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Estimating intraclonal heterogeneity and subpopulation
changes from bulk expression profiles in CMap
Chiao-Yu Hsieh, Ching-Chih Tu, Jui-Hung Hung

The connectivity among signatures upon perturbations curated in
the CMap library provides a valuable resource for understanding
therapeutic pathways and biological processes associated with
the drugs and diseases. However, because of the nature of bulk-
level expression profiling by the L1000 assay, intraclonal het-
erogeneity and subpopulation compositional change that could
contribute to the responses to perturbations are largely
neglected, hampering the interpretability and reproducibility of
the connections. In this work, we proposed a computational
framework, Premnas, to estimate the abundance of undeter-
mined subpopulations from L1000 profiles in CMap directly
according to an ad hoc subpopulation representation learned
from a well-normalized batch of single-cell RNA-seq datasets by
the archetypal analysis. By recovering the information of sub-
population changes upon perturbation, the potentials of drug-
resistant/susceptible subpopulations with CMap L1000 were
further explored and examined. The proposed framework enables
a new perspective to understand the connectivity among cellular
signatures and expands the scope of the CMAP and other similar
perturbation datasets limited by the bulk profiling technology.
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Introduction

Connectivity Map (CMap [Lamb et al, 2006]) is a large-scale and
comprehensive perturbation database that curates differentially
expressed (DE) genes upon diverse perturbagen (i.e., chemical or
genetic reagent) treatments in human cell lines. The DE genes
induced by each perturbagen represent the perturbed biological
pathways that are collectively regarded as a signature. One typical
application of CMap is to compare the similarity between a sig-
nature and a disease-defining gene list to suggest a positive or
negative connection between the perturbagen and disease. Re-
cently, the Library of Integrated Network-based Cellular Signatures
(LINCS) project leveraged the L1000 profiling platform, a low-cost
and high-throughput profiling technology, to significantly populate
the CMap database and offer immense opportunities to new

therapeutics (Wang et al, 2016; Subramanian et al, 2017; Musa et al,
2018).

One founding premise of making sense of the signature from the
bulk expression profiling like L1000 is that the clonal cells used for
experiments are genetically homogenous so that the signature can
reflect the consistent response across cells treated by the same
perturbagen. However, in fact, the genetic heterogeneity within
human cell lines (e.g., MCF-7 and HeLa) has been confirmed and
widely recognized (Fasterius and Al-Khalili Szigyarto, 2018; Ben-
David et al, 2019; Liu et al, 2019). Those undetermined subclonal
cells bearing distinct genetic variants (i.e., subpopulations) may
behave differently upon a perturbation, thereby jeopardizing the
interpretability (Laverdière et al, 2018) and reproducibility (Edris
et al, 2012; Ben-David et al, 2019) of the signatures by bulk profiling.

The single-cell RNA sequencing (scRNA-seq) technology that
combines single-cell isolation and RNA sequencing technologies to
study the transcriptome of a single cell enables us to understand
the effect of intraclonal/intratumoral heterogeneity ignored in the
bulk expression profiling (Chen et al, 2018; Fan et al, 2020). For
instance, Ben-David et al (2018) used scRNA-seq to show that the
intraclonal heterogeneity in MCF-7 cells may influence the drug
response to a great extent. The presence of drug-resistant sub-
populations was revealed in MCF-7 cells (Hong et al, 2019) at single-
cell resolution. These findings bolster the notion that the signature
by bulk profiling cannot be explained solely by pathway pertur-
bation; however, conducting single-cell level assays on the same
scale to remedy CMap L1000 datasets in this regard is clearly not
realistic.

Recently, digital cytometry approaches (Aran et al, 2017; Newman
et al, 2019; Wang et al, 2019; Jew et al, 2020), which use machine
learning methods to decompose the bulk gene expression profiles
(GEPs) of a heterogeneous cellular mixture (e.g., PBMCs, whole brain
tissues, or tumors) into several well-characterized cell types have
been proved to be capable of estimating the cellular composition
computationally in high accuracy, thereby mitigating the need of
conducting single-cell level assays. Despite these powerful digital
cytometry approaches, applying them to decomposing bulk GEPs
into undetermined subpopulations remains challenging because of
the lack of known characteristics of subpopulations of a human cell
line. The gaps toward a practical digital cytometry that can recover
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the intraclonal heterogeneity beneath the bulk GEPs by L1000
remain to be filled.

We therefore developed Premnas, a computational framework
that first learns the ad hoc subpopulation characteristics from a
well-normalized batch of single-cell GEPs via the archetypal
analysis (i.e., ACTIONet [Mohammadi et al, 2020]) and then by which
estimates the composition of subpopulations from L1000 profiles in
CMap using digital cytometry. After recovering the subpopulation
composition from each bulk GEP, the change of subpopulation
composition upon perturbation can be inferred. The potentials of
searching for drug cocktails and drug-resistant subpopulations
with LINCS L1000 CMap were further explored and examined. To our
best knowledge, this work is the first attempt to provide a new
subpopulation perspective to CMap database. We believe Premnas
can be applied to all the perturbation datasets, of which
intraclonal/intratumoral heterogeneity was concealed by the bulk
profiling and hereafter provides a new dimension of interpreting
the connectivity.

