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ABSTRACT Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) gains entry into the lung
epithelial cells by binding to the surface protein angiotensin-converting enzyme 2. Severe SARS-CoV-2
infection, also known as coronavirus disease 2019 (COVID-19), can lead to death due to acute respiratory
distress syndrome mediated by inflammatory immune cells and cytokines. In this review, we discuss the
molecular and biochemical bases of the interaction between SARS-CoV-2 and human cells, and in doing
so we highlight knowledge gaps currently precluding development of new effective therapies. In particular,
discovery of novel treatment targets in COVID-19 will start from understanding pathologic changes based
on a large number of autopsy lung tissue samples. Pathogenetic roles of potential molecular targets
identified in human lung tissues must be validated in established animal models. Overall, this stepwise
approach will enable appropriate selection of candidate therapeutic modalities targeting SARS-CoV2 and
the host inflammatory response.
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Introduction
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China and quickly spread to
become a pandemic. As of 1 September, 2020, the World Health Organization reported over 25 million
confirmed cases of COVID-19 worldwide, resulting in more than 850000 deaths globally and 180000
deaths in the USA alone [1].

The clinical symptoms and pathobiology of COVID-19 are similar to those seen in infections caused by
another coronavirus, severe acute respiratory syndrome-coronavirus (SARS-CoV), which globally resulted
in approximately 774 deaths in 2003 [2]. Recent studies have identified that similar to SARS-CoV,
SARS-CoV-2 binds to a specific human cell surface protein, angiotensin-converting enzyme 2 (ACE2).
ACE2 is expressed by multiple cell types including the epithelial cells of the lungs, the intestine, the
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FIGURE 1 Life cycle of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Based on the
phylogenetic study, transmission of SARS-CoV-2 evolves from the natural reservoir of bats (non-human host) to
the current pathogenic state of human outbreak through natural selection or another mammal, probably
pangolin [15, 16] served as a host of a non-pathogenic version of the SARS-CoV-2 that later jumped into humans
with the acquired capacity to current pandemic outbreak through human-to-human transmission [12, 19]. The
viral ability to infect small and large animals under laboratory settings points to animals as an intermediate
natural host [17, 18]. Based on a Centers for Disease Control and Prevention report, a very small number of
pets, including dogs and cats, outside the USA were reported to be infected with the virus that causes
coronavirus disease 2019 (COVID-19) after close contact with people with COVID-19. However, a tiger at a zoo and
two pet cats in New York (NY, USA) have also tested positive for SARS-CoV-2 [18].
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kidneys and endothelial cells [3]. Although multiple clinical trials are underway targeting various aspects
of the viral replication cycle and host immune response, COVID-19 continues to spread, resulting in
devastating medical and socioeconomic consequences worldwide.

Considering that SARS-CoV-2 in severe cases activates a multitude of inflammatory immune cells leading
to a cytokine storm, it is not surprising that the strategy of targeting one particular inflammatory signal
has not been shown to be highly efficacious in trials [4]. Moreover, long-term consequences in recovered
patients or asymptomatic carriers remain uncertain. These shortcomings can be addressed by utilising
animal models that recapitulate COVID-19-related pathological characteristics in humans. Recently,
multiple animal models such as mice [5–7], Syrian golden hamsters [8], ferrets [9] and nonhuman
primates [10], have been utilised to evaluate the COVID-19 related pathology. Despite their inherent
limitations, these animal models represent powerful tools that will allow us to conduct mechanistic studies
of disease pathogenesis, identify key therapeutic targets, and test efficacies of potential therapeutic
interventions. In this review we highlight the overall pulmonary pathophysiology of COVID-19, and
provide an overview of animal models well-suited for mechanistic studies and preclinical therapeutic trials.
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FIGURE 2 Angiotensin-converting enzyme 2 (ACE2)-mediated counter regulation of the renin−angiotensin
system (RAS). The ACE2-angiotensin (1–7) Mas axis (right side) counterbalances the harmful effects of the
ACE1-angiotensin II type 1 receptors (AT1R) axis (left side). Angiotensinogen gets converted into angiotensin-I
through enzymatic action of renin. ACE2 degrades angiotensin II and generates angiotensin (1–7) which
antagonises the effects of angiotensin II. Moreover, clinical evidence suggests that RAS blockade by ACE
inhibitors or AT1R blockers and mineralocorticoid antagonists enhance ACE2 level that is ultimately beneficial
to the patients with cardiovascular diseases [23–26] but deleterious for coronavirus disease 2019 (COVID-19)
patients [17, 22, 27]. The ACE inhibitor and angiotensin receptor blockers (as shown in red) antagonise the
angiotensin II/AT1R axis.
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Origin of SARS-COV-2 and mode of transmission to humans
SARS-CoV-2 is the seventh member of Coronaviruses, a large family of single-stranded enveloped RNA
viruses with sizes ranging from 80 to 120 nanometers in diameter [11]. Comparative phylogenetic analyses
revealed a close resemblance between SARS-CoV-2 and SARS-like bat viruses, suggesting that these bat
viruses most likely serve as reservoir hosts for SARS-CoV-2 progenitor. Initially, critical mutations likely
provided the capability to infect an intermediate non-human mammal [12–15]. The virus presumably
continued to evolve through natural selection to acquire both the ability to infect humans and the capacity
for efficient human-to-human transmission (figure 1) [13]. Based on the ability of SARS-CoV-2 to infect
animals in both natural and experimental environments and the lack of evidence demonstrating direct bat
to human transmission, it has been suggested that pangolins served as intermediate hosts between bats
and humans [16].

