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Micro‑expression recognition 
model based on TV‑L1 optical flow 
method and improved ShuffleNet
Yanju Liu1, Yange Li2, Xinhan Yi2, Zuojin Hu1, Huiyu Zhang2 & Yanzhong Liu2*

Micro-expression is a kind of facial action that reflects the real emotional state of a person, and has 
high objectivity in emotion detection. Therefore, micro-expression recognition has become one of 
the research hotspots in the field of computer vision in recent years. Research with neural networks 
with convolutional structure is still one of the main methods of recognition. This method has the 
advantage of high operational efficiency and low computational complexity, but the disadvantage is 
its localization of feature extraction. In recent years, there are more and more plug-and-play self-
attentive modules being used in convolutional neural networks to improve the ability of the model 
to extract global features of the samples. In this paper, we propose the ShuffleNet model combined 
with a miniature self-attentive module, which has only 1.53 million training parameters. First, the 
start frame and vertex frame of each sample will be taken out, and its TV-L1 optical flow features 
will be extracted. After that, the optical flow features are fed into the model for pre-training. Finally, 
the weights obtained from the pre-training are used as initialization weights for the model to train 
the complete micro-expression samples and classify them by the SVM classifier. To evaluate the 
effectiveness of the method, it was trained and tested on a composite dataset consisting of CASMEII, 
SMIC, and SAMM, and the model achieved competitive results compared to state-of-the-art methods 
through cross-validation of leave-one-out subjects.

Whether consciously or unconsciously, facial micro-expressions are the result of hiding one’s true emotions. A 
micro-expression is a facial expression that is rapid and unconscious. Micro-expression recognition has many 
potential applications in a variety of fields1, including the police services and lies detection2, teaching assistance3 
and clinical diagnosis4. Even after training with micro-expression training tools5, humans find it difficult to 
accurately recognize micro-expressions due to the subtlety and transient nature of facial movements. As a result, 
using computers to recognize micro-expressions is a more effective solution. During the past several years, micro-
expression recognition tasks have developed tremendously as benchmark datasets (e.g., CASME II6, SMIC7, 
SAMM8, MMEW9) and computer vision techniques have been developed.

By using deep learning for micro-expression recognition, the recognition accuracy has also improved sig-
nificantly compared to the initial traditional approach of manually extracting facial features. Generally, manual 
feature extraction techniques can be divided into two broad categories: feature extraction based on variations in 
facial texture and feature extraction based on variations in facial light. Several researchers have used local binary 
patterns on three orthogonal planes (LBP-TOP)10,11 descriptors to describe changes in facial dynamic texture. In 
order to optimize or improve the basic LBP-TOP for better extraction of facial texture variations, the second-
order Gaussian jets have been employed on LBP-TOP12, LBP six intersection points (LBP-SIP)13, space–time LBP 
(STLBP)14 and space–time completed local quantized patterns (STCLQP)15. For facial light variation analysis, 
directional mean optical flow (MDMO)16, bi-weighted directional optical flow (Bi-WOOF)17 and fuzzy optical 
flow directional histograms (FHOFO)18 are all capable of obtaining sufficient light variation information. Li 
et al.19 proposed a deep multi-task learning method to segment facial signs and then combine them with HOOF 
features to evaluate expression classes by determining the direction of facial muscle movements. A classifier is 
constructed after the features have been extracted, and the most commonly used classifiers are support vector 
machines and random forests. Traditional manual extraction methods have improved the capability of the 
human mind to recognize micro-expressions, but they are still unable to handle the diversity of facial variations. 
By contrast, deep learning methods are capable of obtaining high quality features automatically, even if their 
characteristics are not fully understood. In order to recognize micro-expressions, some deep learning models 
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have been used, such as pre-trained CNNs like OFFApexNet20, TSCNN21, and CNNs combined with long and 
short-term memory22. As a result of this end-to-end approach, these deep methods have produced state-of-the-
art results on several datasets by modeling the spatio-temporal variation of faces, training the extracted features, 
and building classifiers autonomously. In contrast, deep network models based on convolutional structures suffer 
from local feature extraction, which makes it difficult to extract global features from samples. In recent image 
classification research, vision transformer (ViT)23 based on self-attentive mechanism has become increasingly 
popular, which has the advantage of extracting global features and has now become another major solution to the 
image classification problem. The original ViT divides the image into consecutive non-overlapping blocks, and 
then uses multi-headed self-attention in the transformer to learn features between the blocks. Its disadvantage 
is that it increases the complexity of operations and reduces the efficiency of operations. However, conventional 
ViT models have a large number of parameters and are difficult to run efficiently, so some researchers have pro-
posed plug-and-play ViT modules that can be easily integrated into convolutional neural networks to provide 
local and global feature extraction capabilities to the models.

A composite micro-expression recognition model is proposed in this paper based on the CBAM module, the 
improved ViT module, and ShuffleNetV2. The first step in preprocessing is to extract the TV-L1 optical flow24 
features of the samples for pretraining, followed by face alignment and masking. By preprocessing the samples, 
redundant features in the composite ShuffleNetV2 model can be reduced during training, thereby reducing 
memory and computing requirements, and improving the accuracy of recognition. As part of the training pro-
cess, optical flow features are fed into the model, and the weights of the down sampled partial layers are retained 
when the model is most accurate, training it into an excellent feature extractor. In the final training, the weights 
of the layers are loaded and trained. Our main contributions are as follows:

•	 We pre-train the model with optical flow features to make it easier to capture the micro-movements of facial 
micro-expressions.

•	 We integrate the optimized plug-and-play ViT module and the CBAM module into the efficient ShuffleNetV2 
model separately, so that global features can be extracted without any loss of efficiency.

•	 We demonstrate with extensive experiments that the proposed method is still competitive with state-of-the-
art methods.