Results

Framework overview

Rationale
One of the key premises to make use of CMap is that a gene sig-
nature, an aggregate of DE genes induced by a perturbagen or
disease, can be regarded as the surrogate for the affected functions

or pathways. However, because there are subpopulations in a
clone, and each subpopulation bears distinct genetic variants and
GEPs, fluctuation of the distribution of subpopulations can also
account for the gene signature (Fig 1). For instance, if some major
subpopulation excessively expressing pathway 1 is highly sus-
ceptive of and massively killed by a drug, the genes involved in
pathway 1 are easily identified as the negative DE genes upon
treatment using bulk GEPs and then regarded as the signature of
the drug response. In other words, a gene signature can be a mixed
consequence of function and subpopulation changes, especially
for the perturbagens that are meant to kill cancer cells.

Because of the nature of bulk profiling, the subpopulation in-
formation is unavailable in CMap. The conventional drug screening
strategies that interpret gene signatures and connections without
considering possible compositional change could jeopardize the
conclusions drawn. For instance, cancer drugs suggested by CMap
may be deemed ineffective and necessitate further investigation to
increase the reproducibility (Ben-David et al, 2019) because of the
underlying composition bias in samples. The goal of our framework,
Premnas, is meant to enable the CMap to interpret gene signatures
at both the functional and subpopulation levels. The workflow of
Premnas is illustrated in Fig 2 and explained below.

To begin with, the first difficulty to tackle was the unknown
characteristics of each subpopulation. We approached this issue by
making the following assumptions:

Assumption 1 There are a bounded number of subpopulations
universally within a cell line. That is, most of the representative

Figure 1. Changes of gene expression profiles upon a perturbagen could be a mixed consequence of function and subpopulation changes.
(Top) The conventional perspective regards gene signatures as the perturbed pathways of a homogenous cell clone. (Bottom) In a heterogenous clone, each
subpopulation bearing distinct genetic variations drives various pathways and has different susceptibility to the perturbagen. The gene signature therefore reflects the
change of intraclonal heterogeneity.
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subpopulations of a human cancer cell line should be present in a
large enough pool of scRNA-seq datasets collected from different
sources.

Assumption 2 Cells of the same subpopulation should collectively
share invariant subpopulation characteristics, and each subpop-
ulation can be distinguished by its unique subpopulation char-
acteristics despite perturbations.

Learning ad hoc subpopulation characteristics
With the above assumptions, intuitively, subpopulation charac-
teristics can be learned from a pooled scRNA-seq data by di-
mension reduction approaches, such as nonnegative matrix
factorization (NMF [Lee & Seung, 1999]), t-distributed stochastic
neighbor embedding (t-SNE) (van der Maaten, Laurens and Hinton),
and UMAP (McInnes & Healy, 2018), accompanied by some clus-
tering methods (Puram et al, 2017; Gan et al, 2018) to identify
subpopulations. Yet, nonlinear approaches like t-SNE and UMAP
obscure the biological interpretation of subpopulation charac-
teristics, whereas the traditional NMF algorithm tend to omit weakly
expressed but highly specific cell states.

We decided to use ACTIONet (Mohammadi et al, 2020), a tool
designed specifically for subtyping cells with scRNA-seq, to ensure
biological interpretability during dimension reduction. The concept
of ACTIONet is similar to NMF; however, it directly distills the most
representative cell states (termed “archetypes”) from the single-
cell GEPs of multiple samples and groups cells into subpopulation
in the archetypal-based metric cell space. In addition, to make sure
that ACTIONet does not recognize technical and biological noises
(e.g., batch effects and cell cycle-related functions, respectively) as
archetypes, such differences are removed by the embedding-based
normalization (i.e., Harmony [Korsunsky et al, 2019]) before per-
forming the archetypal analysis. Besides, ACTIONet does not need
prior knowledge of the number of underlying archetypes as re-
quired in traditional NMF; instead, it conducts different decom-
position levels to ensure the robustness of finding archetypes. After
cell subpopulations were identified by ACTIONet, we pruned the

nonrepresentative cells and derived the subpopulation charac-
teristics for each subpopulation (see the Materials and Methods
section).

