

a1 � 1

� �
a1

a2

� �1� x� b

d
dx

log
fX1
ðxÞ

fX2
ðxÞ

 !

¼ log
a1

a2

� �

bx� b� 1
� �

< 0 ; if a1 < a2; 8 x > 0

Hence, for

a1 < a2; X1�lr X2

for all x, it also follows that

X1�hr X2 ) X1�st X2

Order statistics

Let X1, X2, X3, . . ., Xn be a random sample of size n from APP distribution and let Yi:n denote

the ith order statistics, then the pdf of Yi:n is given by

fi:n yð Þ ¼
n!

ði � 1Þ!ðn � iÞ!
fx yð Þ ½FxðyÞ�i� 1

½1 � FxðyÞ�n� i ð22Þ

substituting the pdf and cdf of APP distribution in (22), we get the pdf of ith order statistics for

y>1 as

fi:n yð Þ ¼
n! bloga

ði � 1Þ!ðn � iÞ!ða � 1Þ
a1� y� bþn� i y� b� 1ða1� y� b � 1Þ

i� 1
ð1 � a� y

� b

Þ
n� i

ð23Þ

by putting i = 1, we get first order statistics as

f y1ð Þ ¼
nbloga
ða � 1Þ

n a
n� y� by� b� 1ð1 � a� y

� b

Þ
n� 1

ð24Þ

by putting i = n we get nth order statistics as

f ynð Þ ¼
nbloga
ða � 1Þ

n a
1� y� by� b� 1ða1� y� b � 1Þ

n� 1
ð25Þ

Stress-strength parameter

Suppose X1 and X2 be two continuous and independent random variables, where X1~APP(α1,

β) and X2~APP(α2, β) then the stress strength parameter, say S, is defined as

S ¼
Z 1

� 1

f1ðxÞF2ðxÞdx

using the pdf and cdf of APP distribution, stress strength parameter S, can be obtained as

S ¼
a1bloga1

a1 � 1

Z 1

1

a� x
� b

1
x� b� 1 a1� x� b

2
� 1

� �
dx ð26Þ

Alpha-Power Pareto distribution
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The use of (14) in Eq (26) yields

S ¼
a1loga1

ða1 � 1Þða2 � 1Þ

X1

k¼0

ð� loga1Þ
k

k!
½a2

X1

m¼0

ð� loga2Þ
m

m!ðkþmþ 1Þ
�

1

kþ 1
� ð27Þ

Lemma 2: Shannon and Renyi entropy for random variable X that follows Alpha Power

Pareto distribution is as follows

SEx ¼ log
a � 1

ab loga
þ

a

a � 1

X1

k¼0

ð� logaÞkþ1

k!

ð� logaÞ
kþ 2

�
bþ 1

bðkþ 1Þ
2

" #

ð28Þ

REx ¼
r

1 � r
log

baloga
a � 1

� �

þ
1

1 � r
log
X1

k¼0

ð� logaÞk rk

k!ðrbþ r � 1þ kbÞ
ð29Þ

Proof:

For APP distribution, the Shannon and Renyi entropies are given respectively as

E½� logðf ðxÞ� ¼
Z 1

1

logðf ðxÞÞf ðxÞdx

1

1 � r
log
Z 1

� 1

f ðxÞr dx ¼
1

1 � r

Z 1

1

ð
bloga
a � 1

a1� x� bx� b� 1Þ
rdx

the results can be obtained easily by using Eq (14).

Parameters estimation

Maximum likelihood estimation

Let X1, X2, X3, . . ., Xn be a random sample from APP (α1, β) then the likelihood function is

given by

l a; bð Þ ¼ b
n
ð
loga
a � 1

Þ na
n�
P

xi � b
Yn

i¼1
x� b� 1

i ð30Þ

taking logarithm, Eq (32) becomes

logl a;bð Þ ¼ nlogbþ nlog
loga
a � 1

� �

þ ðn �
X

x� bi Þlogaþ ð� b � 1Þ
X

logxi

taking derivative of the above equation with respect to α and β and equating to zero, the fol-

lowing two normal equations are obtained

@loglða; bÞ
@a

¼
nða � 1 � alogaÞ
aða � 1Þloga

þ
n �

P
x� bi

a
¼ 0 ð31Þ

@loglða; bÞ
@b

¼
n
b
þ
X

x� bi logxiloga �
X

logxi ¼ 0 ð32Þ

by solving (31) and (32) simultaneously, MLE of α and β can be obtained. Standard algorithm

like Newton Raphson method or Bisection method can be used to solve these nonlinear

equations. It is well known that MLEs are asymptotically normally distributed i.e,
ffiffiffi
n
p
ðâ � a; b̂ � bÞ � N2ð0;SÞ where S is variance covariance matrix and can be obtained by

Alpha-Power Pareto distribution
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inverting observed Fisher information matrix F as given below

