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Glycoprotein nonmetastatic melanoma protein B (GPNMB) is involved in various cell
functions such as cell adhesion, migration, proliferation, and differentiation. In this study,
we set forth to determine the role of GPNMB in systemic sclerosis (SSc) fibroblasts.
Dermal fibroblasts were isolated from skin biopsies from healthy subjects and patients
with diffuse cutaneous (dc)SSc. GPNMB was upregulated in dcSSc fibroblasts compared
to normal fibroblasts, and correlated negatively with the modified Rodnan skin score. In
addition, dcSSc fibroblasts secreted higher levels of soluble (s)GPNMB (147.4 ± 50.2 pg/
ml vs. 84.8 ± 14.8 pg/ml, p<0.05), partly due to increased ADAM10. sGPNMB
downregulated profibrotic genes in dcSSc fibroblasts and inhibited cell proliferation and
gel contraction. The anti-fibrotic effect of sGPNMB was at least in part mediated through
CD44, which is regulated by histone acetylation. TGFb downregulated GPNMB and
decreased the release of its soluble form in normal fibroblasts. In dcSSc fibroblasts,
GPNMB is upregulated by its own soluble form. Our data demonstrate an anti-fibrotic role
of sGPNMB in SSc and established a role for the ADAM10-sGPNMB-CD44 axis in dermal
fibroblasts. Upregulating GPNMB expression might provide a novel therapeutic approach
in SSc.
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INTRODUCTION

Systemic sclerosis (scleroderma, SSc) is an autoimmune disease that affects the immune and
vascular systems, and causes fibrosis in multiple organs. Current treatment options for this disease
are limited, predominantly relying on immune suppression with the goal to slow down disease
progression. Progressive organ fibrosis, specifically in the lungs, is the leading cause of death in SSc
org February 2022 | Volume 13 | Article 8145331
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(1). Fibrosis, which is commonly caused by fibroblast activation,
is a pathogenic condition characterized by myofibroblast
transformation, increased collagen/extracellular matrix (ECM)
production, and reduction of ECM turnover.

Glycoprotein nonmetastatic melanoma protein B (GPNMB),
also known as osteoactivin or dendritic cell-associated heparan
sulfate proteoglycan-integrin ligand (DC-HIL), is a highly
glycosylated protein that is localized on cell membranes or
stored in endosomes and lysosomes (2). It is widely expressed
in many cell types and has a wide array of functions that are
critical for various physiological and pathological processes.
Many of these functions are also mediated by its soluble form,
which is produced by cleavage of the membrane-bound GPNMB
by metalloproteinases such as ADAM10 (3). In stromal cells,
soluble (s)GPNMB has been shown to mediate its effect through
engaging with CD44, a transmembrane glycoprotein involved in
cell-matrix or cell-cell interactions (2).

GPNMB has been implicated in tissue remodeling and repair
processes after tissue injury. Although it is associated with tumor
progression and metastasis, its’ role appears to be protective in
tissue homeostasis. It has been reported that GPNMB limits
inflammation and favors protection in the bone and brain (4–6).
In tissue repair, macrophage-derived sGPNMB promoted wound
healing by recruiting mesenchymal stem cells (7). Interestingly,
GPNMB overexpression in transgenic animals was protective
against diet-induced liver fibrosis (8). Soluble GPNMB was also
able to activate signaling pathways and induced matrix
metalloproteases in fibroblasts (9). Considering its effect on
wound healing and fibrosis, in this study we determined the
function of GPNMB in SSc fibrosis in patient-derived dermal
fibroblasts. We also established the regulatory network for
sGPNMB in these cells.
MATERIALS AND METHODS

Subject Enrollment
Both healthy individuals and patients with diffuse cutaneous SSc
(dcSSc) (10) were recruited. This study was approved by the
University of Michigan Institutional Review Board. Characteristics
of the enrolled study participants are summarized in Table 1.
Frontiers in Immunology | www.frontiersin.org 2
Cell Culture
Dermal fibroblasts were isolated from punch biopsies obtained
from healthy subjects and dcSSc patients as previously described
(11–13). Cells between passages 3 and 6 were maintained in
RPMI supplemented with 10% fetal bovine serum (FBS)
and antibiotics.