The structure of this paper is as follows. "Related works" section analyzes the relevant research on micro-
expression recognition in recent years. "Micro-expression recognition model design" section describes the model 
proposed in this paper in detail, including data preprocessing, TV-L1 optical flow features, CBAM module, 
improved ViT module and ShuffleNetV2 model. Experimental results and performance evaluation are given 
in "Experiments" section. Finally, "Conclusion and future work" section summarizes the whole paper and pro-
poses future research work.

Related works
Although the methods based on manual feature extraction in the introduction take full advantage of the spati-
otemporal variation of facial skin texture, they are unable to describe the sample structure, cannot distinguish 
the relationship between high-dimensional features, and do not have the computational power to meet the 
demands of real-time analysis. The accuracy of the above microexpression recognition methods is not signifi-
cantly improved as far as accuracy is concerned. As a result of recent research, deep learning methods have been 
considered one of the most effective methods of learning visual features. Neural networks have been widely 
used to process images and classify them. With their end-to-end models, researchers are not only avoiding 
manual feature extraction, but they can also automatically extract high-dimensional features that are difficult to 
understand and discover, and they can also classify and predict data automatically. They are a leading approach 
to a variety of computer vision problems because of their many advantages. With the emergence of well-known 
successors like AlexNet25, VGGNet26, and GoogleLeNe27, the development of CNNs has been significantly modi-
fied in terms of layering and block design. Deep learning models all share the ability to learn high-dimensional 
representations from large datasets regardless of the network structure. This section provides a detailed overview 
of related research on deep learning methods.

Zhao et al.28 merged four micro-expression data sets into a composite micro-expression dataset, then used 
Eulerian video amplification (EVM) technique to amplify facial actions and extract optical flow features, and 
finally designed a shallow CNN network to extract features and classify micro-expression classes. Peng et al.29 
used large-size The ResNet10 network was pre-trained on the ImageNet dataset using emoji data and later fine-
tuned on the micro-expression dataset, with higher metrics than the base methods such as LBP-TOP and HOOF 
on both composite datasets. The same authors30, first used a medium-sized end-to-end neural network model, 
namely a dual time-scale convolutional neural network (DTSCNN), to recognize micro-expressions. The model 
has two temporal channels and is designed for data with different temporal properties. For example, the cameras 
used to collect the data have different frame rates. Only four convolutional layers and four pooling layers are 
used in each channel to avoid overfitting. The achieved recognition rate is about 10% higher than some previous 
state-of-the-art methods. Huai-Qian et al.31 proposed to train a network with convolutional and recursive layers 
for micro-expression recognition. Instead of using data enhancement on the dataset, they extracted optical flow 
features to enrich the input for each time step or specific time length. However, they did not achieve competitive 
results due to the occurrence of overfitting situations caused by using deep networks on small datasets. Moreover, 
for the nature of micro-expressions with durations less than 1/2 s, training the network on complete video clips 
may not be appropriate. Since the sample size of micro-expression datasets is still small, they cannot be adequately 
trained using deep convolutional neural networks, and the training cost is high, making it difficult for ordinary 
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computer hardware resources to meet the training requirements. Xia et al.32 analyzed composite datasets and 
concluded that low-resolution and shallow network models can help improve the accuracy of models trained on 
composite datasets, and proposed a recursive convolutional network with partially parameter-free module of a 
recursive convolutional network to validate their arguments, and the results showed that the proposed method 
outperformed the state-of-the-art methods. Another study by this author33 proposed an end-to-end framework 
consisting of a recursive convolutional network (RCNN) to recognize micro-expressions. The RCNN was used 
to learn subtly varying features and recognize micro-expressions. Song et al.21 proposed a three-stream convolu-
tional neural network (TSCNN) for micro-expression recognition and designed a TSCNN module for dynamic 
temporal flow, static spatial flow, and local spatial streams to learn and integrate temporal, whole face region and 
local face region cues from micro-expression videos for micro-expression recognition, respectively. The results 
are also compared with many state-of-the-art methods in research. Temporal dithering was used to enrich the 
training samples to facilitate the learning process, and the effectiveness of the method was validated on three 
spontaneous micro-expression datasets.

In recent studies, researchers have also tried to design or use lightweight neural networks to reduce the 
memory resources and computational resources occupied during the training process. Belaiche et al.34 proposed 
an optimized network based on ResNet18 to run faster and reduce the memory footprint while reducing the 
network depth. In addition, a more compact optical flow feature representation is used, which allows the network 
to be more time-efficient while having more substantial accuracy. Liu et al.35 proposed an improved MobileViT 
model that combines a convolutional neural network and a lightweight ViT module to improve the accuracy of 
the lightweight network in recognizing micro-expressions without increasing the training cost. Xu et al.36 used 
the equally efficient and lightweight MobileNetV2 and made a significant improvement in the classification 
accuracy of their network model by adjusting the classifier. They also obtained more beneficial information for 
recognition by extracting the optical flow features of the samples.

By adapting the training approaches and improving the lightweight neural network, the model can be trained 
in the same or shorter time and the results are not significantly different from those of the state-of-the-art.

Micro‑expression recognition model design
Following is a description of the proposed model.

1.	 Preprocessing: facial alignment and cropping of micro-expression image sequences, from which onset and 
apex frames are later derived.

2.	 The TV-L1 optical flow feature extraction algorithm extracts the light change features between the apex 
frame and the onset frame as a result of muscle movement.

3.	 Pre-training of TV-L1 optical flow features with an improved ShuffleNet network: The extracted TV-L1 
optical flow features are fed into the network model separately for pre-training and saving the weights when 
accuracy is high. Pre-training makes it easier for the network model to detect subtle facial movements.

Classification of pre‑processed image sequences using improved ShuffleNet 
network: load the model weights from pre‑training and classify the image 
sequences.
Figure 1 illustrates the simplified flow chart of this model.