Performing digital cytometry
Once the underlying subpopulations were identified, the most
straightforward way to estimate their abundance in bulk samples is
by conducting a simple linear regression to model the relationship
between the bulk GEP and subpopulation characteristics. However,
integrating subpopulation information into the CMap database was
nontrivial because of the considerable technical variation between
the different profiling technologies (e.g., scRNA-seq and L1000).
CIBERSORTx (Newman et al, 2019) is capable of adjusting the matrix
of subpopulation characteristics derived from the scRNA-seq GEPs
while decomposing the query bulk GEPs into the distribution of cell
subpopulations with support vector regression. Thus, after pre-
processing and normalizing GEPs from scRNA-seq and CMap, we
performed the digital cytometry by CIBERSORTx to assess the
subpopulation distribution in each experimented sample from the
CMap database (see the Materials and Methods section).

Validation
Because of the lack of known gene markers of subpopulations in
cancer cell lines, we were unable to find data from studies that
performed flow cytometry to label the identity of each cell ac-
companied by matched GEP profiles for validation. We then relaxed
our criteria and collected data on PBMCs to serve our purpose. We
used the same scRNA-seq and bulk RNA-seq datasets of PBMCs as
in the original paper of CIBERSORTx (Newman et al, 2019) to test the
validness of the proposed workflow (see PBMC verification in
Supplemental Data 1). Through Premnas, we found nine subpop-
ulations among PBMCs (See Fig S1A and B), annotated their cell type
by knownmarker genes, and estimated their abundance in the bulk
samples. The Pearson correlation coefficient between the com-
position estimations via the digital cytometry based on the ad hoc
subpopulation characteristics and the ground truth composition
directly assessed by flow cytometry was high (r = 0.835) (see Fig S1C

Figure 2. The scheme of Premnas.
First, single-cell gene expression profiles are used as input of archetypal analysis. The subpopulation characteristics could be learned, and all the cells would be
labeled with its belonging subpopulation. Then a digital cytometry is performed with bulk expression profiles (bulk with and without perturbagens are both used) and
enable us to estimate cell subpopulation abundances. Finally, the subpopulation change upon a perturbation would be calculated, and the effect of the perturbagens on
each subpopulation could be further examined.
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and D). Moreover, in addition to the bulk RNA-seq, we also per-
formed the deconvolution validation on the microarray (see Fig S2)
platform. The estimation based on microarray also showed a high
correlation with the ground truth (r = 0.80 by Pearson correlation
coefficient). These results suggest that Premnas can discover the
unspecified subpopulation from scRNA-seq data and estimate the
distribution of cell subpopulations in bulk samples correctly.

Analyzing subpopulation changes
After getting the abundance distribution of subpopulations in bulk
GEPs, the intraclonal heterogeneity can be estimated (e.g., by
Shannon’s entropy), and the changes between distributions under
different conditions (e.g., between control and perturbed samples)
can further reveal the effects of a treatment to a specific sub-
population. For instance, subpopulations that are either more
resistant or susceptible to a specific drug at a particular concen-
tration can be identified. Moreover, the biological functions of these
subpopulations can be explained by their underlying archetypes.

Applying Premnas to the LINCS L1000 CMap library

There were 1.3 million bulk GEPs (2,710 perturbagens, 3 time points,
26 cell lines, and 117 concentrations) available in the LINCS L1000
CMap library. MCF-7 based GEPs constituted the most compre-
hensive collection (39,711 GEPs for 1,761 perturbagens), and recent
research had discovered MCF-7 subpopulations through single-cell
technologies (Hong et al, 2019; Muciño-Olmos et al, 2020), which
made MCF-7 a feasible cell line for the demonstration of Premnas.
Of note, the biological noises in scRNA-seq data that could dampen
clustering accuracy, including cell cycle effects and clonal differ-
ences, were carefully examined and reduced by a series of pre-
processing procedures (See the Materials and Methods section and
Figs S3 and S4).

Identification and validation of MCF-7 subpopulations learned
from scRNA-seq datasets
After the ad hoc subpopulation characteristics learning step in
Premnas, 10 subpopulations (Fig 3A), which consist of 17 archetypes,
were identified (See the Materials andMethods section). Each of the
17 archetypes possessed unique highly expressed genes as as-
sumed in Assumption 2 section (see Figs 3B and S5). We then
performed the enrichment analysis to understand the character-
istics of each subpopulation in MCF-7. Gene ontology and gene set
enrichment analysis were then conducted with Metascape (Zhou
et al, 2019). After pruning (see the Materials and Methods section),
every cell had a major archetype and a subpopulation identifier.
The composition of themain archetypes of each subpopulation and
the top 3 significant pathways (ranked by the q-values calculated by
Metascape) in each archetype can be found in Fig S6.

To assure that the 10 subpopulations were comprehensive
enough as stated in the Assumption 1 section, we used the scRNA-
seq datasets (Hong et al, 2019), in which an MCF-7 cell subpopu-
lation (i.e., preadapted cells; PA cells) showing resistance against
drugs after endocrine therapy was identified, to see whether any of
the 10 subpopulations resembles PA cells. We colored the MCF-7
cells used for the previous subpopulation identification based on
the expression of the two reported marker genes of PA cells (i.e.,

CD44 and CLDN1) and discovered that most of the cells expressing a
higher degree of these marker genes tended to aggregate in
subpopulation 2, 4, and 9 in the UMAP plot (Fig S7).