Enzyme‐Linked Immunosorbent
Assay (ELISA)
The levels of sGPNMB in cell culture supernatants and plasma
were measured using an ELISA kit from R&D Systems.
Absorbance at 450 nm in each well was read using a
microplate reader. Cell culture media were changed to RPMI
with 1% FBS and cultured for 48 hours before they were collected
for analysis.

qRT-PCR
Extraction of total RNA was done using the Direct-zol™ RNA
MiniPrep Kit (Zymo Research) followed by cDNA synthesis
using the Verso cDNA Synthesis Kit (Thermo Fisher).
Quantitative PCR was performed using a ViiA™ 7 Real-Time
PCR System. Primers for GPNMB, CD44, COL1A1, ACTA2,
ADAM10, and ACTB were used in this assay.

Western Blots
Cells grown in 6-well plates were lysed in RIPA buffer containing
protease inhibitors. The blots were probed with antibodies
against collagen I (COL1, Abcam), a-smooth muscle actin
(aSMA, Abcam), ADAM10 (Novus), CD44, and GPNMB
(both from Cell Signaling Technology). For loading control,
the blots were immunoblotted with antibodies against b-actin
(Sigma) or GAPDH (Cell Signaling Technology). Band
quantification was performed using ImageJ (14).

Immunofluorescence Staining
Cells were fixed in 4% formalin and blocked. They were then
probed with anti-GPNMB antibodies (R&D Systems). Alexa
Fluor antibodies (Invitrogen) were subsequently used. The
nuclei were stained using DAPI (Invitrogen). Fluorescence was
detected using a Nikon A1 confocal microscope. Visualization
and analysis of images were performed using the ND2 reader
plugin in ImageJ.

Cell Treatment and Transfection
Dermal fibroblasts from dcSSc patients were treated with 0.01-
100 ng/ml of sGPNMB (R&D Systems) for 72 hours. In separate
experiments, fibroblasts were treated with BET inhibitor JQ1
(1µM, Cayman Chemicals) or HDAC inhibitor Panobinostat
(1µM, Selleck Chemicals) for 48 hours. To knockdown CD44 in
dcSSc dermal fibroblasts, small interfering RNA (siRNA)
towards human CD44 (1 µM, Accell siRNA, Dharmacon), was
used. Scrambled siRNA (Dharmacon) was used as a control. The
cells were transfected for 96 hours before downstream
experiments were performed. To induce a myofibroblast
phenotype, normal dermal fibroblasts were treated with TGFb
(10 ng/ml) for 72 hours. Inhibition of ADAM10 was achieved by
TABLE 1 | SSc patients and healthy controls characteristics.

dcSSc (n = 51) Healthy volunteers (n = 41)

Age (years) 58 (49-67)a 52 (38-72)a

Sex F35/M16 F27/M14
Disease duration (years) 2 (1-4)a N.A.
Modified Rodnan skin score 18 (12-26)a N.A.
Raynaud’s phenomenon 49 N.A.
Early disease (< 5yrs) 48 N.A.
Interstitial lung disease 33 N.A.
Pulmonary arterial hypertension 12 N.A.
Immunosuppressives 42 N.A.
aMedian (Interquartile range).
N.A., Not applicable.
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incubating the cells with 10 µM of GI254023X (Cayman
Chemical) for 48 hours.

Cell Proliferation Assays
The IncuCyte® Live-Cell Imaging System was used to monitor
cell proliferation. Cells were seeded at 5,000 cells/well and
allowed to grow overnight. After adding sGPNMB at different
concentrations (0-100 ng/ml), cells were monitored by
IncuCyte®. Cell counts were analyzed by the IncuCyte® S3
Analysis software.

Gel Contraction and Cell Migration Assays
The Cell Contraction Assay Kit (Cell Biolabs) was used to examine
gel contraction by sGPNMB treatment. Gels were lifted after 24
hours and the areas of the gels were quantified using ImageJ (14).
For wound healing, we performed a scratch wound assay using the
IncuCyte® Live-Cell Imaging System. Fibroblasts were grown to
confluence and a wound gap was created using the IncuCyte®

Woundmaker. After washing the cells, culture media with
sGPNMB (0-100 ng/ml) was added. Cell migration was
monitored and analyzed by IncuCyte® S3 Analysis software.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
To determine the differences between groups, Mann–Whitney U
test, Wilcoxon test, Kruskal–Wallis test, or two-way ANOVA
were performed using GraphPad Prism version 8 (GraphPad
Software, Inc). Pearson or Spearman correlation coefficient were
used for correlation analysis. P values of less than 0.05 were
considered statistically significant. Results were expressed as
mean ± SD.
RESULTS

