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Helicobacter pylori strains carry a range of mutations in genes that confer antimicrobial
resistance and restrict the available options to treat the infection. Latin America is a region
that conserve a large number of indigenous communities relatively isolated that practice a
traditional medicine without consumption of drugs. We hypothesized that rates of
antibiotic resistance are lower in these communities. Recent progress in whole-genome
sequencing has allowed the study of drug susceptibility by searching for the known
mutations associated with antibiotic resistance. The aim of this work was to study trends
of antibiotic resistance over a 20-year period in Mexican H. pylori strains and to compare
susceptibility between strains from Mexican mestizos and from indigenous population; we
also aimed to learn the prevalence of mutational patterns in genes gyrA, gyrB, rdxA, frxA,
rpsU, omp11, dppA, and 23S rRNA and its association with phenotypic tests. Resistance
to clarithromycin, metronidazole, amoxicillin and levofloxacin was determined in167 H.
pylori isolates by E-test, and the occurrence of mutational patterns in specific genes was
determined by whole genome sequencing (WGS). The trend of resistance over 20 years in
mestizo isolates showed significant resistant increase for clarithromycin and levofloxacin
to frequencies that banned its clinical use. Resistance in H. pylori isolates of native
communities was lower for all antibiotics tested. Phenotypic resistance showed good to
moderate correlation with genotypic tests. Genetic methods for characterizing antibiotic
resistance require further validation in each population.

Keywords: Helicobacter pylori, antibiotic resistance, whole genome sequencing, phenotype, genotype,
indigenous communities
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INTRODUCTION

Drug resistance is recognized as one of the major threats to
worldwide public health (Laxminarayan et al., 2013). The
problem is a highly pressing issue because of the rapid spread
of multi-drug resistant bacteria, some of which are no longer
treatable with the available antibiotics (Dadgostar, 2019).
Antibiotic resistance is the main risk factor for failure to
respond to treatment of H. pylori infection (Alfizah et al.,
2014). H. pylori is an ancient microorganism that has co-
evolved with man for at least 60,000 years (Moodley et al.,
2012); still, it represents a significant public health issue since
it is the main risk factor for gastric cancer, which is the third
cause of death because of all cancers (Hooi et al., 2017). It is
estimated that over 90% of all cases of stomach cancer are
attributed to H. pylori (Moss, 2017). Eradication treatment
against H. pylori may halt the progression of chronic atrophic
gastritis and intestinal metaplasia, preventing the development of
gastric cancer (Mera et al., 2005; Fuccio et al., 2009).

H. pylori is a small, curved, motile, Gram-negative bacillus
that colonizes the stomach mucosa of more than 50% of the
world population, particularly in developing countries of
Africa, Latin America, the Caribbean and Asia (Sjomina
et al., 2018). In contrast, the lowest prevalence is reported in
Northern America and Oceania, whereas it is declining in Japan
(Leja et al., 2016).

Although there is no global recommendation on the regimen
for eradication of H. pylori, there are regional consensus (e.g.,
European, Latin American, Asiatic) (Rollan et al., 2014;
Malfertheiner et al., 2017; Sheu et al., 2017) that in the last
decades have recommended mostly a “standard” triple therapy
(proton pump inhibitor + clarithromycin + amoxicillin) as the
first choice of treatment. However, during the last years, most of
these regions have reconsidered their recommendations, because
of the increase in resistance to clarithromycin (Thung et al.,
2016). Current recommendations vary among regions because
susceptibility to drugs is different in each geographic area, but
also because of other factors like availability and cost of the
drugs. The most recently recommended drugs for H. pylori
eradication include fluoroquinolones and rifamycin (Goderska
et al., 2018).

The H. pylori strains may carry a range of mutations in genes
that confer antimicrobial resistance and limit the available
options to treat H. pylori infection. Resistance to clarithromycin
is commonly associated to three point mutations in the 23S
ribosomal RNA (rRNA) gene, A2143G (69.8%), A2142G (11.7%),
and A2142C (2.6%) (Thung et al., 2016); whereas other less
frequent mutations include A2115G, G2141A, A2144T, and
T2289C. Mutations C2694A and T2717C have been associated
with low resistance levels (Marques et al., 2020). Other point
mutations have been described in the literature (A1821G,
G1826A, and T1830C, C2245T, G2224A, but their role in
clarithromycin resistance requires confirmation (Rimbara et al.,
2007; Alarcón-Millán et al., 2016; Hashemi et al., 2019). These
mutations prevent the interaction of the macrolide with the 23S
rRNA. The prevalence of H. pylori resistance to clarithromycin
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varies among regions. Reported resistance in West/central and
South Europe is >20%, and in North Europe it is <10% (Megraud
et al., 2013); whereas in strains from Latin American countries the
overall prevalence of resistance is 12%, although frequencies
ranged from 0% to 60% (Camargo et al., 2015).

