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Abstract. Despite the implementation of multimodal 
treatments after surgery, glioblastoma (GBM) remains 
an incurable disease, posing a significant challenge in 
neuro‑oncology. In this clinical setting, local therapy (LT), 
a developing paradigm, has received significant interest 
over time due to its potential to overcome the drawbacks 
of conventional therapy options for GBM. The present 
review aimed to trace the historical development, highlight 
contemporary advances and provide insights into the future 
horizons of LT in GBM management. In compliance with 
the Preferred Reporting Items for Systematic Review and 
Meta‑Analysis Protocols criteria, a systematic review of 
the literature on the role of LT in GBM management was 
conducted. A total of 2,467 potentially relevant articles were 
found and, after removal of duplicates, 2,007 studies were 

screened by title and abstract (Cohen's κ coefficient=0.92). 
Overall, it emerged that 15, 10 and 6 clinical studies explored 
the clinical efficiency of intraoperative local treatment 
modalities, local radiotherapy and local immunotherapy, 
respectively. GBM recurrences occur within 2 cm of the 
radiation field in 80% of cases, emphasizing the significant 
influence of local factors on recurrence. This highlights the 
urgent requirement for LT strategies. In total, three primary 
reasons have thus led to the development of numerous 
LT solutions in recent decades: i)  Intratumoral implants 
allow the blood‑brain barrier to be bypassed, resulting in 
limited systemic toxicity; ii) LT facilitates bridging therapy 
between surgery and standard treatments; and iii) given the 
complexity of GBM, targeting multiple components of the 
tumor microenvironment through ligands specific to various 
elements could have a synergistic effect in treatments. 
Considering the spatial and temporal heterogeneity of GBM, 
the disease prognosis could be significantly improved by a 
combination of therapeutic strategies in the era of precision 
medicine.
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1. Introduction

Given the infiltrative characteristics and molecular hetero‑
geneity of glioblastoma (GBM), the ongoing difficulty in 
discovering a cure persists. Despite advancements in tech‑
nology and biological research, the median overall survival 
(OS) time of patients with GBM remains low, with a median 
OS time of 14‑18 months (1‑3). Even with advances in genetics 
and surgical techniques, neuro‑oncology research has shown 
generally disappointing outcomes since the Stupp regimen 
was implemented. Although there have been advancements 
in surgical techniques, imaging protocols and radiotherapy 
(RT), as well as the use of intraoperative mapping to guide 
macroscopic complete resection, the median survival time has 
only increased by a few months (4). The current gold standard 
treatment after surgery for newly diagnosed patients with 
GBM dates back to 2005, with the EORTC/NCIC 26981 study 
demonstrating the survival benefits of combining radiation with 
temozolomide (TMZ) over radiation alone (2). Despite subse‑
quent efforts, progress has remained constrained, as therapies 
including bevacizumab, everolimus and dose‑dense TMZ have 
not demonstrated a significant survival benefit in randomized 
clinical trials when compared with the standard regimen of 
radiation and adjuvant TMZ. Challenges in developing new 
therapies include the need to penetrate the blood‑brain barrier 
(BBB), tumor heterogeneity, and the widespread distribution 
of microscopic disease (1‑4).

The resistance of GBM to treatment is widely known 
and can be explained by numerous different aspects of the 
tumor: i) GBM spatial heterogeneity limits the options and 
efficacy of target therapies; ii) GBM resistance to radiation and 
chemotherapy is facilitated by the pro‑tumorigenic activity 
of the tumor microenvironment (TME); and iii) the limited 
immunogenicity of GBM inhibits a robust immunological 
reaction (5‑7). In total, ~80% of GBM recurrences manifest 
within or on the periphery of the radiation field, highlighting 
the significant influence of local variables on the recurrence 
of the tumor. The localized recurrence significantly correlates 
with a notable reduction in progression‑free survival (PFS), 
underscoring the imperative need for effective local treatment 
interventions (8). Additionally, the isolation of the brain by 
the BBB provides a distinctive chance for aggressive local 
treatment with minimal risk of systemic toxicity. In recent 
decades, several local therapy (LT) strategies have been 
developed. These include local thermal or laser therapy, local 
injection of immunotoxins via convection‑enhanced delivery 
systems and implantation of Carmustine Wafers (CWs) into 
the resection cavity (9,10). Intracavitary radioimmunotherapy 
and Tumor Treating Fields (TTF) represent other examples of 
localized therapeutic strategy aimed at delaying or potentially 
preventing local tumor recurrence (11).

The 2021 World Health Organization (WHO) classifica‑
tion  (12) of central nervous system (CNS) tumors brought 
significant revisions, particularly concerning GBM. These 
updates involved molecular parameters, refining GBM 
subtypes such as isocitrate dehydrogenase [NADP(+)] 
(IDH)‑wild‑type and IDH‑mutant. It is crucial to note that 
each of these subtypes has distinct clinical and prognostic 
implications. For instance, IDH‑wild‑type GBM is associated 
with a more aggressive disease course and poorer prognosis 

compared with IDH‑mutant GBM. In addition, the emergence 
of new entities, such as diffuse midline glioma with histone 
H3 K27M mutation further complicates historical compari‑
sons, emphasizing the need for updated diagnostic criteria and 
standardized reporting for consistency across studies (12). The 
new classification represents a significant temporal landmark, 
which can make it challenging and potentially misleading to 
compare studies conducted before and after this time point. 
Therefore, it is crucial to be aware of these complexities when 
interpreting and applying research findings.

Despite the limited or marginal improvements demon‑
strated by LT over current standard radio‑chemotherapy, its 
future potential is promising. This is particularly true in light 
of recent advancements in gene‑editing technologies and novel 
molecular and genetics discoveries, which are opening up new 
possibilities and avenues for treatment. The present review 
aimed to provide a historical review of LT and summarize the 
LTs that are currently being investigated or explored in GBM 
management.

2. Study selection

Study design and search strategy. The present review failed to 
satisfy the inclusion prerequisites set forth by the International 
Prospective Register of Systematic Reviews (PROSPERO) due 
to its specific focus on the evolution of LT for glioma over the 
past two decades. Consequently, the study protocol was not 
recorded within the PROSPERO database.

The present review constituted a systematic review 
of existing literature, conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews 
(PRISMA) statement guidelines  (13). Both prospec‑
tive and retrospective clinical studies were considered. 
The search strategy of the pertinent literature was 
conducted by screening four distinct medical databases: 
Mendeley (https://www.mendeley.com/reference‑manage‑
ment/mendeley‑cite), Cochrane Library (https://www.
cochranelibrary.com/library), EMBASE (https://www.else‑
vier.com/products/embase) and MEDLINE (https://pubmed.
ncbi.nlm.nih.gov/), from January 1990 to December 2023. 
The following keywords, either singularly or in combina‑
tion (using the Boolean operator ‘AND’), were examined 
in all abstracts of English‑language publications: ‘glioma’, 
‘gliomas’, ‘high grade glioma’, ‘glioblastoma’, ‘surgery’, 
‘Intracavity Therapy’, ‘brachytherapy’, ‘immunotherapy’, 
‘thermotherapy’, ‘laser interstitial thermal therapy’, 
‘magnetic hyperthermia’, ‘magnetic field’, ‘nanomaterial’, 
‘focused ultrasound therapy’, ‘gene therapy’, ‘tumor treating 
fields’, ‘virotherapy’, ‘oncolytic’, ‘t‑cell’, ‘engineered cell’ 
and ‘local treatment’. In the present study, two authors 
conducted the initial review of titles and abstracts, with 
any discrepancies resolved by consensus among three 
senior authors. Additionally, the references cited in each 
paper were scrutinized for relevant articles. The accuracy 
and completeness of all extracted data were verified by two 
independent authors. For ongoing clinical trials, a search 
of ClinicalTrials.gov was conducted, specifically for trials 
related to GBM with statuses such as ‘not yet recruiting’, 
‘recruiting’, ‘enrolling by invitation’, ‘active, not recruiting’ 
or ‘available’.
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Inclusion and exclusion criteria. All Studies were included 
based on the following criteria: i) Published in the English 
language; ii)  clinical trials, encompassing single‑arm or 
double‑arm studies, with a focus on both randomized controlled 
and non‑randomized controlled trials; iii) investigations on 
immunotherapy strategies for GBM, whether as stand‑alone 
or combined therapies with chemotherapy and/or RT; and 
iv) studies incorporating OS and PFS among the analyzed 
LT options. The exclusion criteria comprised: i) Editorials, 
case reports, case series, cohort studies, literature reviews and 
meta‑analyses; ii) studies lacking clear definition of methods 
and/or results; and iii) studies without reported data on PFS 
or OS. The identified studies were imported into Endnote X9 
(https://support.clarivate.com/Endnote/s/article/EndNote‑X9)
and duplicates were removed. In the present study, two inde‑
pendent authors assessed the results against the inclusion and 
exclusion criteria, with any disagreements resolved by a third 
author. Eligible articles then underwent full‑text screening.