ACE2: a portal of entry for SARS-CoV-2
Infection of mammalian cells occurs through the virus binding to cell surface proteins, with a critical
interaction between the spike glycoprotein on SARS-CoV-2 and the mammalian ACE2 surface protein
[17]. Once the virus binds to host ACE2, a furin cleavage site on the viral spike protein facilitates viral
entry into the host cells [13].

ACE2 is ubiquitously expressed on the surface of alveolar epithelial type I and type II cells [3]. ACE2,
like ACE, is a key protein of the renin-angiotensin system (RAS), which contributes to vascular
homeostasis; ACE2 dysregulation under pathological conditions leads to multiple cardiovascular
abnormalities [20, 21]. Classic physiological functions of ACE and ACE2 in the RAS are summarised in
figure 2. Briefly, cleavage of angiotensin-I by ACE generates angiotensin-II, a peptide that triggers a
multitude of pathologic signalling through the angiotensin-II type 1 receptor (AT1R), resulting in
vasoconstriction, cell proliferation, inflammation, thrombosis, and vascular remodelling [28, 29]. These
pathogenetic effects of ACE/angiotensin-II/AT1R axis are counterbalanced by a cardioprotective signalling
axis, in which cleavage of angiotensin-II by ACE2 generates angiotensin 1–7, peptides with Mas
receptor-mediated anti-inflammatory, anti-apoptotic, anti-thrombotic and vasodilatory properties.

This normally protective enzyme ACE2 is exploited by SARS-CoV-2, serving as a portal of viral entry into
mammalian cells. A schematic of the series of events underlying the viral infection of host cells is shown
in figure 3. Both SARS-CoV and SARS-CoV-2 belong to the β-genus of Coronaviruses and share ∼80%
homology [35]. Despite substantial genetic and structural similarities between the two coronaviruses, the
spike protein of SARS-CoV-2 has a stronger binding affinity for ACE2, which may underlie the greater
transmissibility of SARS-CoV-2 and the more pronounced clinical impact of COVID-19 [36, 37].

The spike glycoprotein protruding out from the SARS-CoV-2 transmembrane surface forms homotrimers.
Each spike glycoprotein is comprised of two functional subunits, S1 and S2. The distal S1 subunit contains
a receptor binding domain (RBD) that exclusively facilitates binding of the viral envelope to the
transmembrane ACE2 protein on the host cells [38]. The membrane-anchored S2 subunit allows fusion of
the viral and host cellular membranes, resulting in delivery of the viral nucleocapsid into the cytoplasm of
the target cell.

The binding affinity of SARS-CoV-2 for ACE2 and its entry into host cells are modulated by multiple
proteases expressed by host cells, including cathepsins L and B, trypsin, factor X, elastase, furin and
transmembrane protease serine 2 (TMPRSS2) [11, 39–42]. TMPRSS2 cleaves the viral S2 subunit at a site
immediately upstream of the peptide sequence that facilitates virus-host cell fusion [11]. This cleavage
results in an irreversible conformational change of the S2 glycoprotein, ultimately resulting in more
efficient viral entry into the host cell [11, 22]. A recent study showed that blockade of TMPRSS2 activity
attenuates SARS-CoV-2 entry into host cells, suggesting inhibitors of TMPRSS2 may serve as therapeutic
approaches [43].

Recent studies have reported a higher prevalence of hypertension and diabetes in COVID-19 patients
[44–46], which could partially reflect their altered ACE2 expression. While ACE2 protects against the
potentially detrimental effects of unopposed RAS by limiting substrate availability for the ACE/
angiotensin-II/AT1 receptor axis, there is compensatory increased expression of ACE2 following the use of
pharmacologic ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). These medications
cause an approximately three- to five-fold increase in ACE2 expression [47]. This increased expression of
the host viral entry protein could hypothetically augment ACE2-mediated viral infection. However, the
true clinical impact of these medications in the context of COVID-19 remains uncertain, and whether
ACE inhibitors or ARBs should be stopped in those infected with SARS-CoV-2, or potentially even started
as an anti-viral adjunctive therapy, is currently hotly debated [48–50]. The potential benefit of these
medications is that ACEI-mediated inhibition of ACE could, through a negative feedback loop, limit local
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tissue accumulation of angiotensin-II, thereby decreasing the overall severity of inflammation [51, 52]. For
example, multiple studies have shown that RAS inhibitors effectively suppress the symptoms of acute
severe pneumonia in other settings, and thus could be beneficial in patients with COVID-19 [52–55].
These conflicting theoretical risks and benefits, and the lack of robust clinical data on their overall effect in
COVID-19 patients with underlying cardiovascular comorbidities preclude drawing a firm conclusion
regarding the clinical use of ACEIs and ARBs in the context of COVID-19.