Reported H. pylori resistance to metronidazole is 33.1% in
Europe and 40% in the USA, whereas higher rates have
been reported in developing countries, with frequencies as
high as 80% (Rollan et al., 2014; Thung et al., 2016);
still, metronidazole is frequently used in eradication regimens
(Fiorini et al., 2018). Mutations in the rdxA gene have
been identified as the main cause of resistance to this drug
(Goodwin et al., 1998). Although it has been found that
mutations in other genes could also influence resistance to
metronidazole, including frxA, mdaB, omp11, ddpA or rpsU
genes, and genes involved in transcription regulation of rdxA
or in overexpression of hfA efflux pump; although additional
studies are required to clearly demonstrate their association
with metronidazole resistance (Alba et al., 2017; Saranathan
et al., 2020). H. pylori resistance to amoxicillin has remained
low worldwide, with reported frequencies of <2% in European
countries (Thung et al., 2016) and 6.6% in Bangladesh
(Nishizawa and Suzuki, 2014). Amoxicillin binds to penicillin
binding proteins (PBP) interfering with peptidoglycan
synthesis causing lysis of replicating bacteria and resistance
is mainly associated with mutations in the pbp genes
(Nishizawa and Suzuki, 2014). Resistance to fluoroquinolones
has been determined in a few countries, with rates of 3.3% in
France, 34.5% in China, 31.9% in the USA (Thung et al., 2016)
and 40% in Venezuela (Lopez Gasca et al., 2018). Levofloxacin
is a 3nd generation fluoroquinolone currently suggested for
H. pylori eradication (Malfertheiner et al., 2017); it inhibits
DNA gyrase and topoisomerase and mutations in the
gyrA gene are associated with resistance (Nishizawa and
Suzuki, 2014).

Rates of antibiotic resistance may also vary within countries,
where differences in drug exposure may be observed within
communities. Latin America is a region that conserve a large
number of indigenous communities that have remained
relatively isolated and often practice a traditional medicine
without consumption of drugs. We hypothesized that rates of
antibiotic resistance are lower within these communities. In
Mexico, approximately 7% of the Mexican population (over 7
million Mexicans) speak a native language. These ethnic groups
have different economic development and lifestyles with little
access to medical services (Romero-Hidalgo et al., 2017).

Recent technical progress in whole-genome sequencing has
allowed the study of drug susceptibility by searching for the
known mutations associated with resistance; this approach may
led to the discovery of novel mutations responsible for antibiotic
resistance. The aim of this work was to compare the susceptibility
to antibiotics inH. pylori strains isolated in a mestizo community
versus isolates from indigenous populations. We also aimed to
evaluate the performance of resistance detection by genome
sequencing as compared with the phenotypic detection,
measuring susceptibility in agar plates.
February 2021 | Volume 10 | Article 539115

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Camorlinga-Ponce et al. Antimicrobial Resistance of Mexican H. pylori
MATERIALS AND METHODS

Bacterial Strains
A total of 167 H. pylori strains isolated during the period from
1997 to 2017 were studied, 111 strains were isolated from
biopsies of Mexican mestizo adults with non-atrophic gastritis,
intestinal metaplasia, gastric cancer, and duodenal ulcer. Biopsy
specimens were cultured as previously described (Avilés-Jiménez
et al., 2012). All patients were seen at the Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro Social in
Mexico City. The study was approved by the ethical committee
from the Instituto Mexicano del Seguro Social. In addition, 56 H.
pylori strains previously isolated from Mexican indigenous
people were included (Camorlinga-Ponce et al., 2011). All H.
pylori organisms were stored at −70°C until tested.

Phenotypic Characterization of
Antimicrobial Susceptibility
The antimicrobial susceptibility of H. pylori to amoxicillin,
clarithromycin, levofloxacin, and metronidazole was
determined using the Epsilometer test (E test) (Torres et al.,
2001), a test that whereas is not considered as the reference
methods, it is commonly used for a number of antibiotics in
different bacteria. A recent study reported a good agreement for
levofloxacin, clarithromycin, and metronidazole when compared
with the agar dilution method, considered as the gold standard
(Miftahussurur et al., 2020). H. pylori isolates were grown for 2
days on Columbia blood agar plates (Becton Dickinson, New
Jersey, USA) and growth suspended in Columbia broth to
achieve a McFarland opacity of 3. Bacterial suspension was
spread on Muller Hinton agar medium with 5% of sheep blood
(Becton Dickinson, New Jersey, USA) and the E-test strips
(Liofilchem, Roseto degli Abruzzi, Italy) were placed on the
plate and incubated at 37°C for 72 h with a 10% CO2