Data extraction. The following details were extracted for each 
study: Author information, publication year and journal, title, 
clinical trial name and phase, patient count, diagnosis, dura‑
tion of follow‑up, treatment type and outcomes. The primary 
outcomes assessed were OS and PFS following LT for glioma.

Risk of bias assessment. The Newcastle‑Ottawa Scale was 
employed to evaluate the quality of the studies included in the 
present review (14). Quality assessment included the evalu‑
ation of selection criteria, comparability among studies and 
outcome assessment. A maximum score of 9 was considered 
ideal, with higher scores indicating greater study quality. 
Studies that received ≥7 points were classified as high‑quality 
and included in the present review. The quality assessment was 
independently conducted by two authors. In cases of discrep‑
ancies, a third author re‑examined the study.

Study selection process. Using a combination of keywords, MeSH 
and Emtree hierarchical terms, the authors found 2,711 potentially 
relevant articles, which were saved in a unique PubMed (.nbib) 
file and imported into Endnote to identify possible duplicates. 
For ongoing clinical trials, the same keywords were searched on 
ClinicalTrials.gov for the disease, ‘glioblastoma’ and ‘glioma’, 
leading to 171 potentially relevant trials. After the removal of 
duplicates and studies published before 2010, 619 studies were 
deleted. The remaining 2,263 studies were screened by title 
and abstract, leading to the exclusion of another 2,041 studies 
(Cohen's κ coefficient=0.92). Finally, 222 studies were sought 
for retrieval and fully assessed for eligibility leading to the final 
inclusion of 46 studies. The study selection process is outlined in 
Figs. 1‑3, adhering to the PRISMA guidelines.

Study characteristics. The selected reviewed studies were 
subsequently categorized into three groups according to the 
specific type of LT utilized: 1) Intraoperative LT modalities; 
ii)  local RT; and iii)  local immunotherapy. Following the 
review of studies, it emerged that 25 (15‑39), 10 (40‑49) and 
11 (50‑55) clinical studies explored the efficiency of intra‑
operative LT modalities, local RT and local immunotherapy, 
respectively. Table I provides a summary of the primary clin‑
ical studies involving patients who underwent treatment with 

intraoperative LT modalities, Table II outlines clinical inves‑
tigations based on local RT and Table III presents clinical 
studies focusing on advancements in local immunotherapy.

3. BBB

GBM persists as one of the most resistant malignant tumors in the 
CNS, characterized by inevitable recurrence despite progressions 
in neurosurgery, chemotherapy and RT. Recurrences predomi‑
nantly occur within or proximal to the resection cavity, typically 
within regions exposed to the highest radiation doses (2,3,9,10). 
There is thus an urgent requirement for novel therapeutic tech‑
niques to improve patient outcomes. In this clinical setting, LTs 
have gained significant interest as a developing approach. This is 
due to their potential to overcome the constraints associated with 
conventional glioma treatment protocols.

The brain presents a substantial challenge for the efficient 
delivery of pharmacological compounds owing to the pres‑
ence of specialized interfaces governing the exchange between 
the peripheral blood circulation and the cerebrospinal fluid 
(CSF) circulatory system. These interfaces include the choroid 
plexus epithelium (regulating blood‑ventricular CSF), the 
arachnoid epithelium (regulating blood‑subarachnoid CSF) 
and the blood‑brain interstitial fluid. The BBB, formed by 
endothelial cells, limits the paracellular flux of hydrophilic 
molecules through tight junctions (TJs). The endothelial cells 
are surrounded by a basal lamina, and astrocytic glial cells 
provide biochemical support, regulate blood flow, supply nutri‑
ents, maintain ion balance and contribute to repair processes. 
Essential elements of the BBB supporting system include 
brain capillary endothelial cells, extracellular base membrane, 
pericytes, astrocytes and microglia. In detail, TJs are complex 
networks of transmembrane and cytoplasmic strands that are 
found on the apical portion of endothelial cells. They are made 
up of integral membrane proteins termed claudin, occludin and 
junction adhesion molecules. In addition, adherens junctions 
(AJs), situated below TJs in the basal region of the lateral plasma 
membrane, involve transmembrane glycoproteins (cadherins) 
linked to the cytoskeleton, enhancing the structural integrity 
between adjacent endothelial cells at the BBB. The ability of the 
BBB to control the passage of solutes and other substances is 
thus greatly supported by both TJs and AJs (26,54,56,57).

Overall, the BBB is a specialized structure that tightly 
regulates the molecular transit into the CNS. Typically, the 
relative impermeability of the BBB protects the brain from 
circulating toxins, maintaining an optimal microenvironment 
for neuronal function. Nevertheless, these obstacles impede 
efficient medication administration in disorders of the CNS, 
such as tumors  (56,57). Hence, contemporary therapeutic 
strategies emphasize the endeavor to overcome BBB obstacles 
by administering treatments directly into or in close proximity 
to the tumor cavity. The present review explores the spectrum 
of currently accessible and emerging techniques, including 
both LTs and the latest advancements in immunotherapeutic 
drugs and genetically engineered cell therapies (Fig. 4).

4. Local treatments

Over time, a multitude of instruments have been developed 
to aid brain tumor surgery  (9,10). Instruments such as 

https://www.spandidos-publications.com/10.3892/ol.2024.14573
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surgical microscopes, high‑resolution imaging, f luores‑
cence‑guided surgery and neuro‑navigation are extensively 
employed in neurosurgery but fall outside the scope of the 
present review. At present, four main approaches, laser 
interstitial thermal therapy (LITT), magnetic hyperthermia 
(MH), (TTF) and focused ultrasound (FUS), are undergoing 
regulatory approval at different stages for the LT of GBM 
(Fig. 5).

Local thermal therapy (LTT). LTT, known since the 1890s, 
has a recognized ability to disrupt the BBB (58). The effective‑
ness of LTT is primarily ascribed to its ability to utilize heat, 
thus triggering programmed cell death and tissue necrosis 
in GBM cells. In addition to directly inducing apoptosis 
and necrosis, hyperthermia elicits supplementary outcomes, 
including the activation of immune responses, heightened 
susceptibility of GBM cells to RT and chemotherapy and 
temporary disruption of the BBB  (9). The current use of 
LTT in patients with glioma reflects a dynamic landscape of 
research and clinical applications, with ongoing efforts aimed 
at refining techniques, optimizing treatment protocols and 
expanding their integration into comprehensive treatment 

strategies for brain tumors. Due to the inadequate quality of 
the existing literature, it is not possible to offer conclusive 
findings about the cost‑effectiveness of LTT for patients with 
GBM.

LITT. Recent technological advancements have facilitated 
the emergence of LITT as a promising treatment modality, 
particularly advantageous in situations where traditional 
open surgical approaches are deemed suboptimal, either 
due to surgical complexities or the frail condition of the 
patient (15‑25). These technological advancements include 
laser probe design, cooling mechanisms, stereotactic 
targeting hardware and real‑time thermography (18,59,60). 
Furthermore, two extensive studies comparing patients who 
underwent LITT for primary GBM with a control group found 
that the overall risk of complications was ~15%. However, 
there were no significant differences in PFS or OS between 
the two groups (18,60). A subsequent analysis revealed that 
LITT is a valid and effective choice for treating unifocal, lobar 
and recurrent GBM compared with a similar group of patients 
who underwent a second surgery (61). In addition, a recent 
study comparing surgically accessible recurrent GBM found 

Figure 1. Preferred Reporting Items for Systematic Reviews flow‑chart summarizing the inclusion and exclusion criteria for local treatments studies, including 
local laser interstitial therapy, focused ultrasound, magnetic therapy and Carmustine Wafers in the present systematic review.
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Table II. Clinical investigations assessing local radiotherapy in patients with GBM.

