
Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10
https://doi.org/10.1186/s13015-018-0129-0

RESEARCH

A fast and accurate enumeration‑based
algorithm for haplotyping a triploid individual
Jingli Wu1* and Qian Zhang2

Abstract 

Background:  Haplotype assembly, reconstructing haplotypes from sequence data, is one of the major computa-
tional problems in bioinformatics. Most of the current methodologies for haplotype assembly are designed for diploid
individuals. In recent years, genomes having more than two sets of homologous chromosomes have attracted many
research groups that are interested in the genomics of disease, phylogenetics, botany and evolution. However, there
is still a lack of methods for reconstructing polyploid haplotypes.

Results:  In this work, the minimum error correction with genotype information (MEC/GI) model, an important com-
binatorial model for haplotyping a single individual, is used to study the triploid individual haplotype reconstruction
problem. A fast and accurate enumeration-based algorithm enumeration haplotyping triploid with least difference
(EHTLD) is proposed for solving the MEC/GI model. The EHTLD algorithm tries to reconstruct the three haplotypes
according to the order of single nucleotide polymorphism (SNP) loci along them. When reconstructing a given
SNP site, the EHTLD algorithm enumerates three kinds of SNP values in terms of the corresponding site’s genotype
value, and chooses the one, which leads to the minimum difference between the reconstructed haplotypes and the
sequenced fragments covering that SNP site, to fill the SNP loci being reconstructed.

Conclusion:  Extensive experimental comparisons were performed between the EHTLD algorithm and the well
known HapCompass and HapTree. Compared with algorithms HapCompass and HapTree, the EHTLD algorithm can
reconstruct more accurate haplotypes, which were proven by a number of experiments.

Keywords:  Bioinformatics, Sequence analysis, Single nucleotide polymorphism (SNP), Triploid, Haplotype, Minimum
error correction with genotype information (MEC/GI), Genotype, Algorithm

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
As a large number of sequencing data are available, the
investigation of genetic variations has become one of the
main topics in bioinformatics. Single nucleotide poly-
morphism (SNP), the most widespread form of variation,
is believed to be the major genetic cause to phenotypic
variability. A sequence of SNPs along a chromosome is
referred to as a haplotype, which is more important for
complete comprehending the complex genetic polymor-
phisms than isolated SNPs. Increasing evidence shows
that haplotypes play a crucial role in studying the varia-
tions relating to diseases prediction and gene expression

[1]. Therefore, computational methods to infer haplo-
types are needed, for determining haplotypes is both
time consuming and expensive by direct using biological
experiments. In recent decade, the presented compu-
tational haplotyping algorithms generally fall into three
categories [2]: (1) population haplotyping with genotype
data [3, 4]; (2) population haplotyping with fragment data
[5]; (3) individual haplotyping with fragment data [6]. In
this paper, individual haplotyping problem is studied for
a triploid individual.

The problem of individual haplotyping is also called as
haplotype assembly problem or haplotype reconstruc-
tion problem. It has received extensive study in the recent
decade. Most of the existing research results are regard-
ing diploid individuals [1, 7, 8], and there is still a lack of
research studies for reconstructing triploid ones. Sev-
eral algorithms for assembling K-individual haplotypes

Open Access

Algorithms for
Molecular Biology

*Correspondence: wjlhappy@mailbox.gxnu.edu.cn
1 Guangxi Key Lab of Multi‑source Information Mining & Security, Guangxi
Normal University, Guilin 541004, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0129-0&domain=pdf

Page 2 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

were proposed. Based on the minimum error correction
(MEC) model and the minimum error correction with
genotype information (MEC/GI) model, Wang et al.
[9] and Qian et al. [10] respectively proposed a genetic
algorithm and a particle swarm optimization algorithm
to reconstruct diploid individual haplotypes, both of
which can be adapted to reconstructing the K-individual
ones. The code length of the two algorithms is very long
in practical applications, for it is equal to the number of
sequencing SNP fragments. This brings huge solution
space to these two algorithms and negatively affects the
performance of them. Based on the minimum fragment
removal (MFR) model [11], an exact exponential algo-
rithm was introduced by Li et al. [11]. The time com-
plexity of which is O(22tm2n+ 2(K+1)tmK+1) , where m
denotes the number of SNP fragments, n denotes the
number of SNP sites, and t is the max number of holes
covered by a fragment. The algorithm can not perform
well with large m, n and t. In 2013, Aguiar et al. [12]
introduced the HapCompass model and the minimum
weighted edge removal (MWER) optimization for hap-
lotyping polyploid genomes. Algorithm HapCompass
aims to remove a minimal weighted set of edges from
the compass graph such that a unique phasing may be
constructed. The HapCompass algorithm performs on
the spanning-tree cycle basis of the compass graph to
iteratively delete errors. However, in the same conflict
cycle basis, there may be more than one edge having the
same absolute value of weight. It may lead to the wrong
SNP phasing to select the removed edge randomly. In
2014, Berger et al. [13] described a maximum-likelihood
estimation framework HapTree for haplotyping a sin-
gle polyploid. It can obtain better performance than
the HapCompass algorithm [13]. In 2014, based on the
MEC model, Wu et al. [14] presented a genetic algorithm
GTIHR for reconstructing triploid haplotypes. Since the
code length of algorithm GTIHR equals to the number
of heterozygous sites in haplotype, the performance of
the GTIHR algorithm is negatively affected by haplotype
length and heterozygous rate. In this paper, the triploid
individual haplotype assembly problem is studied based
on the MEC/GI model. An enumeration-based algorithm
enumeration haplotyping triploid with least difference
(EHTLD) is proposed for solving it. Algorithm EHTLD
reconstructs the three haplotypes according to the order
of SNP loci along them. For reconstructing the three
alleles of a given site, it enumerates three kinds of SNP
values by using the site’s genotype, and chooses the kind
of value resulting in the minimum difference between the
reconstructed haplotypes and the sequenced fragments
covering that SNP site. The experimental comparisons
were performed between the EHTLD, the HapCompass