As discussed below, the pathogenesis of COVID-19 involves a number of pathophysiologic processes
including dysregulated innate and adaptive immune responses and upregulated expression of inflammatory
cytokines, culminating as acute respiratory distress syndrome (ARDS). It is worthwhile to note that ACE2
has been shown to be implicated in regulating all these processes [53, 56, 57]. Studies have shown higher
risk of mortality in COVID-19 patients with cardiovascular comorbidities, but with no correlation between
the use of ACEIs/ARBs and patient morbidity and mortality [58]. Therefore, in the absence of data to the
contrary, it seems logical to continue RAS inhibitors in hypertensive patients, as was also suggested by
another recent review [59]. In summary, the current consensus is that previously prescribed RAS
inhibitors should be continued in hypertensive patients with known or suspected COVID-19.

Role of animal models in elucidating the pathogenesis of COVID-19
Pre-clinical models are critical to facilitate the selection of candidate therapeutic approaches for clinical
trials. One approach relies on in vitro model systems, such as pseudoviral infection assays and direct
examination of cells and tissues harvested from COVID-19 patients, which can take place in biosafety
level-2 settings, or biosafety level-3 when dealing directly with viral samples. In this section, we focus on
another important investigational tool in COVID-19 research: utilisation of in vivo animal models that can
recapitulate key clinical or pathological characteristics of COVID-19. A major challenge in COVID-19
research is the currently limited understanding of the series of events that link the initial upper respiratory
tract infection to the subsequent development of lower respiratory tract infection and ARDS. Thus,
establishment of robust and reproducible COVID-19 animal models may elucidate pathogenetic
mechanisms leading to the development of effective therapeutic targets.
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FIGURE 3 Biological mechanism of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection.
Once the SARS-CoV-2 approaches the cell membrane, basal S1 subunit of viral spike glycoprotein binds to
a membrane-bound molecule of angiotensin-converting enzyme 2 (ACE2). As more S1 subunits binds to
membrane-bound molecules of ACE2, the membrane starts to form an envelope around the virus (an
endosome). A cell membrane-bound serine protease, TMPRSS2, cleaves the S1 subunits of SARS-CoV-2 from
its S2 subunits that mediated endosome entry into the cells (endocytosis). Inside the cell, viral genetic
material is released by either acidification or by proteolysis (cathepsin). Viral replication and translation forms
a new virion that cleaves out from cells by exocytosis. Of note, ACE2-mediated cardiovascular protection is
lost following endocytosis of ACE2 with SARS-CoV-2 viral particles. The endocytosis triggers
ADAM-17-mediated ectodomain shedding of tissue ACE2 [30, 31], which through the integrin pathway induces
pathologic intracellular signalling [32]. Lack of ACE2 availability increases angiotensin II levels that result in
detrimental effects due to increased activity of angiotensin-II type 1 receptor (AT1R) at the expense of ACE2/
angiotensin (Ang) 1–7 driven protective pathways [34]. Viral infection also results in activation of circulatory
inflammatory cytokines, antibody response and immune cells; these may damage airways epithelia. IL:
interleukin; MCP: monocyte chemotactic protein 1.
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Historically, mouse models have been extensively used to explore molecular and pathological mechanisms
involved in various infectious as well as non-infectious diseases. Specifically, mouse models were
previously utilised to investigate diseases caused by other coronaviruses, for example severe acute
respiratory syndrome (SARS caused by SARS-CoV-1) and Middle East respiratory syndrome (MERS)
[60–62]. These former studies strongly support the promising role of mouse models in COVID-19
research. In addition to the relatively fast reproductive rates and low maintenance costs, another key
advantage of using mouse models is the accessibility to numerous inbred and transgenic lines harbouring
genetic changes that can be inducible and cell-type specific. Examples of currently available mice
well-suited for SARS-CoV-2 investigation include knockout models of the following genes: Ace2−/−,
Tmprss2−/−−, IL-6−/−, and INF-γ−/−. Inducible and cell compartment specific deletion can be used to
determine the precise roles of lung epithelial and endothelial cells underlying the crosstalk between the
capillary endothelial cells and the alveolar epithelium in SARS-CoV-2 infection in COVID-19.
Simultaneously, transgenic mice lacking the TMPRSS2 protein might be helpful in understanding the
effect of different therapeutic approaches against SARS-CoV-2 alone or in combination with TMPRSS2
blockade [63]. Aged or inbred mice with chronic underlying disease phenotypes, such as hypertension or
diabetes, can be used to understand potential drivers of age and comorbid conditions on higher mortality
rates in COVID-19. Of note, these mouse models have been used for many years to understand the
molecular or immune pathobiology of other pulmonary pathologies, including ARDS, thrombosis, fibrosis
and vasculopathy, all aspects of COVID-19 disease. Key features of mouse models used in studies of
coronavirus infections, including SARS-CoV-2, are summarised in table 1.

While mouse models are valuable tools in uncovering pathobiological mechanisms of SARS-CoV-2
infection, mouse models are also characterised by important limitations. One key limitation of mouse
models of COVID-19 is their relatively mild disease phenotype owing to the inability of SARS-CoV-2 to
utilise the mouse orthologue of the human ACE2 (hACE2) [67]. In response, the hACE2 transgenic mouse
model was previously developed to study SARS-CoV, which has now been recently repurposed for
investigating the pathogenesis of SARS-CoV-2 infection [6, 7]. Critically, the hACE2 mouse model upon
SARS-CoV-2 infection recapitulates the lung pathologies observed in COVID-19 patients, such as
interstitial pneumonia with significant infiltration of macrophages and lymphocytes into the alveolar
interstitium, with a phenotype of diffuse alveolar damage and ARDS [6]; major drivers of death in
COVID-19 [53, 64, 66]. Recently another reliable mouse model incorporating adeno-associated
virus-mediated hACE2 expression was developed [5]. Another major limitation of mouse models is the
inherent different between the immune systems of mice and those of humans. This shortcoming can, in
part, be overcome by utilising humanised mice (e.g. mice with human peripheral blood mononuclear cells,
or huPBMC-NOG), which represents a useful approach to studying the contribution of various immune
cells to COVID-19.