F ¼

@2logl
@a2

@2logl
@a@b

@2logl
@a@b

@2logl
@b

2

2

6
6
6
4

3

7
7
7
5

taking second derivative of Eqs (31) and (32) w.r.t α and β

@2logl
@a2

¼
n

ða � 1Þ
2
�

nlogaþ n
a2log2a

�
n �

P
x� bi

a2
ð33Þ

@2logl
@a@b

¼

P
x� bi logxi
a

ð34Þ

@2logl
@b

2
¼ �

n
b

2
� loga

X
x� bi ðlogxiÞ

2
ð35Þ

Asymptotic (1 − z)100% confidence intervals for parameters can be obtained as

â � Zz=2

ffiffiffiffiffiffiffi
S11

p

b̂ � Zz=2

ffiffiffiffiffiffiffi
S22

p

where Zz is the upper zth percentile of the standard normal distribution.

Simulations study

Simulation study has been performed for average MLEs, Mean Square Error (MSE) and bias.

W = 1000 samples of size n = 50, 80, 100 and 120 were produced form APP distribution. Ran-

dom numbers were generated by the following expression

X ¼ ½
log ða=ðUða � 1Þ þ 1ÞÞ

loga
�
� 1=b

where U is uniform random numbers with parameter [0, 1]. Bias and MSE are calculated by

Bias ¼
1

W

Xw

1¼1
ðbbi � bÞ

MSE ¼
1

W

Xw

1¼1
ðbbi � bÞ2

where b = (α, β). Simulations results were obtained for different combinations of α and β. The

average values of MSEs and Bias are displayed in Table 2. It can be illustrated clearly that these

estimates are reasonably consistent and approaches to the true values of parameters as sample

size increases. Furthermore, with increasing sample size the MSEs and Bias decrease for all

parameter combinations. Therefore, it has been concluded that MLE process performs well in

estimating the parameters of APP distribution.

Alpha-Power Pareto distribution
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Applications

Two data sets have been analyzed to demonstrate the performance of the proposed model. The

first data set consists of 40 wind related catastrophes used by [33]. It includes claims of

$2,000,000. The sorted values, observed in millions are as follows.

The second data set consists of survival time (in weeks) of 33 acute myelogenous leukaemia

patients. The data has been analysed by [17, 34]. The data values are as follows.

The fit of the proposed APP distribution is compared with several other competitive models

namely Basic Pareto, Pareto distribution by [35], Genaralized Pareto distibution by [22],

Kumaraswamy Pareto distribution by [29], Exponentiated Generalized Pareto Distribution by

[14] and Inverse Pareto distribution [36] with the following pdfs.

Table 2. Average values of MLE, corresponding MSE and Bias.

Parameter N Mean(α̂) Mean(β̂) MSE(α̂) MSE(β̂) Bias(α̂) Bias(β̂)

α = 1.5

β = 2

50 2.362798 2.11534 4.56759 0.2688502 0.8627983 0.11534

80 2.071618 2.055127 2.747875 0.1810486 0.5716183 0.055127

100 1.903387 2.043762 1.766545 0.1305861 0.4033868 0.043762

120 1.831531 2.04308 1.310119 0.1112204 0.3315312 0.043079

200 1.695633 2.019918 0.6636205 0.06590826 0.1956325 0.019917

α = 0.5

β = 2

50 1.026814 2.214347 1.715091 0.5716235 0.526819 0.2143466

80 0.736057 2.068304 0.5273031 0.3381399 0.2360573 0.0683033

100 0.732957 2.103237 0.3562664 0.290025 0.2329578 0.1032366

120 0.683433 2.09421 0.2801175 0.3199995 0.1834335 0.0942097

200 0.595542 2.037622 0.1361035 0.1468591 0.0955428 0.0376215

α = 1.5

β = 2

50 2.91755 2.073453 5.899037 0.2123235 0.9175495 0.07345263

80 2.622482 2.057547 3.544905 0.1387262 0.62284816 0.05754672

100 2.442603 2.031565 2.440172 0.111905 0.4426029 0.03156455

120 2.379592 2.02482 1.913967 0.09221928 0.3795922 0.02481982

200 2.259941 2.024696 1.06941 0.05798964 0.2599414 0.02469612

α = 5

β = 2

50 5.710379 2.020932 9.390076 0.1045967 0.710379 0.02093233

80 5.5189 2.018883 5.91201 0.06479451 0.3518904 0.01888338

100 5.205472 1.993133 3.631121 0.05078997 0.2054723 0.0068665

120 5.101856 1.995896 2.943594 0.04143445 0.1018556 0.0041041

200 5.098387 1.996232 2.914719 0.03991468 0.0983866 0.0037680

https://doi.org/10.1371/journal.pone.0218027.t002

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 5

5 5 6 6 6 6 8 8 9 15 17 22 23 24 24 25 27 32 43

https://doi.org/10.1371/journal.pone.0218027.t003

65 156 100 134 16 108 121 4 39 143 56

26 22 1 1 5 65 56 65 17 7 16

22 3 4 2 3 8 4 3 30 4 43

https://doi.org/10.1371/journal.pone.0218027.t004
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• Basic Pareto Distribution (BP)