and the HapTree algorithms. The results proved that the
performance of algorithm EHTLD was superior to those
of algorithms HapCompass and HapTree. The rest of this
paper is arranged as follows. “Definitions and notations”
section provides definitions and notations used later.
“Algorithm EHTLD” section introduces the EHTLD algo-
rithm. “Experimental results” section presents the experi-
mental results of the EHTLD, the HapCompass and the
HapTree algorithms. Some conclusions are drawn in the
last section.

Definitions and notations
Triploid somatic cells contain three sets of chromo-
somes, i.e., a triploid organism has three copies of each
chromosome. Since haplotype consists of the sequence of
all SNPs along a chromosome, a triploid individual owns
three haplotypes. It is commonly regarded that a SNP
locus shows merely two possible alleles, hence the major
allele can be represented as ‘0’ and the minor one can be
represented as ‘1’ . A haplotype can be encoded as a string
over a 2-letter alphabet {0, 1} instead of four real bases
{A,T,C,G}. A genotype is the conflation of three haplo-
types on the homologous chromosomes. When three
alleles at a SNP site have identical values, this SNP site is
called a homozygous site, otherwise it is called a heterozy-
gous site. For example, (000)T or (111)T represents the
genotype value at a homozygous SNP site, while (001)T
or (011)T represents the genotype value at a heterozy-
gous SNP site. Suppose that m aligned SNP fragments,
coming from three haplotypes of length n, are gener-
ated by DNA sequencing experiments. Let M denote an
m× n SNP matrix over the alphabet {0, 1,−} (− denotes
the value is null). As shown in Fig. 1a, each row repre-
sents a SNP fragment, each column represents a SNP
site, and each entry M[i, j] denotes the SNP allele of the
ith fragment at the jth SNP site. Let G = (g1, g2, . . . , gn)
denote the genotype matrix corresponding to M, where
gj = (gj1, gj2, gj3)

T (gjk ∈ {0, 1}, k = 1, 2, 3, j = 1, 2, . . . , n)

(a) (b)
Fig. 1  An example of SNP fragment matrix and genotype matrix. a
SNP fragment matrix M , b genotype matrix G 

Page 3 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

denotes the genotype value at the jth SNP site. Figure 1b
shows an example of the genotype matrix.

Given a column M[−, j] (j = 1, 2, . . . , n) of the matrix
M, define r(j) as the set of fragments that cover the jth
column. Given a row M[i,−] (i = 1, 2, . . . ,m) of the
matrix M, let l(i) indicate the index of the leftmost
SNP j (j = 1, 2, . . . , n) such that M[i, j] �= − . Given two
strings X = x1, x2, . . . , xn and Y = y1, y2, . . . , yn , where
xj , yj ∈ {0, 1,−} (j = 1, 2, . . . , n) , the distance metric
HD(X, Y, s, e) is defined as Formula (1). Take fragment
f1(10− 011) and fragment f2(01010−) in Fig. 1a for
example. HD(f1, f2, 2, 5) = 3.

where

Let the strings X and Y be regarded as two SNP frag-
ments, they are said to compatible if HD(X, Y, 1, n) = 0.
The larger HD(X, Y, 1, n) is, the greater the probability
of fragments X and Y coming from different chromo-
some copies or having sequencing errors is. If there
are no errors in the data, the rows of M can be divided
into three classes of compatible fragments. Three hap-
lotypes can be reconstructed by assembling the frag-
ments in the three classes. In this situation, the SNP
matrix M is called feasible or error-free. Given haplotype
h = (h1, h2, h3) (hk = (hk1, hk2, . . . , hkn), k = 1, 2, 3) and
genotype G = (g1, g2, . . . , gn)(gj = (gj1, gj2, gj3)

T , j = 1, 2, . . . , n) ,
if

∑3
k=1 hkj =

∑3
k=1 gjk(j = 1, 2, . . . , n), h and G are

regarded as compatible.
Based on the above mentioned concepts for the haplo-

type reconstruction problem, the MEC/GI model can be
described as follows [9]:

MEC/GI: Given a SNP matrix M and a genotype matrix
G, correct the minimum number of entries in M (0 into 1
and vice versa) so that the resulting matrix is feasible, and
the three reconstructed haplotypes are compatible with
the genotype G.