GPNMB Expression in SSc
We observed significant elevation of GPNMB mRNA and
protein levels in dcSSc fibroblasts compared to controls
(Figures 1A, B). In addition, we found that GPNMB protein
levels were negatively correlated with the modified Rodnan skin
score (MRSS, Figure 1C), and positively correlated with disease
duration (Figure 1D). GPNMB levels were also negatively
correlated with the MRSS at the biopsy site (r=-0.495, p=0.06).
To visualize the cellular location of GPNMB in dermal
C
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B

FIGURE 1 | GPNMB, CD44, and ADAM10 expression in normal and dcSSc fibroblasts. (A) GPNMB mRNA levels were significantly upregulated in dcSSc
fibroblasts compared to healthy controls, while CD44 and ADAM10 levels were similar. (B) At the protein level, differences in CD44 did not reach statistical
significance, while GPNMB and ADAM10 were significantly increased in dcSSc fibroblasts. (C) GPNMB protein levels in dcSSc fibroblasts negatively correlated with
the modified Rodnan skin score (MRSS). (D) GPNMB protein levels in dcSSc fibroblasts positively correlated with disease duration. (E) Immunofluorescence staining
of GPNMB in both normal and dcSSc fibroblasts showed that GPNMB was widely expressed in the cytosol. In dcSSc fibroblasts GPNMB showed prominent
staining at the plasma membrane. (F) The soluble form of GPNMB was significantly higher in culture media from dcSSc fibroblasts compared to healthy controls.
(G) Serum levels of sGPNMB were similar between healthy controls and dcSSc patients. n=number of subjects. Results are expressed as mean +/- SD and p < 0.05
was considered significant.
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fibroblasts, we performed immunofluorescence in both normal
and dcSSc fibroblasts. It appears that GPNMB is localized to the
cytoplasm in dermal fibroblasts, possibly within lysosomal or
endosomal compartments. In addition, prominent staining of
GPNMB on the plasma membrane of dcSSc fibroblasts was
observed (Figure 1E). Since GPNMB can be cleaved by
ADAM10 into a soluble form, we also measured sGPNMB in
culture media. We found that dcSSc fibroblasts produced
significantly higher amounts of sGPNMB than normal
fibroblasts (Figure 1F). In plasma samples, we did not observe
any differences in sGPNMB levels between healthy individuals
and dcSSc patients (Figure 1G).

The Anti-Fibrotic Effect of sGPNMB in
dcSSc Fibroblasts
Since dcSSc fibroblasts release significantly higher levels of
sGPNMB, we examined the effect of sGPNMB on dcSSc
fibroblasts. We found that sGPNMB significantly reduced
fibrotic markers including COL1 (at 1 and 10 ng/ml) and
aSMA (at 0.01-10 ng/ml) in dcSSc fibroblasts (Figure 2A).
This was also shown at the mRNA level; sGPNMB, in
concentrat ions between 0.1-10 ng/ml, s ignificantly
downregulated COL1A1 and ACTA2 (Figure 2B). In addition,
sGPNMB dose-dependently inhibited proliferation in dcSSc
Frontiers in Immunology | www.frontiersin.org 4
fibroblasts (Figure 2C) while it had minimal effect on cell
migration (Figure 2D). In the gel contraction assay, sGPNMB
at concentrations of 10 and 100 ng/ml significantly relaxed
contraction, as shown by the increase in gel surface area
(Figure 2E). These results suggest that sGPNMB is anti-
fibrotic in dcSSc dermal fibroblasts.

sGPNMB Activates CD44 Upon Being
Cleaved by ADAM10 in dcSSc Fibroblasts
It has been reported that sGPNMB is produced by cleavage of its
membrane form by ADAM10, thereby acting on osteoclasts,
mesenchymal stem cells, and adipocytes by engaging with a
transmembrane glycoprotein CD44 (2, 3, 15). CD44 and
ADAM10 were expressed in both normal and dcSSc fibroblasts
(Figures 1A, B). There were no differences in CD44 levels
between normal and dcSSc fibroblasts, while ADAM10 was
significantly increased in dcSSc fibroblasts at the protein level
(Figure 1B). As the sGPNMB-CD44 axis in dermal fibroblasts
has not been previously explored, we examined whether CD44
knockdown in dcSSc fibroblasts affects the anti-fibrotic effects of
sGPNMB. We found that knockdown of CD44 in these cells led
to significant downregulation of COL1A1 while it had no effect
on ACTA2 (Figure 2F). sGPNMB did not downregulate COL1A1
and ACTA2 in CD44 knocked down cells compared to cells
B C