First author,			   Age,					   
year	 Design	 Sample	 years	 Setting	 Dose	 Outcome	 Toxicity	 (Refs.)

Chan et al,	 Monocentric,	 24	 48.1	 Recurrent	 53.1 Gy	 Median Survival	 1 patients	 (40)
2005	 retrospective			   GBM		  from diagnosis, 23.3	 wound	
						      months; after BCT	 infection, 2	
						      9.1 months	 symptomatic	
							       radiation	
							       necrosis	
Schueller	 Monocentric,	 45	 56	 Newly	 20 Gy	 Median OS, 14.2	 2.8%	 (41)
et al, 2005	 retrospective			   diagnosed		  months; time to	 radiation	
				    GBM		  local failure, 9.9	 necrosis, 5.6%	
						      months	 hemorrhage	
Gabayan	 Multicenter,	 95	 51	 Recurrent	 Median,	 Median survival	 8 RTOG	 (42)
et al, 2006	 retrospective			   grade 3 and	 60 Gy	 from BCT, 36.3	 grade 2	
				    4 gliomas		  weeks	 toxicity, 2	
							       grade 3 who	
							       required	
							       reoperation for	
							       symptomatic	
							       radiation	
							       necrosis	
Chen et al,	 Phase 1	 18	 50	 Newly	 400 Gy	 OS, 114 weeks; PFS,	 11 patients	 (43)
2007				    diagnosed		  57 weeks	 underwent	
				    GBM			   reoperations	
							       for radiation	
							       necrosis	
Welsh et al,	 Multicenter,	 20	 59	 Newly	 Median	 Average survival,	 3 patients	 (44)
2007	 retrospective			   diagnosed	 dose, 50	 11.4 months	 (14%) grade 3	
				    GBM	 Gy		  CNS toxicity	
Chino et al,	 Monocentric,	 32	 ‑	 Recurrent	 Median 60	 Average survival	 1 leak	 (45)
2008	 Retrospective			   and newly	 Gy	 after BCT, 12.5	 from BCT	
				    diagnosed		  months	 balloon	
				    GBM
Fabrini	 Monocentric,	 21	 60	 Recurrent	 18 Gy	 Median OS, 21.7	 1 patients	 (46)
et al, 2009	 retrospective			   GBM		  months; median	 had a fatal	
						      survival after	 venous	
						      recurrence, 8.0	 hemorrhage,	
						      months	 2 patients	
							       had asymptomatic	
							       radionecrosis	
Usychkin	 Monocentric,	 12	 48	 Newly	 Median	 Median OS, 13	 Radiation	 (47)
et al, 2013	 retrospective			   diagnosed	 dose, 12.5	 months	 necrosis, 9.4%;	
				    GBM	 Gy		  hemorrhage, 3.1%	
Schwartz	 Monocentric,	 40	 57.6	 Recurrent	 50 Gy	 Median OS, 41.8	 3 patients	 (48)
et al, 2015	 retrospective			   GBM		  months; PFS, 8.3	 grade I, 1 grade II	
						      months	 and 2 grade IV	
							       edema‑associated	
							       toxicity	
Sarria et al,	 Multicenter,	 51	 55	 Newly	 Median	 Median OS, 18	 25.5%	 (49)
2020	 retrospective			   diagnosed	 dose, 10	 months; PFS, 11.4	 radiation	
				    GBM	 Gy	 months	 necrosis	

GBM, glioblastoma; OS, overall survival; PFS, progression free survival; RTOG, Radiation Toxicity Oncology Grading; BCT, brachytherapy.

https://www.spandidos-publications.com/10.3892/ol.2024.14573
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Table III. Local immunotherapy clinical trials in patients with GBM.

		  Clinical trial	 Study	 No. of				  
Immunotherapy	 Target	 identifier	 phase	 patients	 Setting	 Trial design	 Outcomes	 Status

CAR‑T cells	 IL‑13Rα2	 NCT01082926	 1	 6	 rGBM	 Intratumoral	 OS, 19.7	 Completed
		  Keu et al,				    infusion of	 months	
		  2017 (50)				    GRm13Z40‑2		
		  NCT02208362	 1	 1	 rGBM	 Intracavitary	 PFS, 7.6	 Not 
		  Brown et al,				    infusion CAR‑T	 months	 recruiting
		  2016 (51)				    cells targeting		
						      IL‑13Rα2		
	 B7‑H3	 NCT04670068	 1/2	 40	 rGBM	 Intratumoral	 NA	 Recruiting
						      injection of B7‑		
						      H3 CAR‑T cells		
						      between TMZ		
						      cycle		
	 EGFRvIII	 NCT03283631	 1	 24	 rGBM	 CAR‑T	 NA	 Recruiting
						      intracerebral		
						      with dose
						      escalation		
Checkpoint	 CAR‑T	 NCT04003649	 1	 60	 rGBM	 Intracranial	 NA	 Recruiting
inhibitors	 (IL‑13Rα2)					     infusion of		
	 + PD1					     CAR‑T
						      [IL‑13Rα2] +		
						      EV nivolumab		
						      and ipilimumab		
	 DNX‑2401	 NCT02798406	 1/2	 49	 rGBM	 Intratumoral	 OS, 12.3	 Completed
	 + PD1	 Nassiri et al,			   or	 DNX‑2401	 months;	
		  2023 (52)			   gliosarcoma	 followed by	 ORR, 10.4	
						      pembrolizumab	 months	
						      (anti‑PD1)		
Oncolytic	 Toca 511	 NCT02414165	 2/3	 403	 rGBM	 Toca511	 Median	 Completed
viruses		  Cloughesy et al,				    intracavitary	 OS ITT,	
		  2020 (53)				    followed by	 11.1 (E)	
						      TocaFC	 vs. 12.2	
						      administration	 (S)	
						      vs. SOC	 months	
	 DNX‑2401	 NCT01956734	 1	 31	 rGBM	 DNX‑2401	 NA	 Completed
						      intratumoral		
						      injection + TMZ		
	 HSV	 2004‑000464‑	 3	 250	 New	 Surgical	 Median	 Completed
		  28 (ASPECT)			   GBM	 resection +	 OS, 16 (E)	
		  Westphal et al,			   diagnosis	 intraoperative	 vs. 14 (S)	
		  2013 (54)				    perilesional	 months	
						      injection of HSV‑
						      thymidine kinase		
						      followed by		
						      ganciclovir +		
						      SOC vs. resection		
						      and SOC alone		
	 Parvovirus	 NCT01301430	 1/2	 18	 New	 Parvovirus either	 NA	 Completed
					     GBM	 intratumoral or		
					     diagnosis	 EV + surgical		
					     or rGBM	 resection 10 days				  
						      later			 
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no significant differences in survival outcomes or morbidity 
between LITT and repeat surgery. However, LITT was 
associated with shorter hospital stays and more efficient post‑
operative care (61). Similar to other clinical studies conducted 
on patients with brain tumors, research on LITT often consists 
of retrospective observational studies with a limited number 
of patients (15‑25). However, to obtain more reliable results, 

it is necessary to conduct a meticulously planned prospective 
multicenter randomized controlled study.

FUS. Recent developments in FUS technology have increased 
its viability and safety for the treatment of numerous intra‑
cranial diseases (62). In summary, FUS technology precisely 
guides ultrasound beams to specific areas of the brain, targeting 

Table III. Continued.