Furthermore, we reran Premnas on the merged MCF-7 dataset,
including the datasets used for subpopulation identification above
(GSE114459 [Ben-David et al, 2018]) and the ones treated with
endocrine therapy (GSE122743 [Hong et al, 2019]) and see whether
any of our previous found subpopulations can be grouped with
known PA cells (see Fig 3C). Likewise, biological and technical noises
were eliminated in advance. Note that the cell pruning was skipped
for a more comprehensive comparison. Premnas identified 12
clusters from the merged dataset and showed that 53 of 81 PA cells
(63.5%) were assigned to cluster 2. Moreover, only the number of
cells in cluster 2 showed a constant increase in the datasets with
the longer endocrine treatment (i.e., 4 and 7 d; see Fig 3D and E). In
addition, cells from GSE114459 in cluster 2 were originally annotated
as subpopulation 2 (See Fig S8). Based on the evidence, we believed
that PA cells were mostly covered by the subpopulation 2. The
enriched pathways linked to subpopulation 2 also help explain the
drug-resistance of PA cells (see below). Although this was just one
example, it is still an indication that the 10 subpopulations indeed
cover cells that was not present in the training data, supporting the
Assumption 1 section. Note that as more and more scRNA-seq
datasets are getting available, the subpopulation characteristics
can be retrained on the pooled datasets and further improve
Premnas’ sensitivity in subpopulation identification.

Drug-susceptible subpopulations inferred from bulk GEPs reflects
drug-induced pathways
With the subpopulation characteristics of MCF-7, we tested whether
the perturbed subpopulations found by Premnas complied with
known facts before applying Premnas to measure the subpopu-
lation changes in all the bulk GEPs in LINCS L1000. We used Premnas
to decompose 12 bulk GEPs of MCF-7 treated with FDI-6 (GSE58626
[Gormally et al, 2014]), in which the experiments were designed to
assess the FDI-6 effects on MCF-7 by RNA-seq in triplicates at
different time points (0, 3, 6, and 9 h). FDI-6 has been known for
repressing the growth of MCF-7 cells. We compared the distribu-
tions of subpopulations from controls with those from treated
samples to determine the affected subpopulations. FDI-6, which is
known for displacing FOXM1 (Gormally et al, 2014), is an important
mitotic player that involved in cancer progression and drug re-
sistance in MCF-7 cells (Ziegler et al, 2019) and induces coordinated
transcription down-regulation.

The relative changes in cellular composition after FDI-6 treat-
ment were estimated and shown in Fig S9A and B. Both subpop-
ulation 6 and 7 were completely inhibited after treatment; however,
FDI-6 had the most significant impact on subpopulation 6 by re-
ducing its abundance from 18% of all cells to 0%. The characteristics
of subpopulation 6 and 7 were explained by their main archetypes
(i.e., archetype 16 and 14, respectively), which were associated with
mitotic processes, cell cycle regulation and so on (Fig S9C).

The major functional features of the perturbed subpopulations
concurring with the known roles of FOXM1 as a key regulator of M
phase progression and cell cycle regulation (Ziegler et al, 2019)
indicated that the subpopulation distinguished by the targeted
pathways were more susceptible to the FDI-6. The result also
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Figure 3. MCF-7 subpopulation and PA cell identification.
(A) UMAP visualization of GSE114459 cells after pruning the cells with inexplicit archetype representation. Ten subpopulations were identified by ACTIONet. (B) The
expression profile of the top five DEG in each archetype. The rows of the heatmap were normalized by z-score normalization. The unique expression of these genes across
archetypes implies the functions represented by 17 archetypes. (C) An illustration of the process of the PA cell comparison. We first merged two datasets (GSE114459 and
GSE122743) and clustered the cells by ACTIONet. PA cell IDs were then used to recognize those PA cells in each cluster. Finally, by mapping the new clusters to the old
subpopulations, we could identify the subpopulation covering the most PA cells. (D) Changes in the distribution of GSE122743 cells with different treatment durations in
the new clusters. (E) PA cells distribution among 12 clusters in the merged data. Cluster 2 had been found including the most PA cells among all of the clusters.
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demonstrated that Premnas can be used to study drug effects in
the perspective of both the intraclonal heterogeneity change and
biological functions.

Identification of the most drug-resistant cell subpopulation in
MCF-7 from LINCS L1000 bulk GEPs
We then set out to apply Premnas to LNCS L1000 CMap datasets.
With 39,710 (1,760 perturbagens, 107 different concentrations ranged
from 0.004 to 20 μM, and three time 3, 6, 24 h) MCF-7 GEPs
downloaded from the GEO website (GSE70138, version: 2017-03-16)
as input, we found that there were many perturbagens that caused
great reduction of intraclonal heterogeneity. To better delineate
drug effects on inhibiting the growth of MCF-7 cells in the sub-
population perspective, we defined two metrics: drug susceptibility
and treatment consistency. The drug susceptibility of a cell sub-
population, which ranged from −100 to 100%, was defined by its
relative change in proportion after treatment. The consistency was
calculated as the median drug susceptibility for experiments using
the same drug but at a higher dose. This study considered a cell
subpopulation with a susceptibility less than −90% after treatment
as highly drug-susceptible (or say, killed) by the drug.

