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Abstract: Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague
and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in
duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox
system, have been employed in the present study to show that two new sites at UL55-LORF11 and
UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable
expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a
bivalent vaccine candidate with the potential of protecting ducks simultaneously against major
viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and
DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5
loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus,
confirming that the insertion of the foreign gene into these did not have any detrimental effects on
DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic
gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way
to introduce other antigens into the DEV genome for multivalent vector.

Keywords: Cre-Lox; CRISPR-Cas9; duck enteritis virus; fowl cholera; NHEJ; Pasteurella multocida;
viral vector

1. Introduction

There are numerous diseases that affect and cause substantial mortality to duck
populations all over the world. Fowl cholera, caused by the bacterium Pasteurella multocida,
and duck virus enteritis (DVE), also known as duck plague caused by duck enteritis virus
(DEV), have been recognized and studied for many years and remain important diseases
affecting ducks [1]. Available vaccines showed variable results in protecting ducks against
fowl cholera in natural outbreaks [2,3]. The outer membrane protein H (OmpH), a major
membrane protein of the P. multocida envelop [4] and a cross protective antigen among
avian P. multocida strains [5–7], incorporated into flow cholera vaccine candidate, provided
the strong protective immunity against P. multocida in chickens [5,6,8,9], ducks [10,11], and
cattle [12,13]. Meanwhile, the live attenuated DEV vaccines are widely used for reduction
of diseases impact in ducks [3]. The whole genomes of DEV are approximately 158 kbp
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in length and contain 78 predicted open reading frames (ORFs) of putative proteins [14].
Due to its large genome and limited host range, DEV has been exploited as a vector for
development of recombinant multivalent vaccines [15–18]. In Thailand, the attenuated DEV
Jansen strain, from embryonated chicken eggs, has been routinely used as live vaccines in
ducks for over half a century. In a comparison of the genome sequences DEV Jensen and
2085 strain with partial sequences, NCBI BLAST showed 100% identity among two open
reading frames (ORFs) in the LORF11 (GenBank accession no. JQ430740.1) and LORF3
(GenBank accession no. JQ43078.1) across both strains. The whole genome of the 2085 strain
(GenBank accession no. JF999965.1) was represented the genome of the Jensen vaccine
strain in this study.

Virus vector vaccines have advantages over traditional vaccines through the induc-
tion of both cellular and humoral responses, enabling differentiation between infected
and vaccinated hosts [19]. Viral vectored vaccines, particularly using vectors, such as
adenovirus, herpesvirus, and poxviruses, are used widely in veterinary medicine [20–24].
Several approaches have been applied for the construction of recombinant DEV vaccine
candidates against poultry viruses. These include the traditional methods of homologous
recombination, or vector engineering approaches using bacterial artificial chromosome
(BAC) and fosmid systems [25]. However, many of these methods for generating recom-
binant DEV are often less efficient, time-consuming, and labor-intensive, especially due
to the requirement of several rounds of plaque purification and transfer vector cloning
procedures [19]. Recent advances in genome editing using clustered regularly interspaced
short palindromic repeats associated protein nuclease 9 (CRISPR/Cas9) have helped in the
rapid insertion of foreign antigens into the genomes of several viruses [19,25–30]. Com-
pared with traditional methods, CRISPR/Cas9 editing also provides an opportunity to
produce multivalent recombinant vaccines for simultaneous protection against major avian
diseases [19,25,27–29,31]. The programmable nuclease Cas9, directed by a single-guide
RNA (sgRNA), can introduce double-strand breaks (DSBs) in target sites of genomic DNA.
Then, there are two key methods used for gene insertion: NHEJ (non-homologous end
joining) and HDR (homology-directed repair pathway) [32]. Although HDR is attractive
because of its high fidelity [33], mammalian cells preferentially employ NHEJ over HDR
as NHEJ is active throughout the cell cycle, whereas HDR is restricted to S/G2 phases.
NHEJ is also faster than HDR, and it is also known to suppress the HDR process [34]. The
combination of CRISPR/Cas9 and Cre–Lox recombination techniques provides a powerful
and versatile system to excise pre-determined LoxP sites, allowing the excision of specific
genetic fragments and selectable markers [26,35]. Through its simplicity and effectivity,
CRISPR/Cas9 technology has shown to be beneficial for gene modification and provides
an alternative to recombinant vaccine construction.