atmosphere (Nuaire, Plymouth, Minn). The MIC was defined
by the point of intersection of the inhibitory zone with the strip.
MIC values were defined according to the clinical breakpoints
proposed in the sixth version of the EUCAST (European
Committee on Antimicrobial Susceptibility Testing, EUCAST,
9th version, 2019) for H. pylori. The cutoff values for resistance
were >8 mg/L for metronidazole, >0.125 mg/L for amoxicillin, >1
mg/L for levofloxacin, and >0.5 mg/L for clarithromycin. Two
reference strains were used as controls, H. pylori ATCC 43504
with MICs for clarithromycin, amoxicillin, metronidazole, and
levofloxacin of 0.016, 0.016, 64, and 0.064 mg/L, respectively and
strain H. pylori 26695 with MICs for clarithromycin, amoxicillin,
metronidazole, and levofloxacin of 0.98, 0.94, 0.75, and 0.32
mg/L, respectively.

DNA Extraction and Sequencing
Genomic DNA was extracted from 93 H. pylori strains using the
DNeasy Mini kit (Qiagen, Hilden, Germany) according to the
manufacturer's instructions. Nine isolates were sequenced with
the HiSeq 2000 platform (Illumina, San Diego, CA, USA) using
the paired-end method, as previously described (Muñoz-
Ramıŕez et al., 2017). The remaining isolates were sequenced at
the Weimer laboratory at the University of California, Davis,
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(USA) within the 100K Pathogen Genome Project (Weimer,
2017). Isolates (65) were sequenced using Illumina HiSeq2500
(Weis et al., 2016; Draper et al., 2017). While 19 were done using
Pacific Biosciences as previously described (Kong et al., 2014).
PacBio reads were processed with the SMRT Analysis package
(version 1.3). Genomes were assembled de novo by using the
hierarchical genome assembly process (HGAP) and polished
using Quiver to obtain final consensus assemblies. For the
Illumina paired-end 150 reads, we tested k-mers lengths from
31 to 121 using the VelvetOptimiser script (version 2.2.4)
(Zerbino and Birney, 2008). The k-mer length that produced
the best assembly according to the N50 contig was used to
generate the final assemblies using ABySS (version 2.0.2)
(Simpson et al., 2009) (Supplementary Table 1).

Identification of Mutations in
Resistance-Associated Genes
Genomic variations were identified in genes conferring antibiotic
resistance: 23S rRNA for clarithromycin; rdxA, frxA, rpsU,
omp11, and dppA for metronidazole; pbp1, pbp2, pbp3 for
amoxicillin; and gyrA and gyrB for levofloxacin. First, open
reading frames (ORFs) were predicted from de novo assemblies
by a genomic annotation using the Prokka software v1.12
(Seemann, 2014) and the proteome of the 26695 strain
(NC_000915) as primary source. Then, genomic coordinates of
ORFs were used to extract the entire sequence of target genes.
Sequences were then aligned according to genes of the 26695
reference strain (GeneBank accession number U27270.1) using
muscle v3.8.31 (Edgar, 2004) and SNPs were called from
alignments using SNIPPY (v.4.6.0) (Page et al., 2016) (https://
github.com/tseemann/snippy) following the parameters:
minimum coverage 20X, a minimum base quality score of 30
and a proportion for variant evidence of 0.9. Mutations were
considered according to SNIPPY outputs and visualized using
Artemis v18.1.0 (Carver et al., 2012) or MEGAS's sequence editor
(Tamura et al., 2013).

Statistical Analysis
The sociodemographic variables were analyzed as follows, gender
and clinical diagnosis were compared with the Kruskal-Wallis test.
To compare frequency of resistance to antibiotics between the
different periods of isolation the X2 linear trend was used.
Frequency of resistance to one or more antibiotics among the
study populations was analyzed by means of X2; ORs (Odds Ratio)
and their 95% confidence intervals were also estimated. In all
cases, a p-value <0.05 was considered as statistically significant.
RESULTS

Characteristics of the H. pylori
Strains Studied
Table 1 describes the characteristics of the patients from whom
H. pylori strains were isolated. A total of 167 H. pylori strains
were included in this study, of these, 111 were isolated from
Mexican mestizos (mean age, 48.7 ± 14.2 years; 34 males and 77
February 2021 | Volume 10 | Article 539115
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females). The clinical diagnosis in these patients were chronic
gastritis, pre-neoplastic lesions, gastric cancer and duodenal
ulcer. 56 H. pylori strains from Mexican indigenous people
were also studied, all individuals with chronic gastritis (mean
age 41.63 ± 20.0 years; 21 males and 35 females).

Antimicrobial Susceptibility
Analysis of the antimicrobial susceptibility of the 167 isolates
reveled high resistance for metronidazole (58.6%), and moderate
to levofloxacin (18.5%) and clarithromycin (8.9%), while
only 1.8% were resistant to amoxicillin. We next analyzed the
trend of resistance over a 20-year period for the mestizo isolates
(Figure 1 and Table 2) and found a constant increase from 1997
to 2017 for clarithromycin (1.85%–32.2%, p=0.000) and
levofloxacin (9.2%–58.1%, p= 0.000). In contrast, resistance to
metronidazole tend to decrease (73%–51.6%); whereas for
amoxicillin resistance was not detected during 1997–2011 but
was already present in 6.5% of the 2017 isolates.