We calculated the drug susceptibility and treatment consistency
for every perturbagen–concentration–time pair (PCT pair) of LINCS
L1000 MCF-7 datasets and tried to find drug-resistant subpopu-
lations. Surprisingly, among 1,760 unique perturbagens in the LINCS
CMap database, subpopulation 2 can survive in all PCT pairs. In-
terestingly, subpopulation 2 is also what we found representing the
drug-resistant PA cells from the endocrine therapy (Hong et al,
2019) datasets (GSE122743; see Fig 3).

To further understand the causes of the drug resistance, we
looked into the characteristics of archetype 5, the primary arche-
type of subpopulation 2. Enriched functions of archetype 5 were
involved in transforming growth factor β receptor signaling path-
way and extracellular matrix organization (Fig S6). This result co-
incided with the previous studies that stated an essential role of
TGF-β in drug resistance in cancer (Brunen et al, 2013). Many of the
top DE genes of archetype 5 (see MCF-7 DEGs in Supplemental Data
1), including GPRC5A, ITGAV, SEMA3C, and ITGB6, have been proven
to associate with breast cancer susceptibility to apoptosis or
treatment and poor prognosis (Moore et al, 2014; Zhou & Rigoutsos,
2014; Malik et al, 2016; Cheuk et al, 2020).

The facts that no drug used in CMap can effectively kill cells of
subpopulation 2 and that the known, drug-resistant PA cells are
enriched in subpopulation 2 suggest that PA cells might be a
valuable research targets for understanding the drug resistance of
breast cancer cells, and more efforts should be focused on de-
signing drug targeting PA cells.

Discussion

After getting the drug susceptibility and treatment consistency of all PCT
pairs of LINCS L1000MCF-7, we cameupwith a greedy search strategy for
suggesting a minimal therapeutics combination (i.e., a cocktail therapy)
by aggregating perturbagens that kill specific subpopulations, where no
subpopulation could survive after the treatment.

The strategy (Fig 4) begins with calculating the susceptibility of
each subpopulation for every perturbagen–concentration–time
pair (PCT pair) of LINCS L1000 MCF-7 datasets and then iteratively
selecting a PCT pair that can kill the greatest number of subpop-
ulations. The perturbagen of the pair should also present with the
high consistency (−80%) across higher doses, and the PCT pair with
the lowest concentration is added to the cocktail. The killed
subpopulations and all PCT pairs linked to the selected drugs are
removed from the search. The iteration continues until no more
subpopulation could be killed. See the Materials and Methods
section for more details.

After searching among all the PCT pairs with our greedy search
strategy, four PCT pairs were chosen as a potential drug cocktail:
3.33 μM A-44365 for 24 h, 0.12 μM UNC-0638 for 24 h, 0.041 μM
gemcitabine for 24 h, and 0.123 μM ixazomib-citrate for 24 h. Nine of
10 MCF-7 cell subpopulations could be killed by the cocktail (Fig 5A)
and the susceptivity strengthened along with higher dosage (Fig
5B). With the subpopulation change estimated by Premnas, our
strategy can be used to suggest drug cocktails for potently sup-
pressing breast tumor cells that share a similar genetic background
with the MCF-7 cell line.

We did not carry out further experiments to verify the effec-
tiveness of the drug cocktail, but there are many studies that have
already proved the antitumor activities of each selected compound,
supporting the feasibility of this treatment combination. For in-
stance, UNC-0638, an inhibitor of G9a and GLP, was reported to exert
inhibitory effects against MCF-7 cells (Vedadi et al, 2011). G9a is
known to participate in hypoxia response in MCF-7 cells (Riahi et al,
2021), whereas subpopulation 10, the target subpopulation of UNC-
0638 in the treatment selection process, is also associated with
oxidative phosphorylation. Moreover, gemcitabine, another per-
turbation we chose, had also been demonstrated to be sensitive
with mRNA expression levels of some genes (Meng et al, 2015),
consistent with the result in our studies that the main pathway of
the best-killed subpopulation of gemcitabine is the regulation of
mRNA metabolic process. Based on these studies, we believed the
therapeutic combination would exhibit potent antitumor activity
with partially increased doses in MCF-7 cells. Issues such as drug
interactions (e.g., synergy or antagonism) were clearly crucial but
omitted in the search strategy, and more experiments have to be
conducted in the future to improve the search strategy.