Pre‑processing.  The sampling equipment and sampling conditions used to build the dataset can also vary 
from institution to institution, which can result in large differences in the data resolution, the code rate, and 
other metrics in the dataset. The data from different datasets are processed equally in this study, and the sche-

Figure 1.   Micro-expression recognition model. (1) Obtain the start frame and vertex frame from the pre-
processed sequence and extract the TV-L1 optical flow features between them. (2) Feed the optical flow 
features into the improved ShuffleNetV2 for pre-training and get the weights. (3) Load the weights and feed the 
pre-processed dataset into the improved ShuffleNetV2. (4) Use the SVM classifier in training for classification. 
Images are from subject 1 of the CASME II dataset6 and is reproduced here following the CASME2 license 
agreement. Copyright © Xiaolan Fu.
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matic diagram of the pre-processing steps is shown in Fig. 2. We utilize the original expression image sequences 
provided by the dataset for processing.

After obtaining the complete microexpression image sequence, we use the OpenCV and Dlib toolkit to extract 
the face, position the facial marker points, and crop the face to the size of 224× 224 pixels. The face then needs 
to be aligned to ensure that it is always horizontal. The 68 facial landmark points detector provided by the Dlib 
toolkit was used to obtain the coordinates of the left eye A(xL, yL) and the right eye B(xR, yR) and calculate the 
coordinates C(xC , yC) of the center of the two eyes as the center of rotation. The angle γ of the desired rotation 
is then obtained by calculating the tangent of the horizontal and vertical distances between the left eye and the 
center point, and the face picture is rotated to horizontal by the affine transformation, and the angle is calculated 
as in Eq. 1.

After rotation to horizontal, optical flow features are extracted between the onset and apex frames. As a final 
step, eye regions and regions that produce little or no movement are masked by marked facial marker points 
so as to avoid noise caused by eye movements (e.g., blinking) and to reduce redundant features. The micro-
expression dataset did not contain sufficient data, and the number of expressions in different categories was 
extremely unbalanced after counting the samples, which could easily result in bias in the neural network. The 
positive emotion as well as the surprise emotion were therefore expanded by horizontal inversion. The number 
of emotion categories has been essentially balanced after the expansion.

TV‑L1 optical flow features and pre‑training.  The movements of micro-expressions are very subtle, 
lasting less than 0.2 s. In addition, all samples used in this study were collected in a laboratory under fixed condi-
tions. Consequently, each micro-expression sample satisfies the conditions for using optical flow features, which 
are that the luminance and channel values remain essentially constant, and that pixels move very little between 
adjacent frames.

Suppose the light energy of a point in the first frame is denoted as f (x, y, t) , where (x, y) is the pixel coordinate 
and t  is the time, after time dt , the point has moved dx, dy distance. The intensity of the two adjacent frames is 
achieved as:

(1)γ = arctan
yC−yA
xC − xA

,

(2)f
(

x, y, t
)

= I
(

x + dx, y + dy, t + dt
)

,

Figure 2.   (a) Raw image. (b) Grayscale processing of the raw image. (c) Extracting the face and cropping the 
size. (d) Rotating the face to horizontal. (e) Adding facial masks. (f) Extracting optical flow features. Images 
are from subject 1 of the CASME II dataset6 and is reproduced here following the CASME2 license agreement. 
Copyright © Xiaolan Fu.
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From the study of Xu et al.36 by performing a Taylor expansion of Eq. (2), it is obtained that:

Dividing both sides of the equation equally by dt yields:

where u and v are the horizontal and vertical components of the optical flow field, respectively. But assuming 
a constant brightness for 1 will only produce a constraint equation that is not sufficient to solve for u and v . 
Therefore, solving the optical flow field model requires an additional constraint on the displacement field vec-
tor. It has been proposed to add a smoothing constraint to the optical flow constraint, which assumes that the 
velocity of the object motion is locally smooth in most cases37. In particular, when the target is in rigid motion 
without deformation, the velocity of each neighboring pixel point should be the same, i.e., the rate of change of 
the velocity of the neighboring points is zero, and the solution of the optical flow field is transformed into the 
energy generalized minimal value problem:

The first term is a regular term that assumes that the optical flow field does not show large variations and 
smooth velocity fields can be obtained. The second term is the data term, the basic optical flow constraint, which 
assumes constant grayscale values before and after the corresponding point motion. � is the regularization 
parameter, which is a weighted parameter associated with the regular term and the data term. Since the regular 
term of H–S model adopts smoothness constraint and both the regular term and data term are quadratic, the 
robustness is poor and cannot keep the discontinuity of displacement field, which will cause serious blurring and 
loss of important information during the image evolution. To overcome the shortcomings of the H–S model, a 
TV-L1 optical flow model based on the full variational approach is proposed38 and the optical flow constraint is 
improved by introducing the variable w. Modeling of w against light changes is obtained:

where ρ(u, v,w) = Ix(u− u0)+ Iy(v − v0)+ It + βw . The parameter β is a factor for the weight light change 
term. Although there is little change compared with the H–S model, the alignment accuracy has been greatly 
improved. First, the total variation regular term maintains the discontinuity of the displacement field and protects 
the edge information from being blurred during the diffusion. The replaced regular term has a good denoising 
effect while keeping the edge information from being blurred. Secondly, the data items of TV-L1 are less sensi-
tive to luminance changes compared to the H–S model. In the experiments, the more robust TV-L1 approach 
was chosen.

First of all, as part of the pre-training, we extracted the same number of samples from each category in order 
to prevent the network model from being biased towards a specific category of emotions during classification. 
After that, the feature images are fed into the network model randomly without repetition and made to perform 
classification. In this process, the initial learning rate is set to 0.001, the cross-entropy loss function is used to 
calculate the loss, and the Softmax classifier is used to classify the images. In pre-training, a final accuracy of 
96.28% was achieved for identifying optical flow feature images and model weights were saved.