		  Clinical trial	 Study	 No. of				  
Immunotherapy	 Target	 identifier	 phase	 patients	 Setting	 Trial design	 Outcomes	 Status

	 Poliovirus	 NCT0149189	 1	 61	 rGBM	 Sabin type 1	 Median	 Completed
		  Desjardins et al,				    poliovirus	 OS, 12.5	
		  2018 (55)				    (PVSRIPO)	 months	
						      intratumoral		

ITT, intention‑to‑treat population; GBM, glioblastoma; E, experimental arm; S, standard arm; rGBM, recurrent GBM; EV, intravenous; TMZ, 
temozolomide; PFS, progression free survival; DNX‑2401, δ‑24‑RGD adenovirus; ORR, objective response rate; HSV, herpes simplex virus; 
OS, overall survival; CAR‑T, chimeric antigen receptor T cell.

Figure 2. Preferred Reporting Items for Systematic Reviews flow‑chart the summarizing inclusion and exclusion criteria for local radiotherapy studies in the 
present systematic review.

https://www.spandidos-publications.com/10.3892/ol.2024.14573


IUS et al:  LOCAL THERAPY IN GLIOMA14

tumor cells while minimizing damage to healthy tissue (26,27). 
The FUS technology is extensive, primarily categorized into 
high‑intensity FUS (HIFUS) and low-intensity FUS (LIFUS) 
according to frequency  (63‑65). The two main categories 
of FUS infer thermal and non‑thermal effects. The goal of 
HIFUS treatment in GBM is to employ heat to thermally 
ablate the tumor and the peritumoral surrounding tissue. 
HIFUS causes tissue heating, DNA fragmentation and protein 
denaturation by molecular vibration. (66). However, LIFUS is 
mostly dependent on non‑thermal phenomena such as sonic 
cavitation and mechanical disturbance. When administered 
intravenously to the target location in conjunction with LIFUS, 
microbubbles enhance the administration of therapeutic drugs 
and facilitate liquid biopsies (63‑65).

During FUS treatment for intracranial malignancies, 
steady cavitation is thus utilized to increase the permeability 
of the BBB, thereby facilitating drug delivery by loosening 
tight junctions. However, inertial cavitation causes direct harm 
to tissues by temporarily breaking the BBB (64,65,67). LIFUS 
can also induce the release of pro‑inflammatory cytokines and 
stress responses in intra‑tumoral immune cell populations and 
increase dendritic cell activity (68). When combined, these 

actions hold the promise of overcoming immune evasion 
mechanisms initiated by GBM, potentially triggering an anti‑
tumor immune response that is not just relevant but could be a 
significant breakthrough in the field (68).

MH. MH is a form of targeted thermal therapy where electro‑
magnetic energy is transformed into heat by activating magnetic 
nanoparticles or mediators within the tumor or resection 
cavity using an external alternating magnetic field. Apoptotic 
and necrotic cell deaths are directly caused by thermal energy 
delivered to the tumor site (69), which also indirectly trig‑
gers an immunological response in a ‘cold’ immunological 
site such as GBM (70). Following MH, heat shock proteins, 
which attach to antigen‑presenting cells directly and then 
secondarily trigger an immune response dependent on CD8+ T 
cells, were found to be significantly upregulated in preclinical 
investigations conducted on primary tumor cells and animal 
models (71). Additionally, major histocompatibility complex 
class I and natural killer group 2, member D (NKG2D) ligand 
are more highly expressed in heated tumor cells, rendering 
them more vulnerable to lysis by CD8 and natural killer T 
cells (72).

Figure 3. Preferred Reporting Items for Systematic Reviews flow‑chart summarizing inclusion and exclusion criteria for local immunotherapy studies in the 
present systematic review.
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The idea of heat generation and selective distribution of 
magnetic particles was initially proposed by Gilchrist et al (73) 
in the late 1950s. Stea et al (74) presented the first clinical trial 
describing the use of MH for primary malignant brain tumors 
in 1990 and subsequently conducted a prospective phase I/II 
experiment in 1994 (28) assessing the efficacy of brachytherapy 
(BCT) and interstitial thermotherapy in treating primary and 
recurrent high‑grade glioma (HGG) following surgical resec‑
tion. In this study, a noteworthy correlation between survival 
and hyperthermia [hazard ratio (HR), 0.53; 95% confidence 
interval (CI), 0.29‑0.94) in the case of primary tumors was 
discovered. However, a relevant proportion of complications 
were also documented in the study, which included hydroceph‑
alus, intracranial hemorrhage, episodic seizures and elevated 
edema. In a separate phase I investigation, 6 patients with 
recurrent GBM were found to exhibit a substantial edematous 
response to superparamagnetic iron oxide nanoparticles. Of 
these patients, 4 required high‑dose corticosteroid therapy, and 
another craniotomy was necessary to remove the particles (70).

Direct stereotactic injection of nanoparticles into the tumor 
is another proposed form of delivery. The results of a prospec‑
tive non‑randomized study involving 59 patients with recurrent 
GBM who received repeated sessions of stereotactic RT and 
thermotherapy were presented by Maier‑Hauff  et  al  (29). 
When patients receiving MH were compared with historical 
controls from previous investigations, the authors found a 
significant survival advantage (OS from recurrence, 13.2 vs. 
6.2 months). However, the study also reported significant side 
effects, including worsening of motor deficits, focal convul‑
sions and grade 1‑3 thermal stress.

The optimal treatment strategy for MH remains inad‑
equately evaluated. Although preliminary research indicates 
that it may be useful in treating HGGs, more validation in 
randomized controlled trials is essential. However, MH also 
deserves careful examination due to the relationship with 
multiple potential complications, which may limit its applica‑
tion in routine clinical practice.

TTF. TTF represents a divisive and debated therapeutic 
approach to GBM management. TTF constitutes an antimitotic 
therapy that uses transducer arrays applied to the shaved scalp 
to deliver low‑intensity, intermediate‑frequency (200 kHz) 
alternating electric fields. These fields exert anti‑mitotic 
effects by disrupting microtubule assembly during cell divi‑
sion, resulting in tumor cell death (75‑77). The TTF device for 
recurrent GBM received US Food and Drug Administration 
(FDA) approval in 2011 based on a phase III clinical trial 
(EF‑11). This trial compared the efficacy of TTF with the best 
choice of chemotherapy (as determined by the physician) in 
patients with recurrent GBM, demonstrating comparable effi‑
cacy between the two treatments. However, patients receiving 
TTF experienced an improved quality of life and less 

Figure 4. Schematic illustrations of historical development and application of localized drug delivery strategies for glioblastoma treatment. LITT, laser 
interstitial thermal therapy; TTF, Tumor Treating Fields.

Figure 5. Main local thermal treatment strategies for glioblastoma. In laser 
interstitial thermal therapy, a laser probe is inserted under MRI guidance 
to deliver optical radiation and induce thermal damage to the tumor. High 
intensity focused ultrasound or stimulation of ferromagnetic implanted 
nanoparticles via an external electromagnetic field (magnetic hyperthermia) 
also lead to a localized thermal effect and ablation of tumoral tissue.

https://www.spandidos-publications.com/10.3892/ol.2024.14573
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toxicity (30). In 2015, TTF therapy received FDA approval for 
treating patients with newly diagnosed GBM. This approval 
was based on the EF‑14 clinical study (NCT00916409), which 
demonstrated a significant extension of PFS and OS time when 
TTF therapy was combined with maintenance TMZ (31). The 
National Comprehensive Cancer Network also incorporated 
the TTF device as a viable option for treating newly diagnosed 
GBM. However, Despite FDA endorsement, doubts persist 
surrounding this therapy (75).

After gaining approval in the US, subsequent regulatory 
approvals in Europe and Asia in recent years have heightened 
awareness of TTF therapy among a wider range of patient 
populations and treatment centers. In a recent meta‑analysis, 
Ballo et al (77) analyzed 1,430 patients with GBM in a pooled 
analysis for OS time. The meta‑analysis of comparative 
studies indicated a significant improvement in OS time for 
patients receiving TTF plus standard of care (SOC) vs. SOC 
alone (P<0.001). Specifically, the OS time was 22.6 months 
for patients treated with TTF plus SOC, compared with 
17.4 months for those receiving SOC alone.