In the development of Premnas, we found that careful pre-
processing to remove technical and biological biases and noises
among all single-cell GEPs before performing the learning step of
the subpopulation characteristics was of great importance. Nor-
malization steps (e.g., quantile normalization, Harmony, etc.) were
helpful, but our experience suggests that some datasets should be
carefully examined, adjusted, or even removed from the training
data if they lead to some obvious isolated, distant subpopulations
when projecting to the embedding space. The enriched pathways of
the major archetypes associated with the subpopulations should
also be scrutinized to make sure those subpopulations are
meaningful.

The precise recognition of subpopulations also relies on the
comprehensiveness of the collected scRNA-seq profiles of the cell
line. Because the MCF-7 clones used in this study were single-
cell–derived from the same parental clone, it increased the
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probability of failing to capture all the possible genetic evolution of
MCF-7 cells. For instance, when we included the scRNA-seq datasets
for the cells from the endocrine therapy (Hong et al, 2019) datasets
(GSE122743), two new subpopulations were reported. Including as
many single-cell transcriptomic data of the cell line of interest for a
more comprehensive analysis should be taken for all further re-
search applying Premnas.

The differences between profiling technologies place a difficulty
in estimating subpopulation distribution in bulk samples. CIBER-
SORTx (S-mode) reduced the technical variation in gene expression
by using an artificial mixture to help tune the signature matrix (see
the Materials and Methods section). Furthermore, the bulk GEPs we
encountered was largely conducted by the L1000 and RNA-seq, and
they were designed to quantify different gene sets. That is, it is

Figure 4. An illustration of the greedy search for suggesting cocktails.
(A) The workflow. The susceptibilities of each subpopulation are first evaluated for every PCT pair, and the full susceptibility table is constructed. Then the most lethal
PCT pairs, which could kill the most subpopulations, are chosen if their consistencies are deemed high. If there is more than one PCT pair, the PCT pair with the least dose
is included in the cocktail therapy. The selection repeats until no more subpopulation could be killed. (B) A simple example of the greedy search. Perturbation C and
perturbation D are eventually added to the cocktail therapy.
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Figure 5. The effects of selected perturbagens in the cocktails.
(A) The average relative changes in cell subpopulations after perturbations. MCF-7 was treated with 3.33 μM A-443654 for 24 h, 0.12 μM UNC-0638 for 24 h, 0.041 μM
gemcitabine for 24 h, and 0.123 μM ixazomib-citrate for 24 h in replicates. The dotted line represents the −90% threshold of high susceptibility. (B) Selected perturbations
showing dose-dependent effects. The duration of perturbations shown is 24 h, and the doses are in micrometer.
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possible that some genes involved in the learning of subpopulation
characteristics do not present in bulk GEPs. Because CIBERSORTx is
a marker gene-based decomposition approach, the calculation
could depend on some of those missing genes, thereby compro-
mising accuracy.

We think Premnas can be applied to all kind of perturbation-
based bulk GEP datasets to understand the effect of the pertur-
bagens to the distribution of uncharacterized subpopulation within
a cell line or tumor tissue sample. In addition, it might be worth
trying to use Premnas for checking the intraclonal heterogeneity of
the controlled samples. If a controlled sample shows a biased
subpopulation composition, extra cautions should be taken to
assure the genetic background of the cells used before further
analysis or comparison, which may be helpful to the reproducibility
of the experiments.

The logical basis of Premnas relies on the assumption that there
are invariant subpopulation characteristics to represent each
subpopulation so that the fluctuation of expression of these
subpopulation characteristics can be solely explained by changes
in subpopulation composition. However, in practice, the inferred
gene signatures can be the mixed consequences of the subpop-
ulation and function changes, therefore violating the assumption.
As a result, it is possible that the subpopulation changes reported
by Premnas can be because of cells changing their behaviors and
acting like some other subpopulations upon a treatment. Unfor-
tunately, it is pretty unlikely such a difference can be distinguished
from the information given in the bulk GEPs in the current setting. It
is strongly recommended to always refer to the DE genes or
enriched functions associated with the major archetypes of the
affected subpopulations and thereby interpret the results also from
the function perspective. It is important to keep open to alternative
explanations of the results.

Conclusions

Large-scale perturbation databases, such as LINCS CMap, that use
cost-effective bulk profiling assays to reveal signatures upon
perturbation, and thereby construct the connectivity between the
drugs and diseases that share positive or negative correlation of
signatures, are the valuable resource of drug discovery. However,
the possibility that the signature is driven by the subpopulation
changes is largely unexplored because of the lack of the companion
single-cell assays. This study is the first attempt to expand the
scope of interpretation and application of the LINCS CMap database
in regard of intraclonal cellular composition.

The three main steps of the proposed framework Premnas in-
clude (1) learning the ad hoc subpopulation characteristics of cells
using single-cell transcriptome data, (2) using the subpopulation in-
formation to decompose the bulk GEPs by the digital cytometry ap-
proach and estimate the abundance of each subpopulation, and (3)
comparing the subpopulation compositions under different condi-
tions to understand the effects of drugs to specific subpopulations.