ShuffleNet model combined with CBAM.  Self-attention-based ViT methods have achieved excellent 
results in many computer vision problems over the past few years, however their models tend to be very com-
plex. A pair of approaches is adopted in this paper in order to optimize the accuracy of micro-expression rec-
ognition and maintain the lightweightness of the models. To form a new network model, a convolutional block 
attention module is added to ShuffleNetV2 as the first approach. As a result of this approach, attention maps can 
be added to feature maps in any CNN model structure at a non-negligible time–space overhead. In addition, 
incorporating the improved lightweight transformer module with ShuffleNetV2 is an alternative approach, as 
it contains the full operation of the transformer and retains CNN-specific features such as inductive bias and 
global nature of the transformer. The overall model can still remain lightweight and accurate by improving the 
transformer block.

(3)f
(

x, y, t
)

= f
(

x, y, t
)

+
∂f
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Convolutional block attention module.  A lightweight convolutional block attention module for feedforward 
neural networks has been proposed in 2018, which can infer the attentional feature map from two independent 
dimensions, channel and space, and then multiply the attentional feature map with the input feature map to 
refine the features adaptively. In view of its generality, the module can be seamlessly integrated into any CNN 
architecture with minimal time and space overhead.

The spatial information of the feature map is first aggregated by using the average pooling and maximum 
pooling operations to generate two different spatial context descriptors: Fc

avg and Fc
max , which denote the average 

pooling feature and the maximum pooling feature respectively. The two descriptors are then forwarded to the 
shared network to generate the channel attention map Mc ∈ R

C×1×1 . The shared network consists of a multi-
layer perceptron (MLP) with one hidden layer. To reduce the parameter overhead, the hidden activation size is 
set to RC/r×1×1 , where r is the scaling rate. After applying the shared network to each descriptor, we merge the 
output feature vectors using element-by-element summation. In brief, channel attention is calculated as follows:

where σ denotes the sigmoid function, W0 ∈ R
C/r×C , andW1 ∈ R

C×C/r . Note that the two inputs share the MLP 
weights W0 and W1 , and W0 followed by the ReLU activation function.

Spatial attention maps are generated by exploiting the spatial interrelationships of features. Unlike channel 
attention, spatial attention is focused on "where" as an information component that complements channel atten-
tion. To compute spatial attention, first apply the average pooling and maximum pooling operations along the 
channel axes and concatenate them to generate a valid feature descriptor. Applying pooling operations along 
the channel axis is effective in highlighting areas of information. On the connected feature descriptors, a con-
volutional layer is applied to generate a spatial attention map Ms(F) ∈ RH×W , which encodes the emphasized 
or suppressed locations.

Two two-dimensional maps are generated by using two pooling operations to aggregate the channel informa-
tion of the feature maps: Fsavg ∈ R

1×H×W and Fsmax ∈ R
1×H×W . Denotes the average pooling feature and the 

maximum pooling feature for the whole channel. These are connected and convolved by a standard convolutional 
layer to generate a 2D spatial attention map. In brief, spatial attention is calculated as follows:

where σ denotes the sigmoid function and f 7×7 denotes the convolution operation with a filter size of 7× 7 . The 
complete model structure is shown in Fig. 3.

Improved lightweight ViT module.  Various tasks, including image classification, target detection, and seman-
tic segmentation, are significantly improved by the original ViT over CNNs. Nevertheless, these performance 
improvements usually require high computational resources. For example, DeiT39 multi-adds more than 10 G of 
computational resources to perform image classification tasks. These high computational resource requirements 
are beyond the capabilities of many devices. It is also difficult to capture subtle facial changes with lightweight 
and efficient convolutional neural networks designed for mobile vision tasks due to localization problems in 
extracting features. As a result, we hope to combine ViT with ShuffleNetV2 to complement one another.

Our improvements for the ViT module mainly include the way in which the self-attention is computed and 
the different image encoding methods ensure that the module contains local feature extraction capabilities 
similar to convolutional layers and speeds up the training efficiency of the ViT module. First, we note that the 
underlying transformer consists of alternating multi-headed self-attention and multilayer perceptron (MLP), 
while the calculation of self-attention can be expressed by Eq.

(10)
Mc(F) = σ

(

MLP
(

AvgPool(F)
)

+MLP(MaxPool(F))
)

= σ

(

W1

(

W0

(

Fcavg

))

+W1

(

W0

(

Fcmax

))

)

,

(11)
Ms(F) = σ

(

f 7×7
([

AvgPool(F);MaxPool(F)
]))

= σ

(

f 7×7
([

Fsavg; Fsmax

]))

Figure 3.   ShuffleNet network structure diagram combined with CBAM. Images are from subject 1 of the 
CASME II dataset6 and is reproduced here following the CASME2 license agreement. Copyright © Xiaolan Fu.
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where Q,K ,V  are query, key and value matrices, dk is the query/key channel dimension, N  is the number of 
tokens, and C is the token channel dimension. In a lightweight model with limited capacity, the computational 
cost of self-attentiveness is higher than that of convolutional layers. The computational complexity of self-
attention is quadratic with respect to the spatial resolution and introduces three linear layers of the same level 
to compute linear combinatorial results of V  . To alleviate this problem, we received inspiration to introduce the 
Ghost module to replace the linear layers in self-attention, which uses ordinary convolution to generate some 
inherent feature maps, and then enhances the features and adds channels using linear operations with less compu-
tational overhead to obtain better performance and speed performance. Secondly, the weight sharing mechanism 
is utilized to reuse the weights in Q , K , and V  calculations and to reuse the features V  into Q and K . This is due 
to the fact that Ma et al.40 argue that Q and K are only involved in the computation of the attentional map, while 
the final result of the self-attention mechanism is a linear combination of each token in V  . Compared with Q and 
K , V  needs to retain more semantic information to ensure the final weighting and the representational power of 
the result. Thus the results of the self-attentive mechanism are strongly correlated with V  but weakly correlated 
with Q and K . Therefore simplifying the computation of Q and K can lighten the overall computational overhead 
of the model more. The weight sharing mechanism can be expressed as follows:

where f v , f k and f q are the projections for calculating Q , K  , and V  , respectively. The improved calculation of 
self-attentiveness can be written as:

Finally, before feeding the feature map into the transformer module, an n× n standard convolutional layer 
is first applied to the feature map, after which the features are generated using point convolution. n× n convolu-
tional layers encode local spatial information, and point convolution projects the tensor into high-dimensional 
space by learning linear combinations of the input channels. First, a standard convolutional layer with n× n 
is applied for a given image input tensor X ∈ R

H×W×C (where H ,W ,C are the width, height and number of 
channels of the image, respectively), to which a point convolutional layer is connected, yielding XL ∈ R

H×W×d . 
n× n convolutional layer encodes local spatial information. In contrast, the point convolutional layer projects 
the tensor to the high-dimensional space by learning linear combinations of the input channels. The method is 
to expand XL into N non-overlapping flattened blocks XU ∈ R

P×N×d where P = wh , N = HW
P  is the number of 

blocks, and h ≤ n and w ≤ n are the height and width of a block, respectively. For each p ∈ {1, · · · , P} , the rela-
tionship between the blocks is encoded by applying our improved transformer. The XG ∈ R

P×N×d was obtained:

Unlike vanilla ViT, which loses the spatial order of pixels, our ViT blocks loses neither the block order nor the 
spatial order of pixels within each block. Therefore, XG ∈ R

P×N×d can be collapsed to obtain XF ∈ R
H×W×d . 

Then, XF is projected to the low C-dimensional space using point-to-point convolution and combined with X 
by the join operation. Another n× n convolution layer is then used to fuse the local and global features in the 
tandem tensor and output. Since XU (p) uses convolution to encode local information in the n × n region and 
XG(p) encodes the global information of the P blocks at the pth position, each pixel in XG can encode the infor-
mation of all pixels in X , as shown in Fig. 4. Thus, our ViT block has no loss of an effective sensory field. The 
model structure after the introduction of the improved ViT module is shown in Fig. 5.

ShuffleNetV2.  ShuffleNetV2 is an upgraded version proposed by Face + + and Tsinghua University in 2018 
for ShuffleNetV1, which is more accurate than ShuffleNetV1 and MobileNetV2 with the same complexity. By 
analyzing ShuffleNetV1, the researchers found that point-by-point group convolution and bottleneck structure 
increase the memory access cost(MAC) and the cost is not negligible. Element-level addition operations in 
shortcut connections will also result in reduced efficiency.

ShuffleNetV2 introduces channel splitting, as shown in Fig. 6, by dividing the input feature channels into two 
branches, one of which remains unchanged and the other consists of three convolutions with the same input 
and output channels, and two of the 1× 1 convolutions are no longer group convolutions, ensuring minimal 
memory access cost.

By doing the above, the modules in the ShuffleNetV2 network can use more channel features and larger 
network capacity, thus maintaining high accuracy and reducing computational complexity. In addition, due to 
channel segmentation, part of the features can be connected to the following blocks directly, which is equivalent 
to feature reuse, making the network not only efficient but also accurate. The network structure used in this 
paper is shown in Table 1.

Basic ShuffleNetV2 uses the SoftMax classifier. SoftMax regression is an improvement based on logistic 
regression for multi-classification problems, and when a given sample is input, it outputs a value between 0 and 
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Figure 4.   Each pixel sees every other pixel in our ViT block. In this example, the red pixel uses the transformer 
to focus on the blue pixel (the pixel in the corresponding position in the other blocks). Because the blue pixel 
already encodes the information of neighboring pixels using convolution, this allows the red pixel to encode the 
information of all pixels in the image. Here, each cell in the black and grey grid represents a block and a pixel, 
respectively41.

Figure 5.   In this model, the convolutional layer of ShuffleNetV2 is responsible for downsampling, and a 
modified ViT module is inserted before and after the last ShuffleNetV2 layer to extract global features.

Figure 6.   ShuffleNetV2 channel splitting schematic.
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1, indicating the probability that the input sample belongs to that class. For the expression image x , the prob-
ability of its class j is:

where p
(

y(i) = j | x(i), θ
)

 is the probability that the expression image x corresponds to each expression category 
j , and θ is the parameter to be fitted. The category with the highest probability value is the final result of the 
neural network prediction classification. Because the number of samples in the micro-expression dataset is small 
and the differences between different emotion samples of the same subject are very subtle. Since the SoftMax 
classifier minimizes the cross-entropy from a global perspective, the SoftMax classifier will likely lead to misclas-
sification once there are samples with large differences. To solve this problem, and because SVM performs well 
on small data sets and often has higher classification accuracy than other classifiers. We also try to use the SVM 
classifier for classification. SVM tries to find the maximum margin between data points of different categories. 
It has better differentiability, and the regularization term penalizes the wrongly scored data more strongly, with 
strong generalization capabilities, thus facilitating the differentiation of micro-expression features. Its Hinge 
loss function is defined as:

where 1 ≤ y ≤ N denotes the label.
In the experiments L2 regularization was added to the model, by adding regularization it allows the model to 

use as many features as possible to identify emotional features rather than individual features. Besides, replacing 
the ReLU activation function with LeakyReLU can avoid the occurrence of neuron death effectively.