Hamsters and ferrets demonstrate disease phenotypes closer to those of humans without requiring
transgenic modification. Hamsters infected with SARS-CoV-2 recapitulate key elements of the human lung
pathology seen in severe cases of COVID-19, including inflammation, diffuse alveolar damage, peripheral
lymphopenia, and marked activation of the innate immune response including high levels of chemokines
and other cytokines [68]. Interestingly, conferring passive immunity by transferring sera from recovered
hamsters to recipient hamsters newly infected with SARS-CoV-2 led to attenuated viral replications but
without a significant reduction in lung pathology [68], data supportive of the clinical use of convalescent
plasma.

Ferrets can also be infected with SARS-CoV-2, resulting in fever and relatively mild lung disease.
Ferret-to-ferret SARS-CoV-2 transmission has been reported, suggesting ferrets may be well-suited for
studying prophylactic treatments. One major limitation of hamster and ferret models is that all animals
uniformly recover following SARS-CoV-2 infection, precluding their clinical relevance to more severe
forms of COVID-19 clinical disease characterised by severe ARDS resulting in death. Therefore, both
hamster and ferret SARS-CoV-2 models may be most applicable to humans with mild clinical disease or
asymptomatic carriers.

Pathologic changes in nonhuman primates typically phenocopy those in human diseases, and for this
reason nonhuman primates are considered the gold standard for testing vaccines and therapeutic
strategies. In a prior study of Chinese rhesus monkeys (Macaca mulatta), SARS-CoV infection led to
the development of neutralising antibodies again the SARS spike glycoprotein; paradoxically, the
anti-spike neutralising antibody response occurred significantly faster in monkeys that ultimately died
when compared to those that recovered [69, 70]. These data suggest that anti-spike-immunoglobulin G
may contribute to a more severe ARDS phenotype, such as by downregulating an anti-inflammatory
response [69].
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Nonhuman primate models previously used to study SARS-CoV infection have now been repurposed to
study SARS-CoV-2 [71–73]. One study showed more pronounced viral shedding in the upper respiratory
tract of aged animals as compared to younger animals following intranasal SARS-CoV-2 inoculation [10].
Of note, a similar association between viral shedding and age has been observed in humans with both
SARS-CoV and SARS-CoV-2 infections [74, 75]. Although the higher maintenance cost, longer
reproductive period, more rigorous ethical and regulatory oversight, and the lack of readily available
transgenic variants limits the ability to widely use nonhuman primates to study SARS-CoV-2, their close
resemblance to humans and specifically their similar immune system makes them a powerful model
system, potentially in particular for vaccine development [76].

The pulmonary pathophysiology of COVID-19
SARS-CoV-2 infection involves both the upper and lower respiratory tracts. Approximately 80% of
patients with COVID-19 do not require hospitalisation, as their symptoms are relatively mild, and their
immune systems effectively contain the virus within the upper respiratory tract [18, 77]. In the remaining
20% of patients, the viral infection progresses to involve the lower respiratory tract, resulting in pneumonia
[77]. Approximately 6% of COVID patients with pneumonia develop respiratory failure requiring
admission to the intensive care unit (ICU) for support due to ARDS [78, 79]. The time from disease onset
to death in fatal cases ranges from 15 to 52 days [80].

TABLE 1 Key features of mouse models used in studies of coronavirus infections

Mouse line Disease
model

Key findings [Ref.]

Wildtype SARS SARS-CoV infections resulted into shedding of large amounts
of infectious virus with the development of lung injury due to
lowering of ACE2 expression

[64]

SARS SARS-CoV-infected C3−/− mice exhibited significantly less
weight loss and less respiratory dysfunction with reduced
lung pathology and lower cytokine and chemokine levels in
both the lungs and the sera

[65]

Ace2−/− SARS SARS-CoV infections resulted in less shedding infectious virus
with mild lung pathological changes due to reduced amount
of spike RNA

[64]

ARDS/SARS ACE2 blockade in mice resulted into enhanced vascular
permeability, increased lung oedema, neutrophil
accumulation, and worsened lung function

[53,
64]

Tmprss2−/− SARS SARS-CoV infection in Tmprss2−/− mice showed attenuated
inflammatory chemokine and/or cytokine responses

[33]

COVID-19 Transcriptional downregulation of Tmprss2 inhibits host
SARS-CoV-2 entry.