Algorithm EHTLD
In this section, the EHTLD algorithm is described. The
input consists of a SNP matrix M and a genotype matrix
G. The output is three assembled haplotypes h = (h1 , h2 , h3 )
of length n. In the first step of this algorithm, the matrices
M and G are preprocessed by removing the homozygous
SNPs, which do not play a role in assembling haplotypes.
Subsequently, enumerates three kinds of values for the jth

(1)

HD(X ,Y , s, e) =

e
∑

j=s

d(xj , yj), (1 ≤ s ≤ e ≤ n)

(2)

d(xj , yj) =

{

1 if xj �= −, yj �= −, and xj �= yj
0 otherwise.

(j = 2, 3,…,n) SNP site in terms of its genotype, and chooses
the one leading to the minimum difference between the
reconstructed haplotypes and the fragments covering the
jth site. After this iteration process is completed, three
haplotypes h′ = (h′1, h

′
2h

′
3 ) having only heterozygous SNP

sites are built, for only heterozygous SNPs are remained
in the preprocessed matrices. Finally, h′ is augmented by
inserting the SNPs discarded in preprocessing step and
the final haplotypes h is obtained. Some key steps of the
EHTLD algorithm will be introduced in detail as follows.

Preprocessing
Since homozygous sites do not contribute to haplotype
reconstruction, they are deleted from matrices M and
G to improve the efficiency of assembly. Drop column
j(j = 1, 2, . . . , n) from G where gj1 = gj2 = gj3 , and the
corresponding column is also dropped from matrix M.
The deleted column j ( j = 1, 2, . . . , n ) is recorded as gj1 .
After dropping columns from matrix M, some SNP frag-
ments with only—elements are also deleted, for they are
also redundant information. The remained SNPs are all
heterozygous sites. For convenience of description, the
preprocessed matrices are still denoted by M and G. Sort
the rows of M by their l(.) values in ascending order. For
each column j ( j = 1, 2, . . . , n ) of M, calculate set r(j)
which contains the rows covering the jth column.

Enumerating and computing
The EHTLD algorithm iteratively reconstructs each hete-
rozygous site of haplotypes h′ = (h′1 , h

′
2 , h

′
3 ). Each step

concerns reconstructing the current empty site, starting
from the left first site. Suppose that the first j − 1 sites of
the three haplotypes h′ have already been filled, i.e., ( h′k1 ,
h′k2,…, h′kj−1 ) (k = 1, 2, 3, j = 2, 3,…, n) has been assem-

bled, and the jth site is under consideration. The calculat-
ing method comprises the following two steps.

1.	 Enumerating three kinds of possible values according
to gj:

a.	 if
∑3

k=1 gjk = 1, the three kinds of values are
( h′

1j = 0, h′
2j = 0, h′

3j = 1 ), ( h′
1j = 0, h′

2j = 1, h′
3j = 0 )

and ( h′1j = 1, h′2j = 0, h′3j = 0).
b.	 if

∑3
k=1 gjk = 2, the three kinds of values are

( h′1j = 0, h′2j = 1, h′3j = 1), ( h′1j = 1, h′2j = 0, h′3j = 1)
and ( h′1j = 1, h′2j = 1, h′3j = 0).

2.	 Given the jth site value ( h′1j , h
′
2j,h

′
3j ), let D(h′1j , h

′
2j , h

′
3j )

measure the difference between the reconstructed
haplotypes and the fragments covering the jth site, as

Page 4 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

defined in Formula (3). From the three kinds of val-
ues enumerated in step (1), choose the one with the
minimum D(.) value.

In the following, we give an example for enumerating and
computing by using the matrices in Fig. 1. As shown in
Fig. 2, assume that the first three sites of the three haplo-
types h′ = (h′1 , h

′
2 , h

′
3 ) have been reconstructed, i.e., h′ = (h′1

(011), h′2(010), h′3(100)), and the fourth site is under
reconstruction. The genotype of the fourth SNP site is
(101)T , hence haplotypes h′ = (h′1 , h

′
2 , h

′
3 ) have the fol-

lowing three kinds of possible values on the fourth SNP
site: ( h′14 = 0, h′24 = 1, h′34 = 1), ( h′14 = 1, h′24 = 0, h′34 = 1)
and ( h′14 = 1, h′24 = 1, h′34 = 0). The values of D(0,1,1),
D(1,0,1) and D(1,1,0) are computed respectively accord-
ing to the fragments in Fig. 1a and the three haplotypes
h′ = (h′1 , h

′
2 , h

′
3 ). D(0,1,1) = 3, D(1,0,1) = 2, D(1,1,0) = 1.

Because D(1,1,0) is the smallest, ( h′14 = 1, h′24 = 1,
h′34 = 0) is chosen, and h′ = (h′1(0111), h′2(0101), h′3(1000))
are reconstructed.

Augmenting
The homozygous SNPs that are deleted by preprocess-
ing must be reinserted. The reconstructed haplotypes
h′ = (h′1 , h

′
2 , h

′
3 ) are augmented by the bits of the columns

removed, and h = (h1 , h2 , h3 ) are built. For a given posi-
tion j, haplotypes h′1 , h

′
2 and h′3 are inserted with gj1 when

the discarded column j is recorded as gj1 . Based on the
above mentioned steps, the EHTLD algorithm for assem-
bling triploid haplotypes is depicted in Fig. 3.