Experiments
Dataset.  In this paper, four representative datasets are selected for training and testing the proposed 
approach: the SMIC7, CASME II6, SAMM8 and MMEW9, and the three selected datasets were all specifically 
designed for the detection and recognition of spontaneous micro-expressions. The SMIC dataset contained 
164 micro-expression segments from 16 subjects, six females and ten males. The collection is done by cameras 
with different frame rates. These subjects underwent emotion capture in an interrogation room setting, and the 
experiment also contained punishment and threat mechanisms that suppressed irrelevant facial expressions 
of the subjects. The CASMEII dataset contains 247 micro-expression clips from 26 subjects, and the camera 
equipment used for acquisition has a frame rate of 200 fps, allowing for more images to be produced in the same 
amount of time compared to SMIC, and a greater increase in image resolution. The SAMM dataset contains 159 
micro-expression segments from 32 subjects, achieving gender balance while including multiple ethnicities and 
nationalities, with a resolution of 400× 400 in the facial region, the highest of any dataset to date. In addition, 
the acquisition process uses a variety of LED devices to ensure stable light. The newly released MMEW dataset 
uses the same size resolution of facial regions as SAMM, and the overall image resolution is second only to 
SAMM. MMEW contains 300 micro-expression samples from 36 subjects with an average age of 22.35 years, the 
largest sample size of any micro-expression dataset. However, its shortcoming is that the frame rate is only 90, 
which is lower than the other three datasets.

All of the above datasets are publicly available, and each dataset has been approved for use by the relevant 
authorities. Our experimental protocols and the images in the text are also approved for use.

To keep the classification consistent across the three datasets, the expression types in MMEW, CASMEII and 
SAMM were combined into three categories in the experiment. Among them, happy is obviously a positive emo-
tion, so it is classified as a positive emotion. On the contrary, disgust, sadness, fear, anger, and contempt usually 
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Table 1.   ShuffleNetV2 network structure.

Layers Output size Kernel Size Stride Repeat Output channels

Image 224 × 224 – – – 3

Conv1 112 × 112 3 × 3 2 1 24

MaxPool 56 × 56 3 × 3 2

Stage 2 28 × 28 1 × 1 2 1 116

28 × 28 1 × 1 1 3

Stage 3 14 × 14 1 × 1 2 1 232

14 × 14 1 × 1 1 7

Stage 4 7 × 7 1 × 1 2 1 464

7 × 7 1 × 1 1 3

Conv 5 7 × 7 1 × 1 1 1 1024

GlobalPool 1 × 1 7 × 7 – – –
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represent negative emotions of people, so these emotions are classified as negative emotions. And surprise cannot 
be judged to be caused by good or bad things directly, so such expressions need further judgment.

Experiment settings and  performance evaluations.  In the experiment, the deep learning part uses 
the Keras framework to build the neural network structure, the hardware platform CPU is Intel Core i99980HK, 
the memory is 32 GB, and the graphics card model is AMD Radeon Pro 5500 M. Evaluation was performed on a 
composite dataset consisting of a combination of the most commonly used CASMEII, SAMM, and SMIC data-
sets. Similarly, this experiment also applied the leave-one-out cross-validation approach for micro-expression 
recognition classification, where one subject’s data was used as the test set in each iteration of the cross-valida-
tion. The advantage of using this approach is that it can better reproduce the situation when new subjects are 
encountered during model training and improves the generalization ability of the model. This way of evaluating 
the generalization ability of the model is gradually becoming more mainstream in micro-expression recognition 
tasks. The Adam optimizer is used to train the model with an initial learning rate of 10e − 3 , and the learning rate 
is dynamically adjusted by accuracy and loss. In order to make a fair comparison with other studies, we use the 
unweighted recall rate (UAR) and the unweighted F1 score (UF1) as evaluation metrics alongside the accuracy 
rate. These metrics allow the accuracy of model recognition and the ability to balance between different classes 
to be measured. Assume that TP , FP and FN are the true positive, false positive and false negative, respectively. 
The UAR is calculated by UAR = 1

C

∑C
c=1

TPc
Nc

 where TPc and Nc are the number of true positives and all sam-
ples in c-th class. The UF1 is computed as UF1 = 1

C

∑C
i=c

2Pc×Rc
Pc+Rc

 , where Pc = TPc
TPc+FPc

 and Rc = TPc
TPc+FNi

 for 
c-th class.

The convolutional and fully-connected layers of the model were subjected to L2 regularization at a scale of 
0.2 and Dropout at a scale of 0.5 to avoid overfitting. To improve the speed of each part of the experiment, the 
Keras 2.2.4 library was utilized.

Results and discussion.  In the experiments to improve the accuracy we added pre-training of optical flow 
features and models composed of different modules, so to prove the effectiveness of these approaches, ablation 
experiments are essential. Table 2 shows the effect of the different methods on the performance metrics. Firstly, 
for whether the pre-training of TV-L1 optical flow features is effective for micro-expression recognition, we 
set up two sets of experiments, one without pre-training optical flow features and the other with pre-training 
and loading the weights obtained from pre-training, and in the experiments, we used different network models 
to verify the robustness of the methods. These include lightweight convolutional neural networks and regular 
convolutional neural networks, and a pure ViT model without convolutional structure is also added. The experi-
mental results show that this TV-L1 optical flow feature pre-training can make it easier for ShuffleNetV2 to 
observe the subtle changes of human faces in formal training, proving that the TV-L1 optical flow feature can 
effectively reflect the characteristics of micro-expressions.

Secondly, for classifier selection in multi-classification problems, most network models default to Softmax, 
which minimizes cross-entropy from a global perspective. However, the differences between micro-expressions 
of different sentiment categories are very subtle, and once there are negative samples with large differences, it is 
likely to lead to misclassification. To solve this problem, the SVM classifier was tried in the experiments. SVM 
tries to find the maximum margin between different categories of data with better differentiability, it contains 
a regularization term, penalizes misclassified data more strongly, and has better generalization ability. Similar 
to the ablation experiments with pre-trained features, we also conducted experiments using different network 
models, and the final results showed that different models improved the accuracy after using the SVM classifier. 