Although a number of studies have assessed the safety and 
effectiveness of TTF, questions remain regarding research 
design, quality of life and therapeutic costs. These problems 
require further investigation, and ongoing trials are intended 
to yield more information regarding treatment outcomes and 
interactions in combination regimens.

5. Local treatment approaches and delivery systems for 
malignant gliomas

Given the notable drawbacks of systemic drug delivery 
options, local drug delivery techniques are seen as viable 
substitutes. The drawbacks of systemic methods include long 
delivery routes, which increase the chance of medication 
absorption by unwanted organs or clearance during blood 
circulation. Furthermore, the potential for systemic toxicity 
remains a notable concern. By contrast, local drug delivery 
techniques provide a focused and efficient approach, deliv‑
ering drugs directly into the brain bypassing the limits of the 
BBB (9,78‑82). Local drug delivery approaches encompass a 
growing number of research topics, including the continuous 
discovery of therapeutic nanomaterials and the continued 
development of pharmaceutical molecular design (9,10,78‑82). 
Numerous intracranial implant‑based delivery techniques are 
now under investigation (83‑94).

Convention‑enhanced delivery (CED). Since the 1994 study 
by Bobo et al (79), CED for gliomas has primarily remained 
under investigation in preclinical models  (10). In CED, 
catheters extend past the cannula tip into the targeted tumor 
location and are proximally coupled to a syringe pump that 
contains the treatments components. Chemotherapy CED 
has demonstrated success in laboratory settings, but its 
application in clinical environments has encountered several 
challenges (80‑82). These challenges highlight the necessity 
of addressing specific issues to enhance the implementation 
of CED in patient care. Failures of CED in glioma treatment 
can be attributed to several factors: i) Achieving uniform 
distribution within the tumor; ii) limitations in the design and 
placement of the probe; and iii) tracking the delivery of the 

infusate. Since GBMs are highly infiltrative, effective drugs 
must discriminate between malignant and normal tissue while 
penetrating the tissue deeply to reduce the possibility of severe 
side effects (80‑82). Several ongoing trials are investigating 
the CED of tumor‑targeting compounds, encompassing cyto‑
kines, viruses, gene therapies and antibodies. Further details 
on these approaches will be discussed below.

Implanted delivery. Various preclinical models are currently 
under investigation to explore hydrogels, nanofibers and 
spray devices (80). Furthermore, nanoparticles can be used 
as carriers for the transport of pharmacological compounds 
and genetic material across the BBB. If properly engi‑
neered, nanoparticles can interact specifically with tumor 
cells, limiting damage to healthy cells (56). In this regard, 
biomaterial implants are becoming increasingly flexible 
therapeutic platforms capable of providing novel approaches 
in GBM treatments  (83). A number of non‑biodegradable 
ethylene‑vinyl acetate copolymers (EVAcs) and biodegradable 
materials [such as polyanhydride poly(bis(p‑carboxy‑phenoxy)
propane‑sebacic acid) copolymer, fatty acid dimer‑sebacic acid 
copolymer, poly(lactic‑co‑glycolic acid) copolymer (PLGA) 
and poly‑ε‑caprolactone] have been explored for the local 
delivery of therapeutic agents including chemotherapy [such 
as paclitaxel, doxorubicin and bis‑chloroethylnitrosourea 
(BCNU)] and anti‑angiogenic (such as minocycline and 
endostatin fragment) drugs (84‑86). These implantable bioma‑
terials can be in different forms including wafers, discs, films, 
rods or meshes and can be fabricated using different methods 
such as electrospinning, solvent casting, extrusion or compres‑
sion molding. The effectiveness of implantable drug delivery 
systems in treating recurrent cancer is potentially heterog‑
enous. Gliosis may hinder the delivery of drugs into the brain 
parenchyma and hamper access to tumor cells at tumor recur‑
rence (56). The local administration of the anti‑angiogenesis 
drug, minocycline, either in combination with systemic BCNU 
or alone, resulted in notable improvements in the median 
survival time in a rat brain tumor model without the need for 
excision (84).

Implanting a device containing EVAc and BCNU proved 
effective in reducing systemic toxicity while increasing local 
drug concentration (87). The device, created by dissolving the 
drug and polymer in methylene chloride, demonstrated poten‑
tial antitumor effects in rat intracranial glioma models when 
delivering chemotherapy drugs, such as amsacrine and mito‑
xantrone, using EVAc. Additionally, PLGA, an FDA‑approved 
copolymer, has been explored in studies. Xie and Wang (88) 
developed paclitaxel‑loaded PLGA ultrafine‑fiber implants 
for brain glioma treatment via electrospinning, achieving 
sustained drug release for >60 days. Another group utilized 
PLGA and paclitaxel in treating glioma, with the constructed 
electrospun paclitaxel‑loaded PLGA fibrous meshes supporting 
drug release for 80 days (89). These implants resulted in much 
smaller tumors in a mouse subcutaneous C6 glioma in vivo 
model compared with the placebo and Taxol® injected control 
groups (89).

The topic of theranostic applications for the brain has seen 
a recent increase in interest, with an emphasis on the use of 
electronic devices such sensors and actuators. This represents 
a recent proposal that adds a new dimension to the ongoing 
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exploration of these technologies in the context of brain‑related 
applications. The goal of this multidisciplinary strategy is to 
combine macroscopic and microscopic tactics to potentially 
revolutionize drug delivery options  (78). For instance, in 
clinical practice, a solid implant for intracranial drug delivery 
in GBM is the biodegradable CWs. The US FDA approved the 
CW implantation strategy for the treatment of recurrent GBM 
and newly diagnosed HGG in 1996 and 2003, respectively, 
establishing a therapeutic bridge between adjuvant therapy and 
surgical resection (83). Despite the early promising results, the 
implantation of CWs in HGG has gradually been abandoned 
in typical clinical practice for a number of reasons (33‑38,90). 
In a recent collaborative review by the Society for 
Neuro‑Oncology‑European Society of Neuro‑Oncology, the 
authors stated that CWs offer a limited survival advantage of 
~2 months, suggesting a limited use, primarily due to concerns 
related to safety and tolerability risks (91,92). Furthermore, 
the exclusion of CW‑treated patients in later clinical trials, 
to prevent potential confounding effects brought by CWs, 
discourages its broad implementation (91,92).

Nevertheless, recent long‑term follow‑up studies have 
shown survival benefits in newly diagnosed patients with 
GBM treated with CW implantation, prompting a reevaluation 
of the therapeutic efficacy of CWs in selected cases, such as 
young patients with small lesions without ventricle opening 
during surgery. According to a recent study by Iuchi et al (93), 
implantation of CWs significantly extends OS (median OS 
time, 27.4 months; 2‑year OS rate, 46%) in younger patients 
with an extent of resection >95%. The aforementioned study 
supports the critique directed towards the efficacy of CWs 
highlighted in a study by Champeaux and Weller (94), a 9‑year 
nationwide retrospective study in which it was demonstrated 
that clinical and surgical factors (such as age, tumor volume, 
tumor side and extent of resection) may influence the survival 
benefit in patients receiving CWs, underling its potential 
efficacy in specific cases. In addition, although implantable 
CWs have been criticized in recent research, their efficacy and 
safety may be increased by adjusting the chemicals, dosage 
and implantation methods (95,96).

Human recombinant bone morphogenetic protein 4 
(hrBMP4) has shown promise in preclinical studies for its 
ability to induce differentiation and reduce the self‑renewal 
capacity of GBM stem‑like cells (GSCs), which are often 
implicated in the aggressive nature and treatment resistance 
of GBM. By targeting these GSCs, BMP4 could potentially 
reduce tumor recurrence and improve patient outcomes (95). 
In a recent human phase I dose escalation trial, the efficacy 
and safety of hrBMP4 administered via CED was investigated 
in 15 patients with recurrent GBM. The results demonstrated 
that hrBMP4 was well‑tolerated with no serious adverse events 
directly attributed to the treatment (39). The findings of these 
investigations suggest that local hrBMP4 delivery can inhibit 
tumor growth in areas exposed to the protein, highlighting the 
potential for hrBMP4 as a therapeutic approach for GBM.