We applied Premnas to MCF-7 cell line data and identified 10 cell
subpopulations. We found consistent experimental evidence to
support the classification. After dissecting the effects of thousands

of perturbations on MCF-7 cells from the bulk profiling assays
curated in the LINCS CMap, we further discovered themost resistant
subpopulation amongMCF-7 cells and associated its characteristics
to the known PA cells. The result suggested that Premnas can be
applied to perturbation datasets to reveal intraclonal/intratumoral
heterogeneity and provides a new dimension of interpreting sig-
natures and connectivity.

Materials and Methods

Data preprocessing

For scRNA-seq data of MCF-7, cells in GSE114459 and GSE122743 were
labeled by their source clones (i.e., parental, WT3, WT4, and WT5)
and their treatment duration (i.e., 0, 2, 4, and 7 d). We excluded cells
with low quality by the criterion used in the original papers: MCF-7
cells with >15% or <1% mitochondrial content and potential mul-
tiplets cells with >5,000 and <1,000 expressed genes were removed;
as for PBMCs, cells with >10% or <1% mitochondrial content or
>3,500 and <500 expressed genes were removed. A total of 1,054
cells in PBMC data, 12,730 cells in GSE114459, and 28,389 cells in
GSE122743 were kept for the downstream analysis. Of note, because
the count matrix of GSE122743 did not contain mitochondrial genes,
we also removed the genes begin with “MT-” from the GSE114459
dataset when merging these two datasets.

For L1000 data, expression data were log2-transformed, which is
not acceptable by CIBERSORTx, so we transformed the data back to
the original space. Probe IDs were mapped to gene names with the
information in the file “GSE70138_Broad_LINCS_gene_info_2017-03-
06.txt.” To ensure the authenticity of computed effects, we only
keep the experiment results of perturbations with three or more
replicates for analysis in this study.

Removal of biological or technical noise

Intra-type variation may impair the performance of clustering al-
gorithms by grouping cells with similar status (such as cell cycle or
technical bias) together rather than cells with the same cell types.
We used the Harmony (Korsunsky et al, 2019) algorithm for re-
moving possible confounding status (or say, noise) among batches
of samples, which was included in the ACTIONet package (version
2.0). Harmony takes a PCA embedding and batch assignments of
cells as input. In this study, we combined the tags of the source
clone and the cycle phase (including the dataset label when
merging two MCF-7 datasets) as a batch assignment for individual
cells (e.g., “WT3_S,” “parental_G1,” or “WT5_G2_GSE114459”). The first
step in the Harmony algorithm is to compute a fuzzy clustering by
using a batch-corrected embedding, whereas ensuring the diversity
among batches within each cluster was maximized. Next, the al-
gorithm corrects the batch effects within clusters. These proce-
dures are iterated until the cluster assignment of cells becomes
stable. After eliminating the noises from the transcriptome data
with the Harmony algorithm, our clustering result was no longer
affected by the cell cycle phase and the clone of origin (see Figs S4
and S10A and B).
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Selection of the depth parameter for ACTIONet construction

With Harmony-corrected data, we conducted the archetypal
analysis with the function run.ACTIONet() in the ACTIONet package.
However, like in the original NMF, the degree of resolution deter-
mined by “k_max” parameter can directly affect the efficacy of
capturing biological information under single-cell transcriptome
data (Table S1). We tried eight different values for the k_max pa-
rameter and recorded the resulting numbers of archetypes and
subpopulations (Table S2). We found that when set k_max to the
default value (i.e., 30), ACTIONet identified the most subpopulations
(10 subpopulations) with the least number of archetypes (17
archetypes).

Clustering

The cell clustering was accomplished by the cluster.ACTIONet
function with the clustering resolution parameter = 1 in the
ACTIONet package. ACTIONet transformed the metric cell space into
a graph to reduce computational time and used the Leiden al-
gorithm (Traag et al, 2019) to detect communities. To prevent the
noise caused by ambiguous cells performing multiple cell states,
we pruned the cells by considering their composition of archetypes
(i.e., the archetypal explicit function), which would be calculated by
ACTIONet and represented the convex combination of archetypes
for each cell. Cells with their archetypal explicit function below 0.6
were pruned before the downstream analysis. Results with different
pruning threshold of PBMC are shown in Fig S3, and the final
pruning results of MCF-7 are in Fig S10C and D. The characteristics of
the 10 MCF-7 subpopulations identified by clustering can be elu-
cidated by their most influential archetype afterward.