Table 2.   Ablation experiments to verify the effect of different methods and modules on model recognition 
accuracy. The test results of our proposed method are shown in bold.

Approach

MMEW CASME II SMIC SAMM

UAR​ UF1 UAR​ UF1 UAR​ UF1 UAR​ UF1

ShuffleNetV2 without pre-trained 0.6252 0.6384 0.6336 0.6497 0.6180 0.6104 0.6149 0.6214

ShuffleNetV2 without SVM classifier 0.6222 0.6392 0.6207 0.6291 0.6038 0.5918 0.5925 0.5899

ShuffleNetV2 0.6524 0.6621 0.6647 0.6583 0.6394 0.6451 0.6712 0.6592

ShuffleNetV2 with CBAM 0.6684 0.6719 0.6739 0.6619 0.6581 0.6610 0.6802 0.6694

ShuffleNetV2 with improved ViT 0.6894 0.7251 0.6925 0.7008 0.7159 0.7141 0.6684 0.7410

MobileNetV2 without pre-trained 0.5882 0.5741 0.5741 0.5726 0.6150 0.6021 0.5632 0.6131

MobileNetV2 without SVM classifier 0.6091 0.6032 0.5744 0.5951 0.5886 0.6125 0.5869 0.6262

MobileNetV242 0.6448 0.6684 0.6358 0.6229 0.6768 0.6692 0.6328 0.6517

ResNet50 without pre-trained 0.6427 0.6231 0.6364 0.6253 0.6331 0.6480 0.5905 0.6059

ResNet50 without SVM classifier 0.6438 0.6571 0.6296 0.6308 0.6018 0.6319 0.6246 0.6581

ResNet50 0.6793 0.6782 0.6743 0.6682 0.6841 0.6621 0.6599 0.6827

DeIT without pre-trained 0.6614 0.6582 0.6479 0.6289 0.6617 0.6696 0.6782 0.6573

DeIT without SVM classifier* 0.6561 0.6428 0.6675 0.6708 0.6825 0.6843 0.6638 0.6592

DeiT*39 0.6982 0.6820 0.6815 0.7008 0.6963 0.6921 0.7108 0.7034



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17522  | https://doi.org/10.1038/s41598-022-21738-8

www.nature.com/scientificreports/

Finally, to verify whether the convolutional block attention module and the modified lightweight ViT module 
can improve the recognition ability of the network, we compare their performance metrics both with the models 
pre-trained and with the SVM classifier. The table shows that both modules can improve the recognition per-
formance, but the composite model with the addition of the ViT module in the ShuffleNetV2 model achieves 
better accuracy, on the one hand because the MLP has fewer layers in the CBAM and is applied only once in the 
network structure, and fewer regions are noticed compared to the improved ViT module. On the other hand, the 
improved ViT module does not lose any pixel information when encoding the image, so the features obtained 
are also more global in nature.

In order to demonstrate that our proposed method is still competitive among different methods, we sum-
marize many models including the manual feature extraction method. Since the code of some of the models is 
not open source and their methods are not tested on the MMEW dataset, the accuracy of their methods on the 
MMEW dataset is not explicitly written in Table 3. Our proposed method in Table 3 shows a significant improve-
ment in accuracy compared with the hand-extracted feature approach. Deep network models can find subtle and 
difficult to understand high-dimensional features that are difficult to obtain by hand-extracted features. However, 
for some complex deep learning networks, the accuracy is still not very high.

On one hand, it is because the number of samples is not enough, and on the other hand, the lightweight 
neural network framework sacrifices some accuracy to improve efficiency. In traditional deep learning, adequate 
model prediction results require that the database sample size is large enough and that the training and testing 
datasets conform to the same distribution. It is clear that the current database does not satisfy these conditions. 
The table also contains two pure ViT models without convolutional structure, whose accuracy is comparable to 
that of complex deep networks, but their number of parameters is too large and their training overhead is larger 
than that of convolutional neural networks. And through Table 3, it can also be found that in the more recently 
released MMEW dataset, the recognition accuracy has a small improvement compared with other datasets due 
to its larger number of samples, which laterally reflects that the number of samples plays an important role in 
the accuracy of micro-expression recognition.

To analyze in more detail the recognition performance of the three micro-expression categories and the 
accuracy of the different emotion categories, we calculated confusion matrices, as shown in Figs. 7, 8, 9, 10 and 
11, where each confusion matrix is a combination of the three datasets. As can be seen in Fig. 8, the accuracy 
of positive emotions is the highest compared to negative and surprise emotions. This is because there are only 
happy samples in the positive category of emotion samples, and the model can grasp their features more easily 
during the training process. In contrast, the recognition rate of both negative emotions and surprise emotions is 
low, especially the negative class emotions contain many emotion categories, so it is difficult to obtain accurate 
features. And the CBAM module with more MLPs compared with the improved ViT module can get the global 
features better and classify them correctly.

In terms of recognition speed, the experiments compared ResNet50, a conventional CNN, DeiT with no 
convolutional structure and MobileNetV2, a lightweight CNN, and the average time to recognize an expression 
under the same experimental environment and equipment is shown in Table 4. Firstly, compared with the com-
plex CNN model, the recognition time of the proposed method in this paper is significantly reduced, which is 
due to the smaller depth of the network and the smaller number of parameters. In contrast, compared to DeiT, 
the number of parameters is too large and the training efficiency is much lower than that of conventional CNN, 
even though its accuracy achieves excellent results over CNN in many fields. Secondly for lightweight CNNs, 
even the CBAM module, which has a computational overhead close to 0, is slightly behind the lightweight CNN 
in terms of time, but the improvement in accuracy is necessary for the similar time. Finally, compared with the 
CBAM module and the improved ViT module, the recognition time of the latter is slightly improved, but there 
is also a significant improvement in the performance metrics, and the recognition time of both modules is close 

Table 3.   UAR and UF1 performance of different approach under LOSO protocol on different datasets. The 
optimal results of two experiments on different datasets are shown in bold.