(3)

D(h′1j , h
′
2j , h

′
3j) =

∑

i∈r(j)

min{HD(h′k ,M[i,−], l(i), j)|k = 1, 2, 3}

Now the time complexity of the EHTLD algorithm is
discussed. In preprocessing, dropping redundant infor-
mation and calculating set r(·) take time O(m× n) ,
sorting the rows of M takes time O(m× logm) . During
enumerating and computing, three haplotypes with only
heterozygous SNP sites are reconstructed, which takes
time O(c × n× len) , here c denotes the fragments cover-
age, and len represents the average length of fragments.
In augmenting, the discarded columns can be reinserted
by scanning the columns only once, which takes time
O(n). In summary, the time complexity of the algorithm
is O(m× n+m× logm+ c × n× len).

Experimental results
In this section, the EHTLD algorithm is compared
with two state-of-the-art algorithms, i.e., the HapCom-
pass [12] and the HapTree [13] algorithms. Algorithms
EHTLD and HapCompass were implemented on a Win-
dows 7 and the compiler was Microsoft Visual C# 2012.
The Python program HapTree (v0.1), downloaded from
http://group​s.csail​.mit.edu/cb/haptr​ee/, was imple-
mented on a Linux system. All the tests below are con-
ducted on a 64 bit PC with Intel Core i5 2.50GHz CPU
and 6GB RAM. One hundred data sets were generated
for each parameter setting. The average over 100 runs at
each parameter setting was calculated and presented.

The vector error (VE) [13], the reconstruction rate (RR)
[1, 9, 15] and the minimum error correction (MEC) score
[12] were used to measure the performance of the algo-
rithms. The vector error, generalized from switch error,
is a special kind of measurement for evaluating the accu-
racy of polyploid phasing. Given three reconstructed Fig. 2  An example for enumerating and computing

Algorithm EHTLD
Input: a SNP matrix Mm×n, a genotype matrix G
Output: three reconstructed haplotypes h=(h1, h2, h3)
1. preprocess M and G
2. hk1=g1k (k=1,2,3)
3. for j=2,3,. . . ,n do
4. mindif=m×n //initialize mindif as the maximum value
5. if (3

k=1 gjk = 1) then
6. if (D(0, 0, 1) < mindif) then
7. h1j=h2j=0, h3j=1, mindif=D(0,0,1)
8. if (D(0, 1, 0) < mindif) then
9. h1j=h3j=0, h2j=1, mindif=D(0,1,0)
10. if (D(1, 0, 0) < mindif) then
11. h2j=h3j=0, h1j=1, mindif=D(1,0,0)
12. else if(3

k=1 gjk = 2) then
13. if(D(0,1,1)< mindif) then
14. h2j=h3j=1, h1j=0, mindif=D(0,1,1)
15. if(D(1,0,1)< mindif) then
16. h1j=h3j=1, h2j=0, mindif=D(1,0,1)
17. if(D(1,1,0)< mindif) then
18. h1j=h2j=1, h3j=0, mindif=D(1,1,0)
14. Augment h =(h1, h2, h3), and get the final result h=(h1,h2,h3)
15. output h

Fig. 3  Algorithm EHTLD

http://groups.csail.mit.edu/cb/haptree/

Page 5 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

haplotypes, the vector error is equal to the minimum
number of segments on them for which a switch must
occur to correspond with the three true haplotypes, i.e.,
the minimum number of segments a reconstructed phase
and the true phase have in common [13].

The reconstruction rate (RR), which measures the simi-
larity degree between the pair of true haplotypes and
the pair of reconstructed ones, is a widely adopted index
to evaluate diploid phasing [1, 9, 15]. For triploid phas-
ing, we generalized it to calculate the similarity degree
between the three true haplotypes and the three recon-
structed haplotypes. Assuming that h = (h1 , h2 , h3 ) are
the original haplotypes, and ĥ = (ĥ1 , ĥ2 , ĥ3 ) are the recon-
structed haplotypes. RR is defined as the proportion of
nucleotides that are reconstructed correctly, as shown in
Formula (4).

where rik jk = HD(hik , ĥjk , 1, n).
The minimum error correction (MEC) score measures

the minimum number of mismatches between the recon-
structed haplotypes ĥ = (ĥ1 , ĥ2 , ĥ3 ) and the SNP matrix
M, as shown in Formula (5).

To the best of our knowledge, the real triploid haplotype
data are not available in the public domain, Aguiar et al.
[12] and Berger et al. [13] used computer-generated sim-
ulated data. Therefore, simulated data were also used in
our experiments. Three simulation haplotypes h = (h1 ,
h2 , h3 ) of length n were created by using the following
method. h1 was generated at random firstly. h2 was gener-
ated by flipping each bit of h1 randomly so that the ham-
ming distance between h1 and h2 was equal to a given
parameter d. h3 also had the same length and h3j was
set to h1j or h2j (j = 1, 2, . . . , n) with uniform probabil-
ity. With regard to fragment data, two kinds of sequenc-
ing simulators, CELSIM [16] and MetaSim [17], were
adopted to generate simulation fragments, and the test-
ing datasets were called as CELSIM instances and Meta-
Sim instances, respectively.