f ðxÞ ¼
b

xbþ1
b > 0; X � 1

• Pareto Distribution (PD)

f ðxÞ ¼
sb

s

ðxþ bÞsþ1
s; b > 0; X � 0

• Generalized Pareto Distribution (GPD)

f xð Þ ¼
1

d
ð1þ

xx
d
Þ
� 1
x
� 1
x 6¼ 0; X � 0; d > 0

• Kumaraswamy Pareto Distibution (KPD)

f ðxÞ ¼
abkbk

xkþ1
1 �

b

x

� �k
" #a� 1

1 � 1 �
b

x

� �k
( )a" #b� 1

x � b; a; b; k > 0

• Exponentiated Generalized Pareto Distribution (ExGPD)

f ðxÞ ¼
ex

d
1þ

xex

d

� ��
1

x
� 1

x 6¼ 0; � 1 � X � 1; d > 0

• Inverse Pareto Distribution (IPD)

f ðxÞ ¼
abxa� 1

ðbþ xÞaþ1
X > 0; a;b > 0

The goodness of fit test is applied, using AdequacyModel package of R software, to check

the performance of APP distribution and several other versions of Pareto distribution dis-

cussed above. Goodness of fit criteria include the result of Akaike’s Information Criteria

(AIC), Consistent Akaike’s Information Criteria (CAIC), Bayesian Information Criterion

(BIC), Hannan-Quinn Information Criteria (HQIC), -lnðŷÞ along with the result of Kulmo-

grov-Smirnov test (KS) and its p value as shown in Tables 3 and 4. In general, if the values of

all the above criteria are smaller and p value is greater, the model is considered as good fit.

Table 3. Goodness of fit result for data set 1.

Distribution MLE AIC CAIC BIC HQIC -ln(θ̂Þ KS p-value

BP 0.595 251.61 251.61 253.16 252.10 124.7 0.22 0.0502

GPD 0.1655 7.42 251.22 251.55 254.55 252.42 122.6 0.21 0.0600

ExGPD 7.745 21.04 253.22 253.22 256.21 254.07 124.4 0.22 0.0522

IPD 0.390 10.30 242.27 242.59 245.59 243.45 119.1 0.16 0.2097

APP 1.223 56.16 235.26 235.59 238.58 236.45 115.6 0.16 0.2497

https://doi.org/10.1371/journal.pone.0218027.t005
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From the results provided in Tables 3 and 4 it is evident that AIC, CAIC, BIC, HQIC and

-log-likelihood are lower for APP distribution as compared to the other fitted distributions.

Promising performance of the proposed distribution is visible from Figs 3 and 4. Figs 5 and 6,

QQ-plot and PP-plot is provided. Apparently, some of the values of QQ-plot depart from the

fitted line, but actually, it is an expected behavior of a heavy tailed distributions [37].

Table 4. Goodness of fit result for data set 2.

Distribution MLE AIC CAIC BIC HQIC -ln(θ̂Þ KS p-value

BP 0.353 323.41 323.54 324.91 323.91 160.70 0.23 0.059

PD 0.802 9.76 317.14 317.54 320.13 318.14 156.56 0.15 0.402

KPD 3.71 3.91 0.27 0.37 318.16 319.59 324.15 320.18 155.80 0.15 0.406

ExGPD 36.62 15.93 317.74 318.15 320.74 318.75 156.87 0.18 0.203

APP 0.102 37.58 314.64 315.04 317.63 315.65 155.32 0.15 0.409

https://doi.org/10.1371/journal.pone.0218027.t006

Fig 3. Comparison between fitted distributions for dataset 1.

https://doi.org/10.1371/journal.pone.0218027.g003

Fig 4. Comparison between fitted distributions for dataset 2.

https://doi.org/10.1371/journal.pone.0218027.g004
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Conclusion

The new distribution, termed as APP distribution, is introduced using alpha power transfor-

mation. Mainly, the transformation is applied for adding skewness to a family of distribution

functions. Different properties of the distribution have been derived including moment gener-

ating function, order statistics, stress strength parameter, mean residual life function, mode,

stochastic ordering and expressions for entropies. Maximum likelihood estimation procedure

has been used to provide parameter estimates of the unknown parameters. The proposed dis-

tribution has been applied to two real datasets, which indicates its better performance as com-

pared to other variants of Pareto distributions.

Supporting information

S1 File. Data Set 1.

(DOCX)

S2 File. Data Set 2.

(DOCX)

Fig 5. QQ-plot and PP-plot of APP distribution for dataset 1.

https://doi.org/10.1371/journal.pone.0218027.g005

Fig 6. QQ-plot and PP-plot of APP distribution for dataset 2.

https://doi.org/10.1371/journal.pone.0218027.g006
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