Overall, CED bypasses the BBB to directly administer 
targeted therapies into malignant glioma tissue and surrounding 
areas. Despite being invasive, wafer and reservoir delivery 
systems offer the potential for prolonged compound delivery 
during disease progression. Although CED shows significant 
potential for advancing the treatment of GBM, continuous 

research and refinement are necessary to fully harness its 
capabilities and address current challenges. Enhancing the 
design of the catheter to minimize backflow and improving 
the materials of the catheter to prevent scarring may increase 
the effectiveness of CED delivery. Catheter design, number 
of catheters, catheter location, infusion rate, start‑up infusion 
protocol, infusion duration, type of drug infused, possible drug 
encapsulation and methods of evaluation for drug distribution 
are critical factors that need to be considered in the future. 
At present, CED is still a potent and promising treatment 
modality for GBM.

6. Local RT

RT is currently the primary method for controlling the growth 
of GBM. Since publication of the study by Stupp et al (1) in 
2005, the dose of 60 Gy in 30 sessions has been delivered 
along with chemotherapy in the postoperative setting to the 
residual disease (when present) and the surgical bed with an 
adequate clinical margin (97). Unfortunately, even after RT, 
disease recurrence is inevitable, and in 70‑80% of cases, it 
occurs within the treatment field (98). Several clinical trials 
have attempted to increase the dose of ionizing radiation 
in combination with TMZ using external beams RT  (99). 
Nevertheless, the advantages in terms of survival have been 
marginal, while the adverse effects induced by radiation have 
significantly exacerbated.

To augment the dose directed at the tumor bed and mitigate 
harm to adjacent tissue, diverse BCT approaches have been 
explored, yielding differing levels of success (100). BCT and 
intraoperative RT (IORT) are the two main types of localized 
RT. BCT consists of placing a source of ionizing radiation 
into the surgical cavity, and IORRT treats the surgical bed 
immediately after surgery using a dedicated linear accelerator. 
Both upfront and recurrent settings have been assessed in 
clinical trials. Nevertheless, to date, there are a limited number 
of published clinical studies, and most studies are retrospec‑
tive and single‑centered in design. In 2007, Chen et al (43) 
reported the results of a phase  I study on 18 patients with 
GBM treated with BCT after the first surgical intervention 
(all patients had undergone radical resection). The median 
dose of ionizing radiation delivered through the placement 
of permanent iodine‑125 (I‑125) seeds at a depth of 0.5 cm 
was 400 Gy, followed by postoperative external beam RT. 
Despite PFS and OS results consistent with those reported by 
the aforementioned Stupp study, 11 patients underwent surgery 
for the development of radionecrosis (without evidence of 
disease progression). As a result of the high rate of toxicity, the 
trial was prematurely stopped. Similar results in terms of OS 
following BCT treatment at first diagnosis were also reported 
by Welsh et al (44). In addition, Fabrini et al (46) evaluated 
the viability and effectiveness of perioperative high‑dose‑rate 
BCT in 2009, administering an 18 Gy radiation at a 5 mm 
depth to 21 patients with recurrent GBM. The median OS 
time was 21.7 and 8 months from diagnosis and tumor recur‑
rence, respectively. Chan et al (40) reported similar survival 
outcomes for 24 patients who received BCT at the time of the 
second surgical intervention, which likely indicates selection 
bias by the neurosurgeon affected the data. This was due to 
patient selection (ideal patients eligible for a second surgery 
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were selected), a prolonged time since the end of RT and a 
tumor recurrence that is easily resectable and preferably 
localized within the RT treatment fields. The study reported 
a median survival time of 23.3 months from diagnosis and 
9.1 months from the date of recurrence.

In a study by Chino  et  al  (45), the survival time of 
26  patients treated with BCT after the second surgical 
intervention was 7.1 months. Gabayan et al  (42) observed 
that patients who received BCT at the time of recurrence 
had a median survival time of 36.3 weeks from the date of 
BCT, which was consistent with earlier studies. In 2014, 
Kickingereder et al (101) reported a retrospective case series 
of patients with inoperable GBM treated with BCT at diag‑
nosis and recurrence (103 patients treated at diagnosis and 98 
at disease recurrence) between 1990 and 2012. A median dose 
of 60 Gy was administered through low‑dose‑rate stereotactic 
I‑125 BCT. The treatment‑related mortality was 0% and toxici‑
ties occurred in <7.5% of patients. It was found that patients 
treated with BCT at diagnosis and at recurrence had the same 
length of disease control (6.2 vs. 5.9 months, respectively; 
P=0.11). This result was likely affected by the patient selec‑
tion  (102,103). In 2015, Schwartz et al  (48) published the 
results of a retrospective study on 68 patients with recurrent 
GBM who had been treated with I‑125 BCT (the reference 
dose was 50.0 Gy, calculated to the boundary of the tumor). 
The median survival time was 41.8 months (95% CI, 29.2‑55.9) 
and the perioperative morbidity was 2.9%. However, this study 
exhibited notable bias in patient selection, rendering the evalu‑
ation of OS data challenging.

Based on the available published studies, it can be 
concluded that BCT is likely safe, meriting further investiga‑
tion in dedicated prospective clinical trials. However, the 
retrospective nature of currently published BCT studies, the 
variability in patient selection criteria, the prolonged enroll‑
ment periods resulting in heterogeneity according to various 
WHO classifications and the differing techniques and doses 
utilized present significant challenges to definitively deter‑
mining the impact of this technique on patient survival. Future 
prospective studies are anticipated to provide critical insights.

Clinical experiences assessing the application of IORT 
in patients with GBM have revealed comparable limita‑
tions. In 2005, Schueller et al (41) reported the results of a 
retrospective study conducted on 71 patients with glioma 
treated with IORT. IORT demonstrated feasibility, with peri‑
operative complication rates remaining unchanged. However, 
the survival outcomes generally did not exhibit improvement 
when compared with a historical control group. Disease 
recurrence exhibited similar survival rates as primary tumors, 
and GBM displayed a slightly elevated survival, suggesting 
potential indications for the use of IORT. Investigations by 
Usychkin et al (47) and Sarria et al (49) described findings 
indicating less favorable outcomes in terms of safety. The two 
studies assessed the viability of IORT in new and recurrent 
GBM.. Radionecrosis occurred in 35 and 25.5% of patients 
in the respective studies. In addition, Usychkin et al  (47) 
evaluated the impact of IORT in terms of survival and toxicity 
in a retrospective single‑center study of 17  patients with 
GBM treated between 1992 and 2002. Each patient received 
high‑dose IORT (20 Gy), followed by post‑operative external 
beam RT. For the whole group, the median OS time was 

13 months, consisting of 10.4 months for recurrent cases and 
14 months for primary cases. Of the complications recorded, 
3 patients presented with radionecrosis, 1 with osteomyelitis at 
the craniotomy bone flap, 1 with intracerebral hemorrhage and 
1 with pulmonary embolism. In addition, 2 patients had a fatal 
outcome. Sarria et al (49) evaluated 51 patients with GBM. 
IORT was performed in a single session immediately after 
surgery (10‑40 Gy prescribed at the applicator surface using 
low‑energy photon) and was followed by standard radioche‑
motherapy treatment. Although no grade 4 radionecrosis was 
recorded, G1‑G3 radionecrosis occurred in 25.4% of patients. 
At present, there is a lack of data supporting the use of IORT 
or BCT for diffuse glioma. Furthermore, the main clinical 
randomized trial investigating the efficacy of I‑125 has failed 
to demonstrate a survival benefit (104).

The FDA clearance of GammaTile, incorporating Cs‑131 
titanium seeds within a resorbable collagen‑based tile, has 
renewed the interest in BCT and introduced the concept of 
surgically targeted RT. Early clinical reports suggest a reason‑
able safety profile, but potential delayed seed settling during 
collagen absorption raises uncertainty about efficacy. Ongoing 
clinical trials are actively exploring the safety and efficacy of 
GammaTile for CNS tumors (105,106).