E F
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A

FIGURE 2 | sGPNMB inhibits SSc fibrosis in vitro. (A) sGPNMB significantly reduced COL1 and aSMA expression in dcSSc fibroblasts at various doses. (B)
sGPNMB downregulated COL1A1 and ACTA2 at the mRNA level in dcSSc fibroblasts. (C) sGPNMB significantly reduced cell proliferation of dcSSc fibroblasts at a
dose-dependent manner. Cell growth was monitored by IncuCyte® Live-cell imaging. (D) Migration of dcSSc fibroblasts was not significantly affected by sGPNMB.
Cell migration was monitored by IncuCyte® Live-cell imaging. Wound confluence indicates the number of cells migrated into the wound gap. (E) Gel contraction by
dcSSc fibroblasts was inhibited by sGPNMB at various doses. (F) The anti-fibrotic effect of sGPNMB was absent in CD44 knocked down dcSSc fibroblasts, as
shown by COL1A1 and ACTA2 levels. n=number of subjects. Results are expressed as mean +/- SD and p < 0.05 was considered significant.
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transfected with control siRNA. While the change of COL1A1 at
baseline made it difficult to interpret the effect of sGPNMB on
collagen production, the effect of sGPNMB on ACTA2 was clear,
confirming that CD44 is indeed a cell surface receptor
for sGPNMB.

TGFb Downregulates GPNMB
and CD44, While Upregulates
ADAM10 in Normal Fibroblasts
To investigate the mechanisms that regulate the expression of
GPNMB, CD44, and ADAM10 in dermal fibroblasts, we
stimulated normal dermal fibroblasts with TGFb to induce a
myofibroblast phenotype. As shown in Figure 3A, TGFb
significantly downregulated both GPNMB and CD44 mRNA
levels, but had no effect on ADAM10. Similarly, at the protein
level, both GPNMB and CD44 were downregulated by TGFb
Frontiers in Immunology | www.frontiersin.org 5
(Figure 3B). As for ADAM10, TGFb appears to stimulate its
expression, in particular the precursor form. We further
examined whether TGFb affects the soluble form of GPNMB.
As shown in Figure 3C, TGFb treatment in normal fibroblasts
for 3 days significantly reduced sGPNMB release from these cells.
In addition, inhibition of ADAM10 by GI254023X significantly
lowered sGPNMB to a greater extent.

sGPNMB Forms a Positive Feedback Loop
in dcSSc Fibroblasts
To further examine the mechanism involved in elevated GPNMB
levels in dcSSc fibroblasts, we examined the effect of sGPNMB on
GPNMB, CD44, and ADAM10 in these cells. Interestingly,
sGPNMB induced GPNMB in dcSSc fibroblasts and suppressed
CD44. sGPNMB had minimal effect on ADAM10 expression
(Figure 4A). At the protein level, sGPNMB indeed induced
B

C

A

FIGURE 3 | Effect of TGFb on GPNMB, CD44, and ADAM10 in normal dermal fibroblasts. (A) TGFb significantly downregulated both GPNMB and CD44 in normal
fibroblasts, but had minimal effect on ADAM10 expression. (B) At the protein level, significantly lower levels of GPNMB and CD44 were observed after TGFb
treatment. In contrast, ADAM10, specifically the precursor form, was significantly upregulated by TGFb. (C) The soluble form of GPNMB was significantly lower in
culture media from TGFb-treated fibroblasts. Inhibition of ADAM10 by GI254023X (GI) further reduced the amount of sGPNMB in culture media. n=number of
subjects. Results are expressed as mean +/- SD and p < 0.05 was considered significant.
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GPNMB expression but had minimal effect on CD44 and
ADAM10 (Figure 4B). These results suggest that sGPNMB has
the ability to regulate its own expression. The elevated levels of
GPNMB in dcSSc fibroblasts are potentially caused by a self-
induced positive feedback loop.