The strategy the duck industry needs is to develop a combination of live attenuated
vaccines to induce simultaneous protection against multiple diseases through the reduced
administration of a multivalent vectored vaccine at reduced cost to improve poultry welfare.
Previously, the effectiveness of mixed immunization against P. multocida and DEV was
demonstrated [10]. However, new recombinant vaccines with the potential of inducing
stronger humoral and cellular immune responses against these major pathogens are im-
portant. This study was aimed to identify new insertion site(s) in DEV genome (Jansen
strain) for the stable expression of foreign genes using the advanced NHEJ-CRISPR/Cas9
and Cre-Lox system. We also evaluated the effect of insertion sites on the stable antigen
expression and growth ability of the recombinant virus that are needed for the further
development of a recombinant DEV vaccine that can simultaneously express ompH gene
of P. multocida for simultaneous protection against virus-bacterial co-infection. The study
also evaluated the choice of insertion site on antigen expression and growth ability of the
vector virus.
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2. Materials and Methods
2.1. Cell Culture and Virus

Primary chick embryo fibroblasts (CEF), from 10-day old embryos, were prepared and
maintained in M199 medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 5% fetal bovine serum (FBS, Sigma, St. Louis, MO, USA), 100 units/mL of penicillin
and streptomycin (Thermo Fisher Scientific), 0.25 mg/mL Fungizone (Sigma), and 10%
tryptose phosphate broth (Sigma).

DEV Jansen strain, obtained from the Bureau of Veterinary Biologics Department of
Livestock Development, Ministry of Agriculture and Cooperative Thailand, was used for
the construction of the DEV recombinant candidate and DEV wild type.

2.2. Construction of sgRNAs Plasmid

The individual single guide RNA (sgRNA) targeting each region of the DEV genome,
totalling 9 sgRNA targeting sites, was designed using CRISPR guide RNA designing soft-
ware (http://crispor.tefor.net/org, accessed on 9 December 2019). Each sgRNA target
sequence has ruled out any possible off-target sequences and cloned into the CRISPR/Cas9
vector pX459-v2 (Addgene plasmid #62988, Cambridge, MA, USA) by introducing synthe-
sized oligo-DNA primers corresponding to the target sequence into BbsI cloning sites. The
sg-A sequence was taken from published data [28] and cloned into px459-v2 in the same
way. All sgRNA targeting sequences in DEV genome shown in Table 1.

Table 1. The sgRNA lists and target sequences in DEV * for generation recombinant virus.

sgRNA ID Target Sequences PAM Gene Locus

sgA GAGATCGAGTGCCGCATCAC CGG SgA
g2 CAAGACAGACAAGTATTGCT TGG Between UL 15 & UL 18
g3 TGCGTAATTTCATAACCAAA AGG Between UL 21 & UL 22
g4 ATTTACGTCCTCGGGGGAGG GGG Between UL 3.5 & UL 4
g5 TTATTTCAAATATTAGTGTG AGG Between UL 7 & UL 8
g6 TTGGTAATCAAGAGTTTACT GGG Between UL 40 & UL 41
g7 GACTATGTAAAGACAGTCGA CGG Between UL 55 & LORF 11
g8 GTTTGCAATCCTTTATACAT TGG Between SORF3 & US 10
g9 GCACAACTTCAAAAATGATG GGG Between UL 44 & UL 44.5

g10 ACAACCTCTTCATATTAGAT AGG Between UL 50 & UL 51
* Genbank accession number: JF999965.1.