Approach

MMEW CASME II SMIC SAMM

UAR​ UF1 UAR​ UF1 UAR​ UF1 UAR​ UF1

LBP-TOP10 0.5628 0.5794 0.7429 0.7026 0.5280 0.2000 0.4102 0.3954

LBP-SIP13 0.5208 0.5174 0.5281 0.5369 0.5142 0.4452 0.4169 0.4412

Bi-WOOF17 – – 0.5382 0.7805 – 0.5727 – 0.5211

HOOF18 0.5814 0.5982 0.5782 0.5874 0.5696 0.5574 0.5877 0.5639

CapsuleNet43 0.7296 0.7115 0.7018 0.7068 0.5877 0.5820 0.5927 0.6520

CNN-LSTM22 – – 0.4125 0.4113 0.4276 0.4150 0.3086 0.3020

NMER44 0.3414 0.4253 0.6929 0.7624 0.5555 0.5607 04,894 0.6389

RCN-Best32 – – 0.6600 0.6584 0.8131 0.8653 0.6771 0.7647

TSCNN21 – – 0.6009 0.6124 0.5924 0.5839 0.6103 0.6083

MobileNetV242 – – 0.6328 0.6125 0.6368 0.6589 0.6236 0.6614

DeiT39 0.6921 0.6882 0.6814 0.6994 0.6881 0.6970 0.7052 0.7028

Proposed method 0.6981 0.7318 0.6997 0.7251 0.7356 0.7141 0.6781 0.7428
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to the minimum duration of micro-expressions (30 ms), which can capture facial micro-expressions in a timely 
and effective manner.

The pre-processing part of the data is given great importance in the experiments, and it is demonstrated that 
the TV-L1 optical flow feature can effectively improve the training accuracy, and the most suitable parameters 
are determined by trying different expression sequence lengths and facial mask regions. Also, to avoid the prob-
lem of unbalanced number of sample categories, the same number of emotion category samples are randomly 
selected in each training iteration to prevent the neural network model from being more biased towards a certain 
emotion category. The generalization ability of the model is also improved during the training of the merged 
dataset, with better stability in the face of new samples. In fact, the facial action area of micro-expressions is very 

Figure 7.   ShuffleNetV2 with CBAM is not pre-trained for optical flow features.

Figure 8.   Confusion matrix using ShuffleNetV2 model only.
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limited in size and contains some irrelevant muscle movements (e.g., blinking) when the face produces an action. 
Therefore, directly extracting the feature vector of the face using the full-face sample will contain more redundant 
information, which will reduce the expressiveness of the feature vector and thus affect the recognition accuracy.

When ShuffleNetV2 was proposed, it already surpassed the then state-of-the-art network model in terms of 
accuracy and efficiency, and it can be seen experimentally that ShuffleNetV2, with the addition of different mod-
ules, effectively improves the accuracy of the model on image classification problems. Therefore, the improved 
ShuffleNetV2 can effectively improve the accuracy on other image classification and recognition problems.

Figure 9.   Confusion matrix in the ShuffleNetV2 with CBAM + Softmax case.

Figure 10.   ShuffleNetV2 with CBAM is pre-trained and the classifier uses SVM.
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Conclusion and future work
In this paper, two differently designed self-attentive modules, CBAM and ViT, are proposed to improve the Shuf-
fleNetV2 model, and the model is pre-trained using TV-L1 light-slip features. The final performance in the four 
datasets is achieved comparable to the best current research and only lags behind the lightweight CNN network 
in terms of recognition time. The experimental results demonstrate that the proposed two modules can effectively 
improve the recognition accuracy of ShufleNetV2, which is one of the effective methods for micro-expression 
recognition. In future work, we will try to extract features containing more information as input to reduce the 
redundant features while improving the recognition accuracy. In addition, random noise processing is performed 
on the images to improve the stability of the model and facilitate the recognition of facial micro-expressions in 
non-ideal environments. Subsequent studies aim to broaden the usage scenarios of micro-expression recognition 
and reduce the cost of using the network model in order to make micro-expression recognition more useful in 
different fields.

Data availability
The CASME II dataset used to support the results of this study was provided by the Fu Xiaolan research group 
of the Chinese Academy of Sciences with permission and is therefore not freely available. Requests to access 
these data should download a signed license file at http://​fu.​psych.​ac.​cn/​CASME/​casme2-​en.​php and send it to 
fuxl@psych.ac.cn.
The SAMM dataset is provided with permission from the Moi Hoon Yap Research Group at Manchester Met-
ropolitan University and is therefore not freely available. Requests to access these data should be downloaded at 
http://​www2.​docm.​mmu.​ac.​uk/​STAFF/M.​Yap/​datas​et.​php and sent to M.Yap@mmu.ac.uk with a signed per-
mission file.
The SMIC dataset is provided by Li Xiaobai’s research group at the University of Oulu, Finland with permission, 
so it is not freely available. To request access to these data, please send an email to Xiaobai.Li@oulu.fi to obtain it.

Figure 11.   ShuffleNetV2 with improved ViT is pre-trained and the classifier uses SVM.

Table 4.   Comparing the time to identify a single sentiment sample by different network models. The test 
results of our proposed method are shown in bold.

Approaches Time (ms)

ResNet50 105.9

DeiT39 168

MobileNetV242 24

ShuffleNetV2 + CBAM 28.5

ShuffleNetV2 + ViT 37.9

http://fu.psych.ac.cn/CASME/casme2-en.php
http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
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The MMEW dataset used to support the results of this study was provided by the research group of Ben appeared 
Ye at Shandong University with permission and therefore cannot be provided free of charge. Requests for access 
to these data should be made by contacting Ben appeared Ye (benxianyeye@163.com) and sending a signed 
permission file to benxianyeye@163.com.
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