[63]

Tmprss2−/−

hDPP4-Tg
MERS Tmprss2−/− murine models infected by MERS-CoV showed

improved immunopathology
[33]

hACE2 COVID-19 Mouse model of COVID-19 showing similar pattern of human
interstitial pneumonia with infiltration of significant
macrophages and lymphocytes into the alveolar interstitium,
and accumulation of macrophages in alveolar cavities
following SARS-CoV-2 infection

[6, 7,
66]

hACE2 COVID-19 This model developed productive SARS-CoV-2 infection and
inflammatory pulmonary infiltrates as seen in COVID-19
patients

Evidence of inadequate antiviral activity and potential harms of
endogenous type I IFN responses were observed

[5]

C3−/− SARS SARS-CoV-infected C3−/− mice exhibited significantly less
weight loss and less respiratory dysfunction with reduced
lung pathology and lower cytokine and chemokine levels in
both the lungs and the sera

[65]

Ace2−/−: angiotensinogen converting enzyme 2 knockout; SARS: severe acute respiratory syndrome; CoV:
coronavirus; C3−/−: complement 3 knockout; ARDS: acute respiratory distress syndrome; Tmprss2−/−:
transmembrane protease, serine 2 knockout; COVID-19: coronavirus disease 2019; hDPP4-Tg: human
dipeptidyl peptidase 4 transgene; MERS: Middle East Respiratory Syndrome; hACE-2: transgenic mice
bearing human ACE2; IFN: interferon.
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ARDS is a common complication of infectious pneumonias, including those caused by the pathogenic
coronaviruses SARS-CoV (SARS), SARS-CoV-2 (COVID-19) and MERS-CoV (MERS) [78, 81, 82].
Autopsy findings in patients who die of COVID-19 include diffuse alveolar damage, bronchogenic
pneumonia, alveolar haemorrhage with capillary damage, and microvascular thrombosis, all of which are
similarly seen in ARDS secondary to other aetiologies [79, 81, 83–87]. Although excessive host
inflammatory response has been thought to drive ARDS and result in multi-organ failure [88], precise
immunological features and molecular mechanisms underlying severe cases of COVID-19 are not
completely understood. In vivo and cell-based studies indicated that lung injury in SARS-CoV infection is
initially triggered by the viral spike protein [38]. For example, intraperitoneal administration of Spike-Fc
fusion protein was sufficient to cause lung injury in mice, and Spike-Fc treatment exacerbated the severity
of lung injury in acid-challenged mice. In contrast, Spike-Fc protein administration did not affect lung
disease severity in ACE2 knockout mice, supportive of the concept that ACE2 plays a critical role in the
initial stages of SARS-CoV-2 infection [64]. Using a non-human primate model of SARS-CoV, another
group of investigators showed early administration of anti–spike IgG antibody resulted in more
pronounced production of inflammatory cytokines by recruited macrophages and severe lung injury [69].

Pathologic changes of the pulmonary vasculature and the lung alveoli result in impaired gas exchange.
Lungs in COVID-19 are characterised by aberrant vasodilation, arteritis, macro- and microvascular
thromboses, and endothelial dysfunction which individually and collectively exacerbate
ventilation-perfusion mismatch [89–92]. Lung tissues in fatal cases of both SARS-CoV and SARS-CoV-2
infections share similar molecular, immunological, and pathological signatures [79, 93–95]. As illustrated
in figure 4, autopsy studies of lungs from COVID-19 patients reveal findings of diffuse alveolar damage,
characterised by widespread type II pneumocyte hyperplasia, epithelial necrosis, fibrin deposition, hyaline
membrane formation and inflammation [80, 83, 96].

There is strong evidence for a role of CD4+ T-helper (Th) cells in promoting lung injury in COVID-19.
Immunohistochemistry of autopsy specimens revealed increased infiltration of both CD4+ and CD8+
(cytotoxic) T-lymphocytes within the alveolar septa, with relatively few CD68+ macrophages [83, 97]. The
lung parenchymal pathology is associated with highly increased production of Th1 inflammatory
cytokines, including interferon (INF)-γ, interleukin (IL)-1β and IL-6. In addition, peripheral blood
lymphopenia and a reduction in circulating CD4+ and+ CD8 T-cells are observed in COVID-19,
consistent with these cells exiting the circulation as they move into the lung tissue [80, 83, 97]. In both
ICU and non-ICU patients with COVID-19, Th1 cytokine concentrations positively correlated with viral
loads and the severity of clinical lung injury [79]. These studies indicate that the Th1 cytokines may serve
as biomarkers for predicting disease severity [79, 99] and potentially as therapeutic targets which
exacerbate the disease pathology.

It has been hypothesised that the lung physiology in COVID-19 might differ from those seen in other
forms of ARDS, as it has been observed that lung compliance in patients with COVID-19 may be
preserved relative to the degree of hypoxaemia, as compared to other ARDS aetiologies [100]. One
possible explanation for this observation is that the COVID-19 pathology might predominantly involve the
pulmonary vascular endothelium rather than the alveolar epithelium. While not unique to
COVID-19-triggered ARDS, this hypothesis is supported by many clinical and pathological observations:
small-vessel inflammation and thrombosis on histopathology [87, 101]; higher rates of clinical venous
thromboembolism; abnormal coagulation profiles as indicated by elevated D-dimer concentrations [92, 98]
and thromboelastogram data [102]; endothelial ACE2 expression [47]; and endothelial SARS-CoV-2
infection [92]. Furthermore, cardiovascular comorbidities characterised by endothelial dysfunction, such as
hypertension, diabetes and obesity, are also risk factors for increased mortality in COVID-19. Of note,
autopsy reports have also demonstrated the presence of SARS-CoV-2 antigens in extrapulmonary organs,
including the kidneys, liver, spleen, neurons and the gastrointestinal tract. It is plausible that ACE2 in the
arterial and venous endothelial cells of these organs might serve as conduits for the systemic inflammatory
response seen in COVID-19 [103]. Therefore, targeting endothelial ACE2 could be a potential therapeutic
strategy in SARS-CoV-2 infection.