7. Local immunotherapy

Immunotherapy stands out as one of the extensively explored 
novel approaches for GBM treatment. The low immunogenicity 
of the tumor, along with an immunosuppressive TME, allows 
it to evade an immune response. For a number of reasons, 
including its low tumor mutational burden, low number of 
tumor‑infiltrating T cells and low programmed cell death 
protein 1 (PD‑1)/programmed death‑ligand 1 expression, GBM 
is recognized as an immunologically inert tumor, particularly 
when compared with other cancer types that have responded 
favorably to immunotherapy. The high heterogeneity of GBM 
further facilitates immune evasion (7). In addition, although 
steroids are often essential for managing peritumoral edema, 
they can compromise the effectiveness of immunothera‑
pies (7,107,108). Until now, several phase III clinical trials that 
focused on immune therapy for GBM have encountered difficul‑
ties, mainly related to individual components of the antitumor 
immune response. Learning from these setbacks, the potential 
success of immunotherapy for GBM appears most optimistic 
when utilizing a combination of immunotherapies to address 
the significant immunosuppression disease‑related. It is thus 
crucial to detect reliable biomarkers both for appropriate patient 
selection and tumor evolution monitoring (9,10).

In this section, current findings and continuing clinical 
research in the field of immunotherapy for GBM will be 
discussed, which includes immune checkpoint inhibitors 
(ICIs), vaccines, chimeric antigen receptor T cell (CAR‑T) 
treatment and viral therapy. In total, two different approaches 
of immunotherapy are described in literature: Passive immuno‑
therapy (using antibodies and immune checkpoint modulators) 
and active immunotherapy (using tumor vaccination with viral 
vectors or dendritic cells and CAR‑T treatments). A complete 
list of trials with clinical relevance using different immuno‑
therapy strategies in the treatment of glioma are reported in 
Table III.
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Viral therapy. Oncolytic viruses (OVs) selectively replicate 
in cancer cells and stimulate antitumor immunity, inducing 
immunogenic cell death (109). Studies have confirmed the effi‑
cacy and safety of OVs for the treatment of glioma; however, it 
is required to determine which OVs provide the most efficient 
treatment (adenovirus and herpes virus) (53,54,110). VB‑11 is 
an adenovirus that directly disrupts the angiogenic vessels and 
induces a direct tumor immune response. Phase III trials have 
tested the efficacy of VB‑11 with controversial results. A study 
by Brenner et al (110) demonstrated a significantly longer OS 
time (HR, 0.48; P=0.043) in patients primed with VB‑111 in 
combination with bevacizumab. However, another phase III 
trial failed to demonstrate a benefit with this combination (OS 
time, 6.8 vs. 7.9 months; HR, 1.2; P=0.19) (53).

Oncolytic herpes simplex virus (HSV) is an attractive class 
of anticancer therapy due to a highly stable genome, potent 
cytolytic capability and effective drugs to treat adverse events. 
Westphal et al (54) demonstrated an improvement in median 
time to death (or re‑intervention) with the perilesional injec‑
tion of HSV‑thymidine kinase followed by ganciclovir plus 
SOC. The survival time of the indicated treatment vs. SOC 
alone after tumor resection in newly diagnosed GBM was 308 
vs. 268 days (HR, 1.53; P=0.006).

CAR‑T cells. CARs are immunoglobulin T cell receptors 
that can activate T cells recognizing specific antigens, which 
have generated a recent particular interest due to favorable 
activity in hematologic malignancies (111). The most notable 
targets of these cells include EGFR, IL‑13R2 and HER2; 
however, more recently discovered targets include mucin 1, 
CD147, GD2 and Eph receptor A2 (112). These cells appear 
to eliminate tumor cells with precision and demonstrate an 
increase in the immunogenicity of the GBM microenviron‑
ment  (7). Encouraging data are also emerging in diffuse 
intrinsic pontine glioma. A study by Vitanza et al  (113) 
demonstrated satisfactory tolerability to intraventricular 
infusion of B7‑H3 CAR‑T and 1 of the 3  patients with 
diffuse intrinsic pontine glioma enrolled had radiographic 
and clinical improvement through 12 months of the study. 
Further scientific details on this topic are discussed in 
greater depth in Chapter 8.

ICIs. ICIs target PD‑1 or cytotoxic T‑lymphocyte associate 
protein 4 (CTLA‑4) to induce the immune response of 
T‑cells. Although ICIs now represent the SOC in a number of 
cancer types with encouraging preclinical data (including in 
GBM), in a clinical context, ICIs do not improve the survival 
of patients with GBM (114,115). Different factors may limit 
immune cell trafficking, reducing the efficacy of suppres‑
sive TME. Although some encouraging data are emerging 
from the neoadjuvant phase investigations, these trials are 
still too immature and require a comparison arm.  (116). 
Regarding intratumor activity, certain phase  I/II clinical 
trials administering a combination of ICIs and CAR‑T or 
OV make possible the application of ICIs in patients with 
glioma (52). Nassiri et al (52) in a multicenter phase 1/2 study, 
investigated the combination of intratumoral delivery of the 
OV, DNX‑2401, followed by intravenous administration of 
anti‑PD‑1 antibody (pembrolizumab) in recurrent GBM. The 
authors demonstrated that the combination of DNX‑2401 

and pembrolizumab was safe and showed a notable survival 
benefit in selected patients. The OS rate at  12  months 
(52.7%; 95% CI, 40.1‑69.2%), was significantly higher than 
the prespecified control rate of 20%. The median OS time 
was 12.5 months (10.7‑13.5 months). Patients who achieved 
objective responses had a longer survival (HR, 0.20; 95% 
CI, 0.05‑0.87). Additionally, 56.2% (95% CI, 41.1‑70.5%) 
of patients experienced clinical benefits, defined as stable 
disease or better. Notably, 3 patients had durable responses 
and were alive at 45, 48 and 60 months.

8. Advances in CAR‑T cell technology and beyond for HGG

Despite efforts in the genomic, transcriptomic, epigenetic and 
proteomic characterization of GBM specimens, little progress 
has been made in the survival of patients with GBM. The failure 
of treatments can be attributed to a number of GBM gene altera‑
tions, including mutations in KRAS, c‑MET, PI3KCA, BRAF, 
telomerase reverse transcriptase, TP53 and PTEN, as well as 
the mutational status of the EGFR and platelet derived growth 
factor receptor α genes (7). Furthermore, the inability of tyro‑
sine kinase inhibitors to cross the BBB reduces the efficacy 
of chemotherapy (116). Consequently, accurate tumor antigen 
targeting and effective intracranial drug delivery are essential 
for the success of GBM treatments  (117). Comprehensive 
single‑cell RNA‑sequencing analysis of cancer stem cells, 
cells that remain in recurrent and resistant GBM inside the 
TME, may provide valuable data for future research on effec‑
tive targeting strategies for this fatal illness (118). At present, 
several clinical trials are being conducted to treat GBM. These 
trials include vaccine therapy, immunotherapy and CAR‑T cell 
therapy (119).