Compared with the mestizo strains, resistance among the
isolates of native communities was lower for metronidazole
(39.3%), very low for clarithromycin and amoxicillin (1.8% for
both) and absent for levofloxacin (0%) (Table 2). Among all the
167 H. pylori strains tested, 30.5% were susceptible to all four
antibiotics tested, which corresponded to 15.3% of the mestizos
and 66% of the indigenous communities (Table 3). Among all
studied strains 56% were resistant to at least one antibiotic and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
interestingly, 65% of the mestizo vs. 37% of the indigenous
strains presented this pattern. Finally, multidrug resistance
was also higher in mestizo (18.9%) than in indigenous
strains (1.7%) (Table 3). Among the multi-resistant mestizo
strains, dual resistance to metronidazole/levofloxacin was
more frequently observed (16.2%), followed by resistance to
clarithromycin/metronidazole/levofloxacin in 4.5% of the
tested strains. Resistance to both metronidazole/levofloxacin
rose from 7.4% in 1997 to 1999 to 32% in 2017. A high
resistance rate of 25.8% was detected for clarithromycin/
metronidazole among H. pylori isolates from mestizos. No
strain was resistant to the four antibiotics tested. Of note,
among the strains of indigenous origin, only one isolate
presented double resistance (clarithromycin/metronidazole).

Mutation Analysis in the Resistance Genes
Of the 167 strains included in the study, 93 strains (74 mestizos
and 19 indigenous) were whole-genome sequenced, 84 in this
study and 9 reported previously (Muñoz-Ramıŕez et al., 2017)
(Supplementary Table 1). Seven of these 93 strains were
phenotypically resistance to clarithromycin; of these, one
presented the A2146G (formerly A2142G) amino acid variant
and four presented the variant A2147G (formerly A2143G)
(Table 4); whereas among the 86 sensitive strains two
presented variants reported associated with resistance. In this
analysis we checked for mutations in the two copies of the 23S
FIGURE 1 | Trends of Antimicrobial resistance in H. pylori strains isolated
from Mexican mestizos during the period 1997–2017.
TABLE 2 | Antimicrobial resistance of H. pylori strains isolated from Mexican mestizos over a period of 20 years and from native populations.

Years aClarithromycin No (%) bMetronidazole No (%) Amoxicillin No (%) cLevofloxacin No (%)

Mestizo population n=111
1997–1999(n = 54) 1(1.85) 41(75.9) 0.0 5(9.2)
2006-2011(n=26) 3(11.5) 19(73.0) 0.0 8(30.8)
2017 (n=31) 10(32.2) 16(51.6) 2(6.5) 18(58.1)

Native community
2002–2004(n=56) *1 (1.8) **22 (39.3) ***1 (1.8) 0.0

Total N=167 15(8.9) 98(58.6) 3(1.8) 31(18.5)
February 2021 | Volu
aX2 for linear trend = 15. 87, p = 0.0007; bX2 for linear trend = 4.89, p = 0.026; cX2 for linear trend = 23.15; p = 0.0000.
*X2 = 5.33, p = 0.02, OR = 7.93 (1.01 – 62.0) mestizo vs native populations; **X2 = 13.07, p = 0.0002, OR = 3.35 (1.72 – 6.55) mestizo vs native populations; ***Fisher Exact = 0.7,
OR = 1.00 (0.89 – 11.37) mestizo vs native populations.
TABLE 1 | Characteristics of patients from whom H. pylori was isolated in
Mexico during 1997–2017.

Time Period Total Mestizo population Native community
1997–2017 1997–2017 2002–2004

No of strains n=167 n=111 n=56
*Age
Age, mean(SD) 50.72 (14.27) 48.7(14.2) 41.63 (20.03)

**Gender
Male, n(%) 48 (28.7) 34 (30.6) 21 (37.5)
Female, n(%) 119 (71.2) 77 (69.4) 35 (62.5)

Diagnosis
Gastritis 119 63 56
Pre-neoplastic 18 18 0
Lesions
Gastric cancer 23 23 0
Duodenal ulcer 7 7 0
*t = - 3.03; p = 0.003.
**X2 = 0.795; p = 0.37 OR = 0.74 I. C. 95% = (0.38–1.45).
me 10 | Article 539115
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rRNA operon present in H. pylori. For levofloxacin, among the
93 strains 22 were resistant and 17 presented amino acid variants
in position 87 and 91 of GyrA (Table 4); however, 14 of the 71
sensitive also presented these variants. The most common
variant found in GyrA was N87I, whereas amino acid variants
in GyrB were in two resistant strains but present in four of the 71
sensitive isolates.