CELSIM instances
In this section, the evaluation of the EHTLD, the Hap-
Compass and the HapTree algorithms is described
by using CELSIM instances. CELSIM was invoked to
simulate shotgun sequencing platform. m1 single SNP

(4)RR(h, ĥ) = 1−
min{

∑3
k=1 rik jk |ik , jk ∈ {1, 2, 3},

∏3
k=1 ik =

∏3
k=1 jk = 6}

3n
,

(5)

MEC(M, ĥ) =

m
∑

i=1

min{HD(M[i,−], ĥk , 1, n)|k = 1, 2, 3}.

fragments and m2 mate-pair SNP fragments were gener-
ated. A single fragment had a length ranging from fmin to
fmax , and a mate-pair fragment had a length of n/10. The
coverage was c/2 for both kinds of fragments, and the
total coverage was c. Reading errors were planted into the
fragments with probability ps . In practical applications
of shotgun sequencing, the values of fmin and fmax are 3
and 7, respectively, c ranges from 5 to 10, and ps ranges
between 2 and 5% [2, 18]. In the following tables, algo-
rithms EHTLD, HapCompass and HapTree are abbrevi-
ated to EH, HC and HT, respectively.

In Table 1, 12 sets of parameters were set in deal-
ing with error rate ps , where c = 10, fmin = 3, fmax = 7,
n = 100 and d = 0.3. It can be seen from this table that
algorithm EHTLD can achieve much higher reconstruc-
tion rates, smaller vector errors and MEC scores than

the HapCompass and the HapTree algorithms in every ps
setting. When ps = 0, algorithm EHTLD achieves recon-
struction rate of 0.97, which is higher than both Hap-
Compass and HapTree algorithms by about 9.0%, and
vector error of 3, which is less than them by 8 times or
so. In particular, the MEC score obtained by algorithm
EHTLD reaches zero, while those of the other two algo-
rithms are 126 and 57. Although the increase of ps plays
stronger negative effect on algorithm EHTLD than on
algorithms HapCompass and HapTree, the EHTLD algo-
rithm still obtains better performance than algorithms
HapCompass and HapTree with high error rate. When
ps = 0.2, the RRs of algorithms EHTLD, HapCompass
and HapTree are 0.92, 0.89 and 0.88, the vector errors of
them are 14, 31 and 26, and the MEC scores of them are
335, 407 and 364, respectively. The three algorithms all
execute very efficiently when ps ranges from 0 to 0.2.

In Table 2, nine sets of parameters were set in deal-
ing with coverage c, where n = 100, fmin = 3, fmax = 7,
ps = 0.05 and d = 0.3. From Table 2 we observe that algo-
rithm EHTLD still obtains the highest reconstruction
rate and the smallest vector error and MEC score under
different coverage settings. When the coverage is 2, the
RRs of algorithms EHTLD, HapCompass and HapTree
are 0.94, 0.89 and 0.86, the vector errors of them are 10,
30 and 29, and the MEC scores of them are 16, 40 and
19. When the coverage increases, the RR of algorithm
EHTLD increases gradually, while that of algorithm Hap-
Compass fluctuates between 0.89 and 0.90, and that of
algorithm HapTree varies between 0.85 and 0.91. Gener-
ally, the increase of coverage plays a positive role in the
improvement of algorithm performance, for much more

Page 6 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

original fragment information can be utilized. How-
ever, it is not apparent for algorithms HapCompass and
HapTree.

Table 3 compares the performance of the three algo-
rithms with different haplotype lengths n, where c = 10,
fmin = 3, fmax = 7, ps = 0.05 and d = 0.3. As can be seen

from this table, algorithm EHTLD still obtains superior
results to the other two algorithms under each param-
eter setting. With the increase of haplotype length, the
three algorithms experience a gradual degradation in
the performance. When n is 100, the RR of algorithm
EHTLD is 0.97, which is higher than both HapCompass

Table 1  Comparison with different error rates (CELSIM instance)

ps RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

0 0.97 0.89 0.89 3 29 27 0 126 57 0.01 0.02 0.01

0.01 0.97 0.89 0.88 3 31 28 17 147 64 0.01 0.03 0.01

0.02 0.97 0.89 0.88 4 30 27 34 152 79 0.01 0.03 0.01

0.03 0.97 0.89 0.90 4 31 26 51 180 83 0.01 0.03 0.01

0.04 0.97 0.90 0.89 4 29 27 69 179 96 0.01 0.03 0.01

0.05 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

0.06 0.96 0.89 0.88 5 31 26 102 210 132 0.01 0.03 0.01

0.07 0.96 0.89 0.88 5 30 26 122 225 157 0.01 0.03 0.01

0.08 0.96 0.90 0.88 6 29 24 138 238 173 0.01 0.03 0.01

0.09 0.95 0.89 0.87 6 30 28 154 254 181 0.01 0.03 0.01

0.1 0.95 0.90 0.89 7 29 25 172 263 206 0.01 0.03 0.01

0.2 0.92 0.89 0.88 14 31 26 335 407 364 0.01 0.03 0.01

Table 2  Comparison with different coverages (CELSIM instance)

c RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

2 0.94 0.89 0.86 10 30 29 16 40 19 0.01 0.01 0.01

3 0.95 0.89 0.85 9 31 28 25 60 30 0.01 0.02 0.01

4 0.95 0.89 0.91 7 31 28 34 79 38 0.01 0.02 0.01

5 0.96 0.89 0.87 6 30 26 41 96 46 0.01 0.02 0.01

6 0.96 0.89 0.87 5 30 25 52 120 58 0.01 0.02 0.01

7 0.96 0.90 0.89 5 29 26 58 133 65 0.01 0.02 0.01

8 0.96 0.89 0.89 5 30 25 67 157 75 0.01 0.02 0.01

9 0.96 0.89 0.89 4 30 25 75 175 84 0.01 0.03 0.01

10 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

Table 3  Comparison with different haplotype lengths (CELSIM instance)

n RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

100 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

200 0.96 0.89 0.90 12 61 57 136 305 169 0.04 0.16 0.04

300 0.95 0.89 0.88 29 92 90 181 387 230 0.11 0.20 0.09

500 0.93 0.88 0.87 57 156 148 271 573 337 0.56 0.83 0.72

800 0.92 0.88 0.86 100 256 242 398 855 492 2.21 2.59 2.30

1000 0.92 0.88 0.86 136 322 314 479 1029 595 4.36 4.67 4.51

Page 7 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

and HapTree algorithms by about 7.8%, the vector error
of algorithm EHTLD is 4, which is less than algorithms
HapCompass and HapTree by about 86 and 85%, the
MEC score of algorithm EHTLD is 85, which is less
than algorithms HapCompass and HapTree by about 56
and 21%, respectively. When n is 1000, the RRs of them
decrease to 0.92, 0.88 and 0.86, the vector errors of them
increase to 136, 322 and 314, and the MEC scores of
them go up to 479, 1029 and 595, respectively. The run-
ning time of the three algorithms increases significantly
with the increase of n. When n = 100, the running time
of algorithms EHTLD, HapCompass and HapTree is 0.01,
0.03 and 0.01 s, respectively, while n = 1000, it increases
to 4.36, 4.67 and 4.51 s, respectively.

In Table 4, three groups of parameters were set in deal-
ing with single fragment length range [fmin, fmax] , where
c = 10, ps = 0.05, n = 100 and d = 0.3. As shown in
Table 4, algorithm EHTLD still performs the best under
different parameter settings. When [fmin, fmax] = [3, 7] ,
the RRs of algorithms EHTLD, HapCompass and Hap-
Tree are 0.97, 0.90 and 0.89, the vector errors of them
are 4, 29 and 26, and the MEC scores of them are 85, 194
and 117, respectively. With the decrease of the length of
single fragment, the decline of fragments overlap might
be disadvantageous for haplotype reconstruction. When
[fmin, fmax] = [1, 2] , the RRs decrease to 0.94, 0.90 and
0.88, the vector errors increase to 14, 30 and 28, and

the MEC scores drop to 65, 86 and 76, respectively. The
decrease of the MEC scores explain the shorter the frag-
ments are, the more probability the fragments agree with
the reconstructed haplotypes. The change of single frag-
ment length plays little effect on the running time of the
three algorithms.

Table 5 compares the three algorithms with different
hamming distances d, where fmin = 3, fmax = 7, c = 10,
ps = 0.05 and n = 100. It can be seen from this table
that the performance of algorithm EHTLD remains rel-
atively stable under different d, while that of algorithms
HapCompass and HapTree suffers strong negative influ-
ence with the increase of hamming distance. For exam-
ple, when d varies from 0.1 to 1.0, the RR of the EHTLD
algorithm fluctuates between 0.97 and 1.0, while those
of the HapCompass and the HapTree algorithms achieve
decrease rate up to 35 and 20%, respectively.

MetaSim instances
MetaSim was used to simulate 454 sequencing plat-
form. m SNP fragments, including m1 = (1− pm)×m
single ones and m2 = pm ×m mate-pair ones, were
generated, where pm denoted the probability of mate-
pair fragments and was set to 0.25 in the experiments.
A single fragment had an expected length of f _len ,
and a mate-pair fragment had a length of 3× f _len .
Since each mate-pair fragment consists of two single

Table 4  Comparison with different single fragment length ranges (CELSIM instance)

fmin, fmax RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

 [3, 7] 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

 [2, 4] 0.95 0.89 0.88 8 30 28 67 129 90 0.01 0.03 0.01

 [1, 2] 0.94 0.90 0.88 14 30 28 65 86 76 0.02 0.03 0.01

Table 5  Comparison with different hamming distances (CELSIM instance)

d RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

0.1 0.99 0.97 0.96 5 9 8 88 109 92 0.01 0.02 0.01

0.2 0.97 0.93 0.94 6 17 16 86 140 106 0.01 0.03 0.01

0.3 0.97 0.90 0.89 4 28 26 85 194 117 0.01 0.03 0.01

0.4 0.97 0.86 0.85 3 38 35 86 260 145 0.02 0.06 0.02

0.5 0.97 0.82 0.84 1 46 42 88 326 201 0.04 0.08 0.03

0.6 0.97 0.79 0.82 1 57 49 89 393 263 0.05 0.10 0.05

0.7 0.98 0.74 0.81 0 71 63 92 478 346 0.07 0.16 0.06

0.8 0.98 0.71 0.80 0 78 72 90 553 421 0.10 0.20 0.08

0.9 0.99 0.67 0.78 0 89 78 90 633 507 0.12 0.25 0.10

1.0 1.00 0.63 0.77 0 94 85 91 722 589 0.15 0.29 0.12

Page 8 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

fragments of the same haplotype, the coverage c equals to
[(m1 + 2×m2)× f _len]/3× n.