Potential molecular and biochemical therapeutic targets in the host
Given the data discussed above regarding the components of the host which facilitate viral entry, such as
ACE2, and contribute to an over-exuberant immune response, such as CD4 T-cells, there are many
potential candidate therapeutic targets which could be found to be effective in COVID-19. Additionally
there are many targets within the virus itself, a review of which has been recently published elsewhere
[104] and is outside the scope of the present review, but the combination of anti-viral and
host-modulating therapeutics may prove to be especially powerful.
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The RAS pathway
As depicted in figure 1, physiologic effects of ACE inhibitors and ARBs can be complex, and the overall
outcome of such interventions in the context of COVID-19 is unpredictable. ACE2 facilitates viral cell
entry, but ACE2 can also have protective effects through the conversion of angiotensin-II into
cardioprotective angiotensin 1–7, thereby attenuating AT1 receptor-induced pathologic downstream effects
[105]. Recently, it was reported that circulating angiotensin-II levels were markedly elevated in a cohort of
COVID-19 patients compared to healthy controls [34, 54], suggesting that upregulation of ACE2-mediated
angiotensin 1–7 production could reduce RAS-derived multi-organ injury in these patients. It is
noteworthy that clinically used ACEIs do not affect the ACE2 isoform, the substrate binding site of which
demonstrates amino acid substitutions when compared to that of the ACE isoform (figure 1).

One potential therapeutic strategy targeting RAS is blocking the interaction between ACE2 and
SARS-CoV-2, for example through the small molecule APN01 (Aperion Biologics, Vienna, Austria), which
is a recombinant human ACE2 protein. By mimicking endogenous human ACE2 and binding
SARS-CoV-2, APN01 can block viral cell entry. In addition, it can also lessen the AT1 receptor-mediated
injurious inflammatory responses in the lungs, protecting from ARDS and other lung damages. APN01
was well-tolerated in patients with pulmonary arterial hypertension and ARDS, as well as in healthy
volunteers in phase I and phase II clinical trials. APN01 is currently being studied in a phase II clinical
trial (NCT04335136) in COVID-19 patients.

Another promising approach to inhibit the virus–host cell interaction is targeting the RBD of the
SARS-CoV-2 S-protein, thereby blocking its association with pulmonary cell surface receptors like ACE2.
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Recently, the human monoclonal antibody 47D11 was shown to neutralise both SARS-CoV and
SARS-CoV-2 and prevent their host cell entry by binding to a conserved epitope of the spike protein RBD
in cell culture [106]. Another recent study suggested an essential role of CD147, another cell-surface
protein, in facilitating SARS-CoV-2 invasion of the host cells [107]. Based on this observation, efficacy of
CD147-binding meplazumab in COVID-19 is being tested in a clinical trial [108]. One limitation of these
approaches is that mutation of the viral protein from evolutionary pressure may result in resistance to any
one compound; something that will need to be carefully monitored during clinical studies and with
clinical use if these medications are approved.

The complement system in COVID-19
The complement system is an essential component of the innate immune system [65, 75, 109, 110]. The
complement system is comprised of more than 30 soluble and cell surface-associated proteins, which are
activated through three interconnected pathways: classical, alternative, and lectin [111]. Proteolytic
cleavage of C3 by C3 convertase represents the final common pathway of the three pathways, resulting in
the generation of anaphylatoxins, including C3a, C4a, C3b and C4b. Nominally these complement
fragments contribute to the elimination of pathogens through multiple biological processes, including
opsonisation, myeloid cell activation, and B- and T-cell activation. The binding of C3b to C3 convertase
generates C5 convertase, which in turn cleaves C5 to generate the terminal anaphylatoxins, C5a and C5b
[112]. These anaphylatoxins exacerbate inflammation resulting in cell injury [113, 114]. In previous work
on SARS-CoV infection, complement activation promoted systemic inflammation, rather than suppressing
viral replication. Dysregulated complement activation has been previously associated with acute lung injury
induced by other viral infections.

Similar to SARS-CoV infection, complement activation appears to be a characteristic feature of COVID-19
[115, 116]. Recent reports of COVID-19 patients documented systemic complement activation involving
multiple organs, including the lungs and the kidneys [91, 117–120]. Lung tissue from severe COVID-19
patients revealed C3a generation and C3-fragment deposition, accompanied by elevated serum C5a levels
[121]. In addition, deposition of membrane attack complexes composed of complement factors C5b-9 has
been seen in the renal tubules of COVID-19 patients [118]. The SARS-CoV-2 nuclear protein can activate
the lectin pathway, and deposited mannose-binding lectin serine protease 2 and C4 were observed in the
lungs of COVID-19 patients [120, 121].