Regarding metronidazole, there are no reports on mutations
clearly associated with resistance, accordingly, we describe all the
observed mutations. Mutations in rpsU leading to variants A11T
and G9S were found in resistant strains (Table 4); the A11T
mutants had a MIC >256 to metronidazole. Two isolates
sensitive to metronidazole presented the mutation R36G in
rpsU. In addition, we detected mutations in omp11, but the
significance of this finding is unclear because mutations were
found in both, strains resistant and sensitive to metronidazole
(Table 4). In gene dppA mutations in I485L, Q382E, and 37del
were present only in strains resistant to metronidazole.

A considerable number of mutations was found in rdxA and
amino acid variants were as much as 64 (Table 5), 32 present
only in resistant strains, 22 present in both resistant and sensitive
and 10 present only in sensitive strains. Besides the 64 non-
synonymous mutations in rdxA we also found six frameshifts,
three nonsense mutations, 32 missense mutations, and stop
codons were observed in resistant isolates in positions 13, 26,
37, 72, 73, and 76. Similarly, in FrxA we found no amino acid
variants clearly associated with metronidazole resistance, amino
acid variants were present only in three resistantH. pylori strains,
TABLE 3 | Patterns of antibiotic sensitivity of H. pylori strains isolated from indigenous and mestizo communities in Mexico.

Ethnic origin of H. pylori strains

Resistance Indigenous n=56 (%) Mestizo n=111 (%) All n=167 (%) OR (95% CI)

Sensitive to four antibiotics 34 (66.6) 17 (15.3) 51 (30.5) 13.6 (6.6–27.7)
Resistance to one antibiotic 21 (37.5) 73 (65.7) 94 (56.3) 0.31 (0.16–0.61)
Resistance To > 2 antibiotics 1 (1.7) 21 (18.9) 22 (13.2) 0.07 (0.01–0.59)
February 2021 | Volume 10
OR, Odds Ratio.
TABLE 4 | H. pylori mutations in genes associated with phenotype resistant to
Clarithromycin, Levofloxacin, and Metronidazole.

Resistant No (%) Sensitive No (%)

Clarithromycin n=10 n=100
23S rRNA
A2142G 3(30) 0
A2143G 0 1(1)
A2146G 2(20) 1(1)
A2147G 2(20) 1(1)

Levofloxacin n=32 n=78
GyrA
N87T 4(12.5) 7(8.9)
N87K 6(18.8) 3(3.8)
N87I 8(25.0) 5(6.4)
T62I 0 1(1.2)
D91G 1(3.1) 1(1.2)
D91Y 1(3.1) 2(2.5)
N87T-D91G 1(3.1) 0
D91N 1(3.1) 4(5.1)

GyrB
D481E 0 2(2.5)
D481G 0 1(1.2)

0
Metronidazole n=78 n=32
rpsU
A11T 3(3.8) 0
G9S 3(3.8) 0
R36G 0 3(9.3)

omp11
V148I 12(15.3) 12(37.5)
T13A 24(30.7) 31(96.8)
TABLE 6 | Amino acid variants present in FrxA of H. pylori strains resistant or sensitive to metronidazole.

3 amino acid variants present only in resistant H. pylori strains L52I, A85V, E169A

13 amino acid variants present only in sensitive H. pylori strains V7I, A16T, A32V, , I44V, R58G, K60R, V81L, D91N, N110D, N124S, A152V, E169A, E176K

14 amino acid variants present in both sensitive and resistant H. pylori
strains

L33M, A67T, A70G, L71I; F72S, T110S, N110H, F114Y, M125F, N129T, S130D, E176K,
N182D, C193S
TABLE 5 | Amino acid variants present in RdxA of H. pylori strains resistant or sensitive to metronidazole.

33 amino acid variants present only in
resistant H. pylori strains

K2R, Q11X, R14K, H17Y, H25R, E27T, 30SR, A37V, S45N, Q50R, M56V, T58I, L62S, K63Q, S81L, P106D, P106S, V111A,
P115R, A118S, C140R,C140G, S158M, G163D, G163V,K168R, A193V, K168R, A193V, E194G, A206T, I207T

10 amino acid variants present only in
sensitive H. pylori strains

H53R, A69Y, P96L, V123T, S158G, R176H, D205A, A206E, I207E, T208L

22 amino acid variants present in both
sensitive and resistant H. pylori strains

Q11H, R16G, R16H, T31E, T32A, M56I, D59N, A67V, R90K, H97Y, H97T, G98S, A118T, S128G, R131K, G170S, V172I,
E175Q, A183V, C184R, Q197K, V204I.
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14 were present in both sensitive and resistant strains and 13
present only in sensitive strains (Table 6).