CD44 Is Regulated by Histone Acetylation
in dcSSc Fibroblasts
To determine whether CD44 is regulated by epigenetic
mechanisms, we extracted histone 3 lysine 27 acetylation
(H3K27ac) ChIP-seq data from ENCODE generated using
normal human dermal fibroblasts (NHDF). There was
increased peak intensity of H3K27ac at the promoter region of
CD44 (Figure 4C). We then treated dcSSc fibroblasts with a pan-
HDAC inhibitor (Panobinostat) or a BET histone reader
inhibitor (JQ1). CD44 expression was elevated significantly by
both inhibitors, suggesting that CD44 expression is indeed
regulated by histone acetylation in these cells (Figure 4D).
DISCUSSION

In this study, we found a novel anti-fibrotic mediator in SSc.
sGPNMB was capable of inhibiting the myofibroblast phenotype
Frontiers in Immunology | www.frontiersin.org 6
of dcSSc fibroblasts, including fibrotic markers, cell proliferation,
and gel contraction properties. We also determined the molecular
mechanisms involved in GPNMB expression and function in
dermal fibroblasts (Figure 5). In normal fibroblasts, TGFb
downregulates GPNMB and CD44, and increases ADAM10,
which is able to cleave off the soluble form of GPNMB from cell
membranes. In dcSSc fibroblasts, increased amounts of ADAM10
cleave off high levels of sGPNMB, which then act via CD44, and
subsequently downregulate COL1 and aSMA, and exert an anti-
fibrotic effect. At the same time, sGPNMB forms a positive feedback
loop in promoting its own expression. The futile anti-fibrotic effect
of GPNMB in dcSSc fibroblasts, therefore, might be due to the
suppressive effect of TGFb on GPNMB and its receptor CD44. In
addition, the low levels of sGPNMB released from these cells (pg/ml
range) versus the dose needed (ng/ml range) for the anti-fibrotic
effect might further reduce the anti-fibrotic effect of the sGPNMB-
CD44 axis in SSc.

TheroleofGPNMBin tissuehomeostasis andrepairhasbeenwell
documented. GPNMB is involved in ECM remodeling by inducing
matrix metalloproteinases in fibroblasts (9, 16). Its ability to regulate
immune responses and suppress fibrosis allowed it to promote
regeneration in various injury models such as the muscle and liver
(8, 17, 18). Interestingly the anti-fibrotic effect of GPNMB in part
stems from its function inmacrophages. It is suggested topromote an
B

C D

A

FIGURE 4 | Mechanisms involved in GPNMB and CD44 expression in dcSSc fibroblasts. (A) sGPNMB significantly induced GPNMB expression in dcSSc
fibroblasts and downregulated CD44 expression. sGPNMB had minimal effect on ADAM10 expression. (B) At the protein level, sGPNMB induced GPNMB at 0.1, 1,
and 10 ng/ml while it had no effect on CD44 and ADAM10. (C) Genome browser track of the CD44 locus along with ChIP-seq data for H3K27ac in normal human
dermal fibroblasts (NHDF) generated by the ENCODE project. (D) CD44 levels were elevated after dcSSc fibroblasts were treated with HDAC inhibitor Panobinostat
or histone reader inhibitor JQ1. n=number of subjects. Results are expressed as mean +/- SD and p < 0.05 was considered significant.
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anti-inflammatory phenotype inmacrophages by enhancing theM2
macrophages while inhibiting theM1macrophages (19). Indeed, the
involvement of GPNMB-mediated anti-inflammatory effect on
macrophages was shown in kidney injury, adipose tissue, wound
healing, and fibrosis (7, 19–23). In this study we revealed the novel
anti-fibrotic properties of GPNMB, specifically its’ soluble form, in
dcSSc skin fibroblasts. Considering the critical involvement of
activated macrophages in SSc pathogenesis, the anti-fibrotic effect of
GPNMBmay be more pronounced in this disease if both fibroblasts
andmacrophages were included in the experimental system.

Our study also identified ADAM10 as the metalloproteinase
responsible for the generation of sGPNMB by human dermal
fibroblasts. GPNMB cleavage by ADAM10 was previously
demonstrated in breast cancer cells (3). In our study, we found that
ADAM10was significantly upregulated in dcSScfibroblasts, which is
potentially mediated by TGFb. Our results generated in skin
fibroblasts are consistent with what was shown in lung fibroblasts
by Lagares et al, where TGFb induced ADAM10 expression (24).
Interestingly, ADAM10-mediated proteolytic shedding of ephrin-B2
promoted fibroblast recruitment and activation as well as lung
fibrosis (24). In addition, pharmacological inhibition of ADAM10
by GI254023X prevented bleomycin-induced lung fibrosis in mice.
Although the effect of ADAM10 in SSc fibrosis has not been studied,
the apparent pro-fibrotic effect of ADAM10 in other fibrotic
conditions might imply that the anti-fibrotic effect of the
ADAM10-mediated GPNMB shedding pathway plays a minor role
in the overall pro-fibrotic phenotype observed in SSc due to the
suppressive effect of TGFb upon the sGPNMB-mediated anti-
fibrotic effect.