Decomposition of bulk GEPs by CIBERSORTx

CIBERSORTx took single-cell reference profiles with cell-type an-
notations and mixture profiles derived from bulk tissues as inputs.
All the GEPs should be normalized into the same scale beforehand
for more accurate estimation. In this study, the summation of gene
expression for each sample was normalized to one million. In
addition to single-cell reference profiles and mixture profiles, the
decomposition input also included a signature matrix generated by
CIBERSORTx. To construct the signature matrices from the scRNA-
seq profiles of MCF-7 cells and PBMCs (Fig S11), the DE genes along
cell subpopulation types were identified using aWilcoxon rank-sum
test with P-value < 0.01. CIBERSORTx removed the genes with low
expression (average 0.5 counts per cell in space) and generated the
signature matrices as described previously (Newman et al, 2019).
The use of a signature matrix in CIBERSORTx helped facilitate faster
computational running time during decomposition because of the
reduction of the number of genes. After collecting all the input data,
CIBERSORTx was able to decompose the bulk-tissue profiles into
proportions of cell types/subpopulation while correcting the var-
iation caused by different sequencing techniques.

To enhance the robustness of the CIBERSORTx output, the
permutations for statistical analysis was set to 500 (which could be
set as a parameter in CIBERSORTx). Moreover, to eliminate the
technical variation between 10X Chromium and bulk, we applied

S-mode correction provided by CIBERSORTx to our deconvolution
process. We briefly introduce the S-mode strategy here: Given a
cell-type–annotated single-cell reference profile matrix (m genes X
n single cells) from which the signature matrix (m genes X k cell
types) was constructed, CIBERSORTx created an artificial mixture
profile (m genes X P artificial samples) with a known fraction. After
CIBERSORTx corrected the batch effects between and the real
mixture profile, the adjusted signature matrix could be computed
by the nonnegative least squares algorithm (NNLS), given the
adjusted artificial mixture profile and its corresponding fraction.
Eventually, CIBERSORTx used the support vector regression algo-
rithm (SVR) to estimate the composition of cell types under the real
mixture profile with the adjusted signature matrix. The CIBERSORTx
team has shown that the deconvolution performance was signif-
icantly improved with the single-cell signature matrix adjusted by
S-mode correction in their original paper. We also performed some
sampling experiments from the PBMC datasets to examine the
robustness of decomposition by CIBERSORTx (see Figs S12 and S13).

Susceptibility of a perturbagen treatment

We evaluated the inhibitory effects of each perturbation based on
susceptibility. The susceptibility of a cell subpopulation, which
ranged from −100–100%, was calculated as below.

Susceptibility =
�j2P

TCj −CC
TCj + CC

jPj

P: replicate indices.
TCj: a vector storing the cell subpopulation composition in the

treated sample j measured by CIBERSORTx.
CC: a vector storing the average composition of cell subpopu-

lations in the control samples from the same detection plates as
the treated samples.

Data Availability

Premnas

The executable and source code of Premnas is freely available at
https://github.com/jhhung/Premnas.

scRNA-seq data

Three single-cell datasets were used in this study, including two
MCF-7 datasets (GSE114459 and GSE122743) and one PBMC dataset
(GSE127471). All of the cell count matrices were generated by the 10x
Genomics Chromium platform and preprocessed by Cell Ranger
(Zheng et al, 2017). Rows of the count matrices were gene names.
The wild-type MCF-7 cells collected in the GSE114459 dataset were
obtained from three clones (i.e., WT3, WT4, and WT5) and their
parental clone and used for subpopulation identification in this
work. MCF-7 cells in the GSE122743 dataset were treated with E2
depleted medium. We pooled nine samples (GSM3484476 -
GSM3484484) from the GEO website together for PA cell
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identification. Reads of MCF-7 cells were aligned to GRCh38 with Cell
Ranger v2.1. The PBMC dataset was originally generated to evaluate
the decomposition performance of CIBERSORTx and we also used it
to validate the Premnas.

RNA-seq data

The RNA-seq dataset of MCF-7 with FDI-6 treatment was down-
loaded from the GEO website with the accession number of
GSE58626, and it contained the GEPs of MCF-7 cells treated with 40
μM FDI-6 for 3, 6, or 9 h in triplicates. We applied Salmon (Patro et al,
2017) v1.2.0 for alignment-free transcript quantification with the
GRCh38 index set and the default parameters. Ensembl IDs were
converted to gene name according to GRCh38 reference.

L1000 data

The 39,710 quantile-normalized L1000 profiles for MCF-7 in the
LINCS CMap database were generated with the three files down-
loaded from the GEO website (“GSE70138_Broad_LINCS_inst_info_2017-
03-06.txt,” “GSE70138_Broad_LINCS_Level3_INF_mlr12k_n345976x12328_
2017-03-06.gctx,” “GSE70138_Broad_LINCS_pert_info_2017-03-06.txt,” and
“GSE70138_Broad_LINCS_gene_info_2017-03-06.txt”).

Microarray data

The microarray data of PBMCs from 10 humans were downloaded
from the GEO website with the accession number GSE106898. The
expression data was quantile-normalized, and the probe IDs were
transformed into gene names accordingly.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202101299.
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