Evaluation of the Performance of Genetic
Tests to Detect Antibiotic Resistance
To measure the efficacy of molecular detection of resistance, we
estimated the concordance of phenotype vs. genotype using the
reported antibiotic resistance associated mutations for
clarithromycin and levofloxacin and all found mutations for
metronidazole (Table 7). Performance for clarithromycin had a
substantial agreement (K = 0.69), which is as good as in reports
from other populations (Farzi et al., 2019; Tshibangu-Kabamba
et al., 2020); we found two resistant strains with no mutation in 23S,
suggesting that in our population other mechanisms are responsible
for this phenotype. Thus, 23S genotyping might be recommended
for clarithromycin resistance in H. pylori strains from our
community. Regarding levofloxacin, genotyping of gyrA and gyrB
had a moderate agreement (K = 0.49). Previous studies identified
amino acid variants in positions 87 and 91 of GyrA associated with
highMIC values for levofloxacin (Lopez Gasca et al., 2018; Hanafiah
et al., 2019; Tuan et al., 2019). Genotyping of gyrAmight not be an
alternative to determine levofloxacin resistance if phenotypic tests
are not available. For metronidazole, rdxA and frxA turned out to be
highly variable genes with an unusual number of SNPs, and no
single mutation clearly associated with resistance resulting in a slight
agreement (<0.2); genotyping of rpsU, dppA, rdxA, or frxA is not an
option to identify metronidazole resistant strains. Regarding
amoxicillin, we found a reduced number of resistant strains and
those strains presented no mutations in PBPs. Mutations in
resistance-associated genes increased after the period 1997 to 1999
as observed in the periods 2002 to 2011 and 2017 (Table 8),
particularly for 23S rRNA, gyrA, and dppA genes.
DISCUSSION

In 2017, H. pylori was categorized by the WHO as a bacterium
with high antibiotic resistance that poses an important risk to
human health (Dang and Graham, 2017). H. pylori antibiotic
resistance is the main factor affecting the success of current
therapeutic regimens and alternatives for suitable antibiotics to
treat this infection are becoming limited. Clarithromycin and
amoxicillin are the antibiotics of the standard triple therapy, still
in use in many regions for the of eradication H. pylori (Suzuki
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
et al., 2019). However, the resistance to these antimicrobials has
increased rapidly during the last decade in several countries
(Ogata et al., 2013; Miftahussurur et al., 2016; Park et al., 2016).

We aimed to study the pattern of antibiotic resistance in
Mexican mestizo population over a period of 20 years. During
this period, we found a significant increase in the rate of resistance
to clarithromycin and levofloxacin and moderate to amoxicillin;
while resistance to metronidazole decreased. Resistance to
clarithromycin was low in the first year of the survey, but after 20
years, it increased to levels that banned its clinical use; similar
findings have been reported in Taiwan (65%) (Wu et al., 2015),
Chile (31.2%) (Gonzalez-Hormazabal et al., 2018) and Brazil
(19.5%) (Ogata et al., 2013). Based on our studies, the most
recent Mexican consensus no longer recommends the standard
triple therapy forH. pylori eradication (Bosques-Padilla et al., 2018).

Over the 20-year study period, the resistance to metronidazole
decreased from 75% to 51.6%, a significant reduction that might be
related to the fact that its previous widespread use (to treat diarrhea,
parasitic infections or gynecological disorders), which favored the
selection of resistant strains, has been drastically reduced in the last
decades, particularly after the act that commanded written
prescription to get antibiotics (Vázquez Tsuji Óscar, 2010). The
current 51% rate of resistance is similar to that reported in Alaska
(44%), but lower than China (56.6%), Vietnam (69.9 and %), and
Colombia (83%) (Ierardi et al., 2013; Camargo et al., 2015).

After failure of the standard triple therapy, the Maastricht
IV guidelines recommended levofloxacin as a salvage
TABLE 7 | Analysis of correlation between antibiotic resistance phenotype and
genotype.

Antibiotic Genotype Phenotype Kappa

S R

Clarithromycin S 97 3 0.67 (0.85–0.91)
R 3 3

Levofloxacin S 53 1 0.5 (0.66–0.71)
R 27 29

Metronidazole S 32 27 0.29 (0.47–0.52)
R 10 32
TABLE 8 | Mutational analysis in genes involved with antibiotics resistance of
Mexican H. pylori strains isolated over a period of 20 years.