The likely contribution of complement proteins to tissue injury in COVID-19 has led to therapeutic
studies targeting multiple checkpoints in the complement cascade. The therapeutic potential of
manipulating the complement system was previously suggested by studies of SARS-CoV and MERS. For
example, SARS-CoV-infected C3 knockout mice, when compared to wildtype mice, demonstrated fewer
neutrophils and inflammatory monocytes in the lungs along with lower levels of lung and serum cytokines
[65]. Importantly, C3 deletion itself did not affect the viral load in the lungs. Similarly, a potential benefit
of blocking complement signalling has been demonstrated in animal models of SARS-CoV-2 infection.
Blockade of the C5a-C5aR axis abrogated proinflammatory cytokine expression and the pulmonary
infiltration of macrophages, neutrophils and lymphocytes [121]. There are also early reports of a potential
benefit from administration of anti-C5a monoclonal antibody in severe COVID-19 patients [121, 122].
Based on these data, there are ongoing studies (NCT04369469 and NCT04371367) of the C5 inhibitor
ravulizumab and the anti-C5a receptor antibody avdoralimab in COVID-19 patients [123–125]. Overall, it
is conceivable that targeting more proximate complement pathway targets in the upstream activation
cascades (e.g. C3 or C4) may lead to more deleterious off-target consequences by attenuating the
virus-eliminating effects of the complement system, while intervening at more terminal anaphylatoxins like
C5a-C5aR may result in a more favourable and effective treatment strategy.

Targeting inflammatory cells and cytokines in COVID-19
Immune dysregulation and excessive inflammatory cytokine production are implicated in
COVID-19-induced ARDS and multi-organ injury [88]. Biopsy reports of severe COVID-19 patients have
shown T-cell and myeloid cell infiltration in the lungs and other organs such as the kidneys, heart, spleen
and lymph nodes [97, 98, 118, 126]. There is also excessive activation of pro-inflammatory airway
macrophages resulting in increased proinflammatory cytokines including IL-6 and tumour necrosis
factor-α [127]. Higher levels of serum chemokines including CCL2 and CCL3 further points to
recruitment of bone marrow-derived macrophages to the lungs [127]. The exact molecular mechanisms
underlying pathologic immune cell activation and cytokine production in COVID-19, however, are not
well understood.

One possible mechanism could be impaired type I IFN production in severe COVID-19 [9, 128]. IFNs are
expressed by multiple immune cells, and in SARS and MERS they negatively regulate the activation and
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infiltration of alveolar and monocyte-derived macrophages into the lungs [129–131]. Reduced systemic
IFN production has been observed in more severe cases of COVID-19 [128]. Therefore, an early
intervention which augments IFN signalling, such as by administration of recombinant IFN, might be
useful in mitigating the virus-mediated inflammatory response. Blockade of IFN receptor in a
SARS-CoV-2 mouse model did not attenuate viral replication [5], however, suggesting the ability of
the SARS-CoV-2 virus to evade immune cell-mediated opsonisation by suppressing IFN-mediated
signalling pathways through currently unknown mechanisms.

Multiple ongoing trials are focusing on blocking inflammatory cytokines including using small molecules,
antibodies, or cell-based approaches to reduce endothelial cell activation and injury. These approaches may
focus on many pathways simultaneously, or be precisely focused on single molecules. As in other
inflammatory diseases, multiple immune pathways are simultaneously activated in COVID-19, and
therefore therapeutically targeting one particular pathway may or may not produce a clinically desirable
benefit.

One broad approach is the administration of mesenchymal stem cells (MSCs), which are well-known
immuno-modulators that have been shown to alleviate lung injury and enhance lung repair in preclinical
models of ARDS, and in early clinical trials of patients with inflammatory lung diseases [132, 133]. In a
phase II clinical trial (NCT02097641), a single dose of intravenous bone-marrow-derived MSC
administration was both safe and efficacious in patients with moderate-to severe non-COVID-19 ARDS
[134]. This therapy could be similarly effective in COVID-19 patients as demonstrated in a recent case
series of severe COVID-19 patients [135, 136]. This approach has led to the now-ongoing STAT trial of
MSCs in ARDS (NCT03818854), which while not focused on COVID-19 a priori is presently enrolling
many COVID-19 subjects due to the current preponderance of this disease.

Just as important as uncovering individual therapeutic targets is testing the efficacy of combination
therapies, which simultaneously target multiple arms of the immune system or combine anti-viral with
host modulating treatments. One example is a clinical trial (NCT04409262) studying the concurrent
administration of the anti-viral remdesivir with the IL-6 receptor inhibitor tocilizumab, targeting the virus
and the host immune response together. Other examples are the combinations of lopinavir/ritonavir,
ribavirin and IFN-β-1b, or of IFN-β-1a and remdesivir are being tested (NCT04276688 and
NCT04492475).

Ongoing pre-clinical studies and the results of these clinical trials will help address important questions
regarding the role of immune cells in COVID-19 pathogenesis: Which subset(s) of myeloid cells take up
SARS-CoV2 antigens? Which antigen-presenting cells are responsible for T-cell antigen recognition in the
lymph nodes? Differentiation into which subsets of T-cells is induced by antigen presentation? Which
cytokines trigger bone marrow production of inflammatory monocytes and what are the mechanisms
underlying their recruitment to the lungs and other organs? How do these immune cells trigger injury of
the lungs and other organs in COVID-19? As these questions are answered through mechanistic studies
utilising animal models of SARS-CoV-2 infection and clinical trials, therapeutic approaches will be refined
and promising combination therapies will be identified.