We also identified CD44 as the receptor through which the
ADAM10-sGPNMB pathway directs its anti-fibrotic properties in
SScfibroblasts.CD44wasfirst implicatedasthereceptorforsGPNMB
byYuetal. (25).TheyshowedthatsGPNMBreleasedbymacrophages
Frontiers in Immunology | www.frontiersin.org 7
stimulated ERK and AKT signaling in mesenchymal stem cells via
engaging with CD44. Similar interaction between sGPNMB and
CD44 was also shown in osteoclasts, astrocytes, and adipocytes (6,
26, 27). We now confirm that CD44 is the receptor for sGPNMB in
skinfibroblasts. Interestingly, thedose-responsecurveofsGPNMBon
gene expression in dcSSc fibroblasts appears to be a U-shaped curve.
This typically occurs in receptor-ligand kinetics. At lower doses
sGPNMB is effective, while at higher doses sGPNMB loses its
stimulatory effect, possibly due to saturation of available CD44 on
the cell surface. This phenomenon was similar to the effect of
sGPNMB observed in keratinocytes (28). The dynamics of different
functional endpoints appear to be different for the effect of sGPNMB.
The maximal effective dose for sGPNMB-mediated gene expression
changes appeared to be around 1 ng/ml. However, for proliferation
and gel contraction assays, the maximum effective dose was around
100ng/ml.At thesehigherdoses, sGPNMBmight require solicitation
of other CD44-partnering proteins to mediate its effects.

By engagement with various ligands or colocalizing with many
partnering proteins, CD44 has been shown to be involved in
fibrogenesis and matrix remodeling (29–31). CD44 is critical for
activation of TGFb in a MMP-dependent manner, and also triggers
fibroblast migration (32). CD44-null fibroblasts from acute lung
injury exhibited decreased invasive and adhesive properties (33). In
animal models of renal fibrosis, CD44 knockout mice had lower
collagen levels, myofibroblast transformation, and TGFb signaling
(34). All of this points to a pro-fibrotic role of CD44. However
conflicting results were observed in atherosclerotic and lung fibrosis
models (35, 36). These results imply that the role of CD44 in fibrosis
might be tissue and injury dependent. Interestingly, we showed that
CD44 knockdown in dcSSc fibroblasts produced significantly lower
levels of COL1A1. This might indicate that CD44, perhaps by
engaging or partnering with other proteins, is pro-fibrotic in SSc.
The role ofCD44 inSScfibrosis requiresmore in-depth examination.
FIGURE 5 | Summary of this study. In normal fibroblasts, ADAM10 cleaves off the soluble form of GPNMB. TGFb downregulates GPNMB and CD44, and
upregulated ADAM10. In dcSSc fibroblasts, increased amount of ADAM10 cleaves off high levels of sGPNMB, which acts through CD44, and subsequently
downregulates COL1A1 and ACTA2 and exerts an anti-fibrotic effect. At the same time, sGPNMB forms a positive feedback loop to promote its own expression.
CD44 appears to be modulated by histone acetylation in dcSSc fibroblasts.
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One of the limitations of the study is that only in vitro
findings were shown. Specifically, it is not clear whether
sGPNMB levels in patient skin biopsies were altered. Although
serum sGPNMB levels were similar between healthy controls and
SSc patients, we showed that SSc fibroblasts secrete significantly
higher levels of sGPNMB compared to normal fibroblasts. This
implies that the amount of sGPNMB in the microenvironment in
the skin is more critical than the levels in the circulation. In
addition, we only focused on fibroblasts as a source for sGPNMB.
It is unclear whether other cell types in the skin could shed
sGPNMB. The relative contribution of each cell type to sGPNMB
production, as well as the interaction of these cells in the context
of the action of sGPNMB would be of interest in future studies.
CONCLUSION

We identified a new pathway that inhibits myofibroblast activation
in SSc, which involves cleavage of GPNMB by ADAM10 to
generate soluble GPNMB that signals through CD44. Our data
suggest that the anti-fibrotic effect of sGPNMB is suppressed by
TGFb in SSc. Enhancing sGPNMB production might provide a
novel anti-fibrotic and therapeutic approach in SSc.
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