1997-1999 n=39 2002-2011 n=40 2017 N=31

23S rRNA
n=7
A2146G 1(14.2) 3(42.8)
A2147G 1(14.2)

Levofloxacin
n=22
GyrA
N87T 0 1(4.5) 0
N87K 1(4.5) 3(13.6)
N87I 2(9) 4(18.1)
D91G 1(4.5)
D91Y 1(4.5)
N87T-D91G 1(4.5)
D91N 2(9) 1(4.5)

Metronidazole
n=59
rpsU
A11T 1(1.6) 1(1.6)
G9S 3(5)

Omp11
V148I 5(8.4) 4(6.7) 2(3.3)
T13A 8(13.5) 9(15.2) 3(5)

dppA
37del 1(1.6) 3(5)
I485L 4(6.7)
I485V 3(5) 4(6.7)
A212E 12(20.3) 8(13.5)
Q382E 3(5)
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therapy (Malfertheiner et al., 2017) and other countries even
suggested levofloxacin as first line therapy (Heo and Jeon, 2014;
Liou et al., 2016). We found that in Mexico, resistance to
levofloxacin rise from 9% to 58% in a 20-year period; a 10%
resistance has been suggested as the threshold to use levofloxacin
as empiric first line therapy (Thung et al., 2016). Levofloxacin
was clinically useful at the beginning of the survey, but now it is
useless to eradicate H. pylori infection in mestizo population.
This work is the first report on levofloxacin resistance inH. pylori
in Mexico, but several studies have reported high levofloxacin
resistance in Europe and Asia (Megraud et al., 2013; Alfizah et al.,
2014; Smith et al., 2014; O’Connor et al., 2015). In Mexico a
recent clinical trial compared the utility of triple therapy with
clarithromycin versus levofloxacin and found a poor efficacy
with both treatments with eradication rates close to 60%
(Ladrón-de-Guevara et al., 2019). Quinolones have been widely
used to treat urinary tract infections and other infections in
Mexico, and the observed high resistance in H. pylori strains is
most probably the result of exposure when other infections are
treated. Studies reporting antibiotic resistance over a period of
years are scarce in Latin America, our work clearly show a sharp
increase in resistance to clarithromycin and levofloxacin and also
the worrying appearance of resistance to amoxicillin. These
pronounced changes in susceptibility are an indication of the
need to monitor patterns of resistance, particularly in countries
with high prevalence of the infection, including the Latin
American region (Curado et al., 2019). The resistance rates to
clarithromycin, metronidazole, and levofloxacin have increased
over time globally, which agrees with studies presenting evidence
of an association between antibiotic consumption and antibiotic
resistant in H. pylori infection (Megraud et al., 2013; Camargo
et al., 2015). In Mexico clarithromycin, amoxicillin and
metronidazole are antibiotics commonly used to treat other
infections, which would also favor this increase in resistance.
Therapies including levofloxacin are currently recommended;
however, in H. pylori isolates from 2017, we found levofloxacin
resistance in 58% and multiresistance to metronidazole and
levofloxacin of 32%, discarding their clinical use for
this infection.

A second aim of this study was to contrast the antimicrobial
susceptibility to the most commonly used antibiotics in Mexican
H. pylori strains isolated from two ethnically different groups.
We found that H. pylori strains from mestizo population
presented higher drug resistance than isolates from native
communities. Native communities in Mexico usually follow its
cultural customs including traditional medicine where the use of
antibiotics is limited (Guzman-Rosas, 2016). It is probably the
limited exposure to these drugs the cause of reduced
antimicrobial resistance, a positive correlation that not always
is observed. There are no reports on the treatment to eliminate
H. pylori infection in native Mexican people. Our hypothesis was
further strengthened with the observation of absence of
resistance to levofloxacin an antibiotic that hardly reach these
communities. As mentioned above, the most recent Mexican
consensus no longer recommend triple therapy (Bosques-Padilla
et al., 2018) based on susceptibility patterns in mestizo
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
populations. Our results suggest triple therapy may still be an
effective treatment in native communities and call the attention
to differences between populations that must be taken into
account when working in consensus for regions with both
mestizo and native communities. This is regionally important
since most Latin American countries still have indigenous
populations (Adhikari et al., 2016).

Bacteria use two major genetic strategies to adapt to the
exposure of antibiotics. One is mutations in genes associated
with mechanism of action of the drugs and the second is
incorporation of resistance gene by acquisition of foreign
DNA via horizontal transfer (Munita and Arias, 2016; Tuan
et al., 2019). Several reports have identified mutations in the
genome of H. pylori involved in resistance to clarithromycin,
fluoroquinolones, and metronidazole. Sequencing of the
H. pylori genome is increasingly more available and less
expensive and offers a unique opportunity to identify known
and novel mutations in genes associated with resistance to
antibiotics. Experimentally confirmed mutations can then be
identified using even simpler and cheaper techniques, some
commercially available and designed for use with biopsy
tissues without the need to isolate H. pylori (Poel et al., 2019;
Pichon et al., 2020). However, this is only possible after a
thorough confirmation of the specific association with
resistance in different regions of the world.