Table 6 gives the comparisons with coverage ranging
from 5 to 50, where n = 100, f _len = 5, and d = 0.3. In
Table 7, six sets of experimental results under different
haplotype length settings are displayed, where c = 20,
f _len = 5, and d = 0.3. In Table 8, three instances were
generated in dealing with single fragment length f _len ,
where n = 100, c = 20, and d = 0.3. In Table 9, the test
results under different parameter d are shown, where
n = 100, c = 20, and f _len = 5. The experimental results
obtained from MetaSim instances indicate that algo-
rithm EHTLD still obtain much higher reconstruction
rates, smaller vector errors and MEC scores than the

HapCompass and the HapTree algorithms under differ-
ent c, n, f _len and d settings.

Conclusion
The minimum error correction with genotype infor-
mation (MEC/GI) model is one of the important com-
putational models for solving single individual SNP
haplotyping problem. In this paper, an enumeration-
based algorithm EHTLD is presented for haplotyp-
ing a triploid single individual by using this model.
Algorithm EHTLD reconstructs the three haplotypes
according to the order of SNP loci along them. For a
SNP site being reconstructed, the EHTLD algorithm
enumerates three possible values in terms of the site’s

Table 6  Comparison with different coverages (MetaSim instance)

c RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

5 0.94 0.89 0.88 10 30 26 80 134 99 0.01 0.02 0.01

10 0.94 0.90 0.88 8 29 26 144 252 189 0.01 0.02 0.01

15 0.95 0.90 0.88 8 30 26 249 405 287 0.01 0.03 0.01

20 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

25 0.95 0.89 0.89 7 28 25 383 648 446 0.03 0.05 0.03

30 0.95 0.90 0.89 7 30 25 458 775 531 0.03 0.07 0.03

35 0.95 0.89 0.89 7 30 26 532 903 623 0.05 0.09 0.04

40 0.95 0.90 0.89 7 28 26 600 1028 711 0.07 0.12 0.06

45 0.95 0.90 0.90 7 29 24 700 1193 807 0.10 0.16 0.09

50 0.95 0.90 0.90 7 28 25 758 1293 879 0.13 0.19 0.11

Table 7  Comparison with different haplotype lengths (MetaSim instance)

n RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

100 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

200 0.93 0.89 0.90 17 62 57 550 985 620 0.24 0.31 0.21

300 0.93 0.89 0.89 25 93 79 788 1441 896 0.56 0.63 0.60

500 0.93 0.88 0.89 45 156 142 1284 2392 1440 2.43 2.83 2.64

800 0.92 0.88 0.89 75 254 238 1998 3791 2254 9.65 10.50 9.89

1000 0.92 0.88 0.88 91 319 305 2484 4731 2804 17.43 17.95 17.47

Table 8  Comparison with different single fragment lengths (MetaSim instance)

f_len RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

10 0.96 0.90 0.88 5 30 26 248 404 307 0.01 0.04 0.01

5 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

3 0.93 0.89 0.89 14 31 28 129 246 201 0.03 0.06 0.03

Page 9 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

genotype, and chooses the one leading to the mini-
mum difference between the reconstructed haplotypes
and the fragments covering that SNP site. The recon-
structed alleles of a SNP site mainly depend on the
fragments which cover the site, and are little affected by
other former reconstructed alleles. Therefore, the for-
mer wrongly reconstructed SNP alleles would not affect
the latter reconstructed SNP alleles, i.e., reconstructed
errors on the former SNP alleles would not spread to
the latter ones. The kind of enumeration strategy can
also be apply to reconstruct haplotypes of other ploidy,
which will be studied in the future.

Compared with algorithms HapCompass and Hap-
Tree by using two kinds of simulated sequencing data,
the EHTLD algorithm can get the highest reconstruc-
tion rates, the smallest vector errors and MEC scores,
which was tested by a number of experiments. In addi-
tion, algorithm EHTLD still achieves satisfying per-
formance even with high error rate, low fragment
coverage, or long haplotype length. All of these advan-
tages may contribute to the practical application of the
EHTLD algorithm when haplotyping a triploid single
individual.

Authors’ contributions
JW designed and implemented the algorithms and methods, QZ contributed
on experimental design and data processing. JW wrote the most part of the
manuscript. QZ helped in data preparing and modifying the manuscript.
All the work was guided by JW in the whole process. Both authors read and
approved the final manuscript.

Author details
1 Guangxi Key Lab of Multi‑source Information Mining & Security, Guangxi
Normal University, Guilin 541004, China. 2 College of Computer Science
and Information Technology, Guangxi Normal University, Guilin 541004, China.