CAR‑T cell technology envisages the production of T 
lymphocytes redirected to express a single‑chain variable 
fragment (scFv) of an antibody to target and eliminate tumor 
cells that overexpress a specific tumor‑associated antigen 
(TA) (120). CAR antigens that have been primarily targeted 
in patients with GBM include EGFR variant III (vIII), HER2, 
IL‑13Rα2, B7‑H3 and NKG2D (51,121‑123). EGFRvIII CAR‑T 
has been explored in several trials but has shown little OS 
benefit. Since CAR‑T cell abundance in the blood is correlated 
with tumor regression, Suryadevara et al (124) have demon‑
strated that greater lymphodepletion induced by TMZ‑dose 
intensified (TMZ‑DI) is required to stimulate the proliferation 
and persistence of EGFRvIII CAR‑T cells in a murine model. 
In light of this, a phase I clinical trial was established that 
involved individuals diagnosed with newly onset GBM, 
utilizing TMZ‑DI as a preconditioning regimen preceding 
CAR‑T cell immunotherapy (NCT02664363). According to 
Brown et al (51), intracranial infusion of IL‑13Rα2 CAR‑T 
cells initially demonstrated GBM regression but ultimately 
resulted in recurrence. In line with this, an ongoing phase I 
trial has been established to study the side effects and mecha‑
nism of IL‑13Rα2 CAR‑T cells when administered alone or in 
combination with the ICIs, nivolumab (anti‑PD‑1 mAb) and 
ipilimumab (anti‑CTLA‑4 mAb), in treating recurrent GBM 
cases (NCT04003649). As a result, CAR‑T cell therapy for 
GBM will develop; however, several issues must be addressed, 
including TA heterogeneity, T‑cell exhaustion, T‑cell infiltra‑
tion and the tumor immunosuppressive microenvironment.
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Specifically, as demonstrated in the aforementioned 
studies, EGFRvIII CAR‑T cell therapy led to a reduction in the 
number of EGFRvIII‑expressing cells in patients with GBM. 
However, examination of post‑infusion surgical resections 
demonstrated that, although EGFRvIII CAR‑T cells effectively 
penetrated brain tumors, a high level of wild‑type EGFR (wt 
EGFR) expression persisted in the residual tumor (51,123,124). 
To overcome this antigen heterogeneity, Choi  et  al  (125) 
developed a sophisticated modified EGFRvIII CAR‑T cells 
to produce a bispecific T‑cell engager (BiTE) with the aim of 
targeting the residual EGFRvIII‑ GBM cells in mice. BiTE was 
conceived to incorporate two scFvs, one directed against wt 
EGFR and the other to engage and activate T cells by binding 
CD3. BiTEs secreted by EGFRvIII CAR‑T cells were also able 
to recruit local bystander T‑cell effector activity. This platform 
may also apply to other tumor types that have demonstrated 
heterogenous EGFRvIII expression, including medulloblas‑
tomas and breast and ovarian carcinoma.

To overcome the limited efficacy of CAR‑T cells, multi‑
targeting CAR‑T cells were also tested in preclinical GBM 
models. Novel CAR‑T cells were developed to simultane‑
ously target IL‑13Rα2 and EphA2 or HER2 and IL‑13Rα2 
or EGFRvIII and IL‑13Rα2  (126‑128) and have shown 
additive T cell activation and antitumor activity. Trivalent 
CAR‑T (IL‑13Rα2, HER2 and EphA2) products were also 
developed. These CAR‑T cells demonstrated a notably 
improved tumor clearance of autologous orthotopic glioma 
[patient‑derived xenografts (PDXs)] compared with univa‑
lent and bivalent T‑cell products (129). However, to the best 
of our knowledge, no first‑in‑human clinical trials of the 
latter proposed innovation have been listed on clinicaltrials.
gov at present.

One of the cutting‑edge therapeutic approaches to stimu‑
late the immune system against solid tumors is the use of 
T‑cell bispecific antibodies (TCB). TCBs are engineered to 
incorporate binding sites for CD3ε of the T‑cell receptor and 
a TA. For instance, EGFRvIII‑TCB was developed against 
EGFRvIII, which is upregulated solely in GBM and is absent 
in healthy tissues (130). Peripheral infusion of EGFRvIII‑TCB 
induced a strong antitumor activity in orthotopic humanized 
and PDX GBM models (130). The favorable preclinical data 
supported the use of this molecule in a first‑in‑human clinical 
trial (NCT05187624) in patients with newly diagnosed or 
recurrent GBM.

There are also currently ongoing clinical trials using the 
immune checkpoint inhibitor, lymphocyte activating 3 (LAG‑3) 
mAb, alone or in combination regimens (NCT02658981 and 
NCT03493932). Unfortunately, immunotherapy using ICIs 
for the treatment of GBM still has drawbacks, such as high 
toxicity and poor efficacy (131).

The shortcomings in clinical outcomes underscore the 
imperative to pinpoint targets that can enhance the antitumor 
activity of CD8+ T‑cells, suggesting that T‑cell dysfunction 
may impact the GBM microenvironment. Ye  et  al  (132) 
reported that the adoptive transfer of CD8+ T cells with 
protein disulfide isomerase family A member 3 (PDIA3), 
α‑1,6‑mannosylglycoprotein 6‑β‑N‑acetylglucosaminyltransf
erase, epithelial membrane protein 1 or LAG‑3 gene editing 
enhances the survival of GBM‑bearing mice. In summary, it 
was shown that mutant human CD8+ T cells PDIA3‑/‑EGFRvIII 

CAR‑T cells compared with wt EGFRvIII CAR‑T cells 
enhanced killing of the GBM cell line, U87‑EGFRvIII.

Although myeloid cell infiltration in the colorectal carci‑
noma (CRC) TME does not appear to be immunosuppressive, 
but instead is associated with a favorable clinical course of the 
disease (133,134), the presence of myeloid cells in the TME of 
GBM and most epithelial tumors, including renal cell carci‑
noma, is immunosuppressive (135,136).

Marked T cell dysfunction in GBM has also been demon‑
strated in two studies, which indicates why there is little 
antitumor immunity in GBM. Gangoso et al  (136) demon‑
strated that GBM cells develop myeloid‑like transcriptional and 
epigenetic programs in response to the immune microenviron‑
ment, which serves as a means of immune evasion. Another 
notable study by Ravi et al (137), explained the relationship 
between the release of the immunosuppressive cytokine, 
IL‑10, from CD163+HMOX1+ myeloid cells in the GBM 
microenvironment and effector T‑cell exhaustion and dysfunc‑
tion. Ravi et al  (137) discovered that chemically depleted 
myeloid cells caused T cells to produce more Granzyme B and 
less IL‑10 and, based on these findings, the authors treated a 
patient with recurrent GBM with ruxolitinib, an inhibitor of 
the Janus kinase/STAT pathway, in a neoadjuvant setting in an 
effort to partially rescue the immunosuppressive environment. 
These studies provide insights into potential future thera‑
peutic strategies that enhance T cell activation by decreasing 
immunosuppressive programs, beyond the use of CAR‑T cell 
technology.

9. Conclusions

Multiple factors contribute to the poor prognosis of GBM 
and its resistance to current treatments, which include: i) The 
heterogeneity of GBM, which limits the options and efficacy 
of targeted therapies; ii) the pro‑tumorigenic role of the TME, 
which activates resistance to radiation and chemotherapy 
in GBM; and iii)  the low immunogenicity of GBM, which 
impedes a robust immunological response. In addition, the 
treatment for GBM incurs significant costs without providing 
an effective cure. Consequently, there is a pressing medical 
need for more effective treatments. To effectively address this 
lethal disease, future treatment approaches are needed that 
involve a combination of targeted local and systemic therapies, 
rather than relying on a single strategy.

Recurrences of GBM most typically occur within or 
near the resection cavity. Focusing therapeutic interventions 
directly on the tumor cavity has the potential of enhancing 
treatment effectiveness. Although LT for GBM has garnered 
attention, numerous innovative strategies are still in develop‑
ment. A combination of different approaches, such as dual 
targeting, should be considered. The exploration of post‑oper‑
ative implants holds particular appeal when compared with 
conventional chemotherapies for four reasons: i) LT allows the 
start of bridging therapy between surgery and conventional 
standard treatments; ii) LT implants offer the advantage of 
circumventing the BBB, allowing consideration of various 
chemotherapeutic agents and establishing a reservoir of active 
molecules in close proximity to the pathology; iii) the local‑
ized administration of active molecules results in limited 
systemic toxicity; and iii) given the complexity of GBM and 
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the potential for multi‑targeting, employing ligands specific 
to various components of the TME could yield a synergistic 
effect in treatments. This innovative approach could revolu‑
tionize GBM treatment, offering new hope to patients and 
medical professionals alike.

Before the WHO 2021 classification, all investigations 
regarding LT and GBM were partially representative, 
adding bias and reducing the generalizability of results in 
the context of subsequent molecular discoveries. Prior clas‑
sifications did not include extensive molecular and genetic 
profiling that currently separates a number of GBM subtypes. 
This oversight could mean that the patients or data selected 
for downstream analysis did not fairly represent the range of 
GBM cases, potentially distorting study findings. To ensure 
more accurate and inclusive research, it is beneficial and 
essential to reinterpret historical data in light of the new 
classification and define future prospective studies in this 
challenging clinical setting.
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