Balancing type 1 and type 2 immunity in COVID-19
It is well established that during viral infections, cells of the innate immune system recognise viral
replication intermediates and secrete pro-inflammatory cytokines, contributing to tissue damage [137].
Virus-derived antigens are taken up by antigen-presenting cells and carried to local draining lymph nodes
[137]. Depending on the local cytokine milieu in the draining lymph node, CD4+ T-cell stimulation by
antigen presenting cells induce different types of Th adaptive cell responses. There is a critical balance
between an anti-viral innate response crucial to eliminate the invading virus, versus a robust and persistent
immune response damaging host tissues. Related to this is an unbalanced adaptive immune response,
marked by lower percentages and absolute counts of CD3+, CD4+ and CD8+ lymphocyte populations
associated with worse organ injury and COVID-19 related mortality [138]. The exact contributions of Th1
versus Th2 immunity to viral clearance or host tissue injury is not clear in COVID-19. Severe COVID-19
is characterised by a “cytokine storm” which has features predominantly of Th1, including elevated
concentrations of IL-2, IL-7, IL-12, granulocyte-colony stimulating factor, IFN inducible protein-10,
monocyte chemotactic protein-1, macrophage inflammatory protein-1α, tumour necrosis factor-α, and
IFN-γ [68, 80, 83, 97, 128, 139]. Interestingly, similar patterns have been observed in other respiratory
viral infections, with predominant features of Th1 cell and cytokines, accompanied by suppression of Th2
immunity [140–143].

Considering that there is a mutually antagonistic balance between Th1 and Th2, with viral induced Th1
immunity blunting Th2 immunity, it may be that promoting a Th2 immune response either prior to or
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during early infection might suppress the robust and potentially excessive Th1 derived inflammatory
response triggered by SARS-CoV-2. This approach has worked with other viral infections such as
rhinovirus, respiratory syncytial virus, or influenza A virus, when animals which have biased immune
systems that promote a type 2 immune response were found to have less severe disease than wildtype or
type 1-biased animals [143–149].

In COVID-19, the equivalent natural experiment will be to observe the outcomes in patients who have
chronic, comorbid conditions which drive Th2 immunity, such as type 2 asthma or concurrent parasitic
infections. For example, it may be observed that patients with pre-existing type 2 inflammatory conditions
are more susceptible to the initial stages of viral replication due to blunted anti-viral type 1 immunity, but
may be relatively protected from later excessive inflammatory complications of COVID-19 such as severe
ARDS. Importantly, recent studies found that asthma does not appear to be a significant comorbidity for
patients hospitalised with severe COVID-19, and asthma does not increase risk for mechanical ventilation
[150, 151]. It would be interesting to see how individuals with Th2-dominated parasitic infections like
schistosomiasis [152, 153] respond following SARS-CoV-2 infection.

Promoting type 2 immunity such as administering recombinant type 2 cytokines could be a therapeutic
approach. For example, IL-13 has been shown to downregulate ACE2 expression in airway epithelial cells
[154], which may reduce viral entry and excessive production of Th1 cytokines that are detrimental to the
cells. An alternative approach would be administration of non-infectious compounds which promote type
2 immunity, or even auto-transfusion of CD4 T-cells that were biased ex vivo to a Th2 phenotype, such as
through sensitisation to ovalbumin or Schistosoma egg antigen; approaches which could deliver the
benefits of type 2 inflammation without long-term complications associated with chronic asthma or
parasitic infections.

Genetic association studies can help guide therapeutic development
The heterogeneity of COVID-19 pathology suggests genetic polymorphisms may contribute to specific
immune phenotypes and ultimately the severity and outcome of SARS-CoV-2 infection [155]. Of note,
several single nucleotide polymorphisms within genes in the RAS pathway, including the ACE2 gene, have
been previously linked to cardiovascular diseases [105, 156–158]. RAS polymorphisms are also associated
with pharmacodynamic differences between individuals treated with ACE inhibitors or ARBs [159]. As
examples, synonymous and non-synonymous single nucleotide polymorphisms in pro-inflammatory genes
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including CXCL10/IFN-inducible protein-10, heme oxygenase 1, IL-1α, IL-18, FGL2, and leukocyte
antigen class I and II have been associated with either infection, severity or nasopharyngeal SARS-CoV
viral shedding [160–164]. Genetic studies which identify risk factors for SARS-CoV-2 infection or
COVD-19 pathology in relation to host–pathogen interactions and inter-individual disease phenotypes will
help identify at-risk populations, host factors which can be targeted to modulate the disease phenotype,
and even potentially novel therapeutic approaches which may be personalised to patients with specific
genotypes.

Conclusions
Effective treatments for COVID-19 are urgently needed as respiratory SARS-CoV-2 infection is a
devastating condition which is not yet effectively treated. This viral infection represents a unique challenge
to the host immune system, but at the same time is a unique opportunity to identify precise therapeutic
approaches to this infection and host pathology resulting from a single agent. Herein, we have discussed
three major challenges to developing effective treatments against COVID-19: 1) the incomplete
understanding of the disease pathogenesis; 2) the versatile functions of the virus receptor ACE2; and 3) the
delicate balance between the virus-eliminating and the lung-injuring effects of the host inflammatory
response. Discovery of new, effective and safe treatments will follow selection of appropriate therapeutic
targets based on human lung histopathology and conduct of mechanistic studies utilising animal models,
followed by appropriate clinical trials (figure 5).
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