H. pylori resistance to clarithromycin is frequently due to
point mutation in the 23s rRNA gene and prevalence of these
mutations varies geographically even between populations in
the same country (Kageyama et al., 2019). In Chinese patients,
prevalence of A2143G was 10%–14% (Savoldi et al., 2018;
Zhuoqi et al., 2008) and in Malaysian strains it was 90.5%
(Alfizah et al., 2014). Furthermore, in Iran A2143G was highly
frequent in clarithromycin resistant strains (68.7%) and
A2142G was low (5.6%) (Keshavarz et al., 2015); similarly,
A2142G was low (9.5%) in H. pylori resistant strains from
Malaysia (Alfizah et al., 2014), whereas in Brazil A2147G
variant was the most common (77.8%) (Martins et al., 2006).
We found good correlation between phenotypic resistant to
clarithromycin and mutations in 23s rRNA, mainly because the
reported mutations were present in resistant strains and mostly
absent in sensitive strains. There were however strains resistant
to clarithromycin but without mutations in 23s rRNA
suggesting the presence of other mechanism of resistance in
H. pylori in our population.

Resistance to levofloxacin is given by non-synonymous
mutations in a region of gyrA or gyrB, determining resistance
to quinolones. Amino acid substitutions in GyrA have been
described in positions 91 (D91G, N, A, Y, or H) and 87 (N87L, I,
A, or K) (Zerbetto De Palma et al., 2017) in addition to other
substitutions in GyrB. 87 and 91 substitutions are the more
frequently described, suggesting their presence might predict
resistance to fluoroquinolones (Zerbetto De Palma et al., 2017;
Lopez Gasca et al., 2018). In Colombia an important increase in
fluoroquinolone resistance from 2009 to 2014 was reported,
mostly associated with mutations in gyrA, with N87I being the
most common variant (Wang et al., 2010; Trespalacios et al.,
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2015). In our study, we did not find any substitution in GyrA
exclusively present in resistant strains and in fact the
performance of molecular detection of mutants was moderate
in our population, mainly because of the frequent presence of the
described resistant-associated variants in sensitive strains.
Limiting the test to the detection of variants in position 87 of
GyrA increase concordance but sensitivity is still low (detecting
in 77% of resistant strains). gyrB mutation (S479G) was
identified in two H. pylori resistant strains, indicating that gyr
B has no impact on fluoroquinolone resistance in our population.
Our results agree with previous reports from Kuala Lumpur and
Iran (Hanafiah et al., 2019; Tuan et al., 2019).

Resistance to metronidazole involves the inactivation of
the rdxA gene that catalyzes the reduction of metronidazole
(Tuan et al., 2019). A number of studies have reported amino
acid variants in RdxA present only in metronidazole resistant
strains (Marais et al., 2003; Butlop et al., 2016). In this study
we found amino acid variants in RdxA that were associated
exclusively with metronidazole resistant strains in over 50% of
the resistant isolates; however, these variants were as much as
32 and none was present in more than 5% of resistant isolates.
In addition, 32 other variants were present either in both
sensitive and resistant strains or only in sensitive isolates.
Thus, it is not a surprise the low concordance found with
molecular and phenotypic detection; in addition, considering
the large number on mutations in the rdxA gene it seems
that molecular detection of resistance is not an option for
metronidazole. Furthermore, six metronidazole-resistant
strains contained stop codons at position 13, 26, 37, 72, 73, 73;
different from those reported previously in positions 2, 50,
and 52 (Butlop et al., 2016). We found a number of amino
acid variants present only in resistant H. pylori isolates.
Sustitutions in rpsU (A11T) and dppA (I485L, 37del) were
found to be present only in resistant isolates however, the
role of these variants in resistance to metronidazole remains to
be elucidated because we had a high percentage of resistant
strains that did not present any of the studied mutations, whereas
other mutations were present in both sensitive and resistant
strains. The comparison between the phenotypic and genotypic
methods is reported for different authors in various countries
and with diverse results (De Francesco et al., 2010; Tuan et al.,
2019; Mascellino et al., 2020). Mascellino et al, reported good
correlation genotype-phenotype among H. pylori resistant to
levofloxacin but not in clarithromycin resistant strains
(Mascellino et al., 2020). While Tuan et al. (2019) reported
excellent genotype to phenotype agreement for clarithromycin
and good agreement for levofloxacin and amoxicillin but no
agreement for metronidazole.

We have to keep in mind that other mechanisms of
metronidazole resistance have been described, including
mutations in frxA, dapF, and efflux proteins (Miftahussurur
et al., 2016) (Table 8).

In this study, we showed that in Mexican H. pylori strains
there was an important increase in resistance to clarithromycin
and levofloxacin and appearance of resistant to amoxicillin
during a period of 20 years, which has important clinical
implications. We also report a significantly lower frequency of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
antibiotics resistance in H. pylori strains from native
communities. Finally, we found good to moderate performance
of genetic test to detect antibiotic resistance; thus, molecular
methods for characterizing resistant genes require further
validation in each population.
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