Acknowledgements
The authors are grateful to anonymous referees for their helpful comments
and to Professor Gene Myers for his kindly providing the source codes of CEL-
SIM. This research is supported by Guangxi Collaborative Innovation Center of
Multi-source Information Integration and Intelligent Processing.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This research is supported by the National Natural Science Foundation of
China under Grant Nos. 61363035, 61762015 and 61502111, Guangxi Natural
Science Foundation under Grant No. 2015GXNSFAA139288, Research Fund of
Guangxi Key Lab of Multi-source Information Mining & Security Nos. 14-A-03-
02 and 15-A-03-02, “Bagui Scholar” Project Special Funds.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 9 January 2017 Accepted: 24 May 2018

References
	1.	 Geraci F. A comparison of several algorithms for the single indi-

vidual SNP haplotyping reconstruction problem. Bioinformatics.
2010;26(18):2217–25.

	2.	 Wu JL, Liang BB. A fast and accurate algorithm for diploid individual
haplotype reconstruction. J Bioinform Comput Biol. 2013;11(4):1350010.

	3.	 Clark AG. Inference of haplotypes from PCR-amplified samples of diploid
populations. Mol Biol Evol. 1990;7:111–22.

	4.	 Gusfield D. Inference of haplotypes from samples of diploid populations:
complexity and algorithms. J Comput Biol. 2001;8:305–23.

	5.	 O’Neil ST, Emrich SJ. Haplotype and minimum-chimerism consensus
determination using short sequence data. BMC Genomics. 2012;13(Suppl
2):S4.

	6.	 Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs problems, complex-
ity and algorithms. In: Heide FM, editor. Proceeding on 9th European
symposium on algorithms, Aarhus, Denmark; 2001. p. 182–93.

	7.	 Chen ZZ, Deng F, Wang LS. Exact algorithms for haplotype assembly from
whole-genome sequence data. Bioinformatics. 2013;29(16):1938–45.

Table 9  Comparison with different hamming distances (MetaSim instance)

d RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

0.1 0.98 0.97 0.87 4 10 28 347 387 375 0.01 0.01 0.01

0.2 0.96 0.93 0.88 6 18 26 309 427 353 0.01 0.03 0.01

0.3 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

0.4 0.95 0.86 0.89 6 35 25 294 629 330 0.05 0.11 0.02

0.5 0.94 0.82 0.88 5 48 25 289 752 325 0.09 0.16 0.03

0.6 0.94 0.78 0.88 3 60 26 288 895 320 0.12 0.26 0.03

0.7 0.95 0.75 0.88 3 69 26 296 1060 336 0.18 0.37 0.04

0.8 0.95 0.71 0.88 5 77 26 321 1227 366 0.22 0.42 0.06

0.9 0.96 0.67 0.88 3 86 25 290 1359 333 0.27 0.50 0.09

1.0 0.96 0.63 0.88 2 94 25 277 1523 321 0.35 0.61 0.11

Page 10 of 10Wu and Zhang ﻿Algorithms Mol Biol (2018) 13:10

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	8.	 Mazrouee S, Wang W. FastHap: fast and accurate single individual
haplotype reconstruction using fuzzy conflict graphs. Bioinformatics.
2014;30(ECCB):i371–8.

	9.	 Wang RS, Wu LY, Li ZP, Zhang XS. Haplotype reconstruction from
SNP fragments by minimum error correction. Bioinformatics.
2005;21(10):2456–62.

	10.	 Qian WY, Yang YJ, Yang NN, Chun L. Particle swarm optimization for snp
haplotype reconstruction problem. Appl Math Comput. 2008;196:266–72.

	11.	 Li ZP, Wu LY, Zhao YY, Zhang XS. A dynamic programming algorithm
for the k-haplotyping problem. Acta Math Sinic English Series.
2006;22:405–12.

	12.	 Aguiar D, Istrail S. Haplotype assembly in polyploid genomes and identi-
cal by descent shared tracts. Bioinformatics. 2013;29(13):i352–60.

	13.	 Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel Bayesian frame-
work for single individual polyplotyping using NGS data. PLoS Comput
Biol. 2014;10(3):e1003502.

	14.	 Wu JL, Chen XX, Li XC. Haplotyping a single triploid individual based on
genetic algorithm. Bio-Med Mater Eng. 2014;24(6):3753–62.

	15.	 Xie MZ, Wang JX, Chen JE. A high accurate model of the individual hap-
lotyping problem based on weighted SNP fragments and genotype with
errors. Bioinformatics. 2008;24(ISMB):i105–13.

	16.	 Myers G. A dataset generator for whole genome shotgun sequencing. In:
Proceedings of the 7th international conference on intelligent systems
for molecular biology; 1999. p. 202–10.

	17.	 Richter DC, Ott F, Auch AF, Schmid R, Huson DH. MetaSim—a sequencing
simulator for genomics and metagenomics. PLOS ONE. 2008;3(10):e3373.

	18.	 Panconesi A, Sozio M. Fast hare: a fast heuristic for single individual SNP
haplotype reconstruction. In: Proceedings of 4th workshop on algorithms
in bioinformatics; 2004. p. 266–77.

	A fast and accurate enumeration-based algorithm for haplotyping a triploid individual
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Definitions and notations
	Algorithm EHTLD
	Preprocessing
	Enumerating and computing
	Augmenting

	Experimental results
	CELSIM instances
	MetaSim instances

	Conclusion
	Authors’ contributions
	References