2.3. Construction of the Donor Plasmid Containing the GFP-OmpH-V5 Expression Cassette

To generate a donor plasmid containing the ompH-V5 expression cassette tagged with
a removable GFP reporter cassette shown in the Figure 1, the oligo pairs GFP-SgA-F and
GFP-SgA-R (containing sg-A target sequence at both ends, a PacI site flanked with two
LoxP sequences for GFP reporter cassette cloning and excision in the middle, and two SfiI
sites for the cloning of the ompH-V5 expression cassette) were annealed and cloned into
the pGEM-T-easy vector. Then, the GFP expression cassette was released by PacI restriction
digestion from pEF-GFP and cloned into the resulting vector via the PacI cloning site,
generating donor plasmid called pGEM-SgA-LoxP-GFP. Meanwhile, for the construction of
ompH-V5 expression cassettes, we first cloned two SfiI sites into pcDNA3.1(+) via NdeI
and PmeI by annealing the oligo pairs SfiIx2-F and SfiIx2-R generating pcDNA3.1(+)-SfiI.
The ompH sequence (Accession No: U50907.1) tagged with V5 was synthesized into pTwist
vector (Twist Bioscience, San Francisco, California, USA). Then, the ompH-V5 cassette
was released from pTwist-OmpH-V5 and cloned into pcDNA3.1(+)-SfiI by NotI restriction
sites generating pcDNA3.1(+)-OmpH-V5. Finally, the ompH-V5 expression cassette was
transferred into pGEM-sgA-LoxP-GFP via SfiI, generating a complete donor plasmid called
pGEM-sgA-LoxP-GFP-OmpH-V5. The primer sequences used for guide RNA cloning and
donor plasmid construction are listed in Table 2. The plasmid DNA preparation of the

http://crispor.tefor.net/org
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donor plasmid, SgA and Cas9/gRNA expression plasmid DNAs, were extracted using a
commercial DNA extraction kit (Qiagen) according to the manufacturer’s instructions.

Figure 1. A schematic representation of the cloning strategy for donor plasmid construction contain-
ing the OmpH-V5 expression cassette tagged with a removable GFP reporter cassette.

Table 2. Primer sequences used for sgRNA plasmid and donor plasmid construction.

Primer Sequences

GFP-SgA-F

GAGATCGAGTGCCGCATCACCGGATAACTTCGTATAATGTA
TGCTATACGAAGTTATTTAATTAAATAACTTCGTATAATGTATG
CTATACGAAGTTATGGCCGCCTAGGCCGGCGCGCCGTTTAAA

CGGCCATTATGGCCGAGATCGAGTGCCGCATCACCGG

GFP-SgA-R

CCGGTGATGCGGCACTCGATCTCGGCCATAATGGCCG
TTTAAACGGCGCGCCGGCCTAGGCGGCCATAACTTCGTATA
GCATACATTATACGAAGTTATTTAATTAAATAACTTCGTATAG

CATACATTATACGAAGTTATCCGGTGATGCGGCACTCGATCTC

SfiIx2-F CTAGCAAGGCCGCCTAGGCCGGCG
CGCCGTTAAACGGCCATTATGGCCGTTT

SfiIx2-R AAACGGCCATAATGGCCGTTTAACG
GCGCGCCGGCCTAGGCGGCCTTG

gUL21/22-F CACCGGCGTAATTTCATAACCAAA

gUL21/22-R AAACTTTGGTTATGAAATTACGCC

gUL3.5/4-F CACCGTTTACGTCCTCGGGGGAGG

gUL3.5/4-R AAACCCTCCCCCGAGGACGTAAAC

gUL7/8-F CACCGTATTTCAAATATTAGTGTG

gUL7/8-R AAACCACACTAATATTTGAAATAC

gUL40/41-F CACCGTGGTAATCAAGAGTTTACT

gUL40/41-R AAACAGTAAACTCTTGATTACCAC

gUL55/LORF11-F CACCGACTATGTAAAGACAGTCGA

gUL55/LORF11-R AAACTCGACTGTCTTTACATAGTC

gSORF3/US10-F CACCGTTTGCAATCCTTTATACAT

gSORF3/US10-R AAACATGTATAAAGGATTGCAAAC

gUL44/44.5-F CACCGCACAACTTCAAAAATGATG

gUL44/44.5-R AAACCATCATTTTTGAAGTTGTGC

gUL50/51-F CACCGCAACCTCTTCATATTAGAT

gUL50/51-R AAACATCTAATATGAAGAGGTTGTC
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2.4. Generation of Recombinant DEV-GFP-OmpH-V5 by NHEJ-CRISPR/Cas9-Mediated
Gene Insertion

Primary CEF cells were plated into 12-well plates the day before transfection. Hence,
0.25 mg of each sgRNA targeting site and SgA were co-transfected with 0.5 mg donor
plasmid into CEF cells using the TransIT-X2 Dynamic Delivery System (Mirus Bio, Madison,
WI, USA) in accordance with the manufacturer’s instructions. At 24 h post transfection, the
CEF cells were infected with DEV at a multiplicity of infection (MOI) of 0.1 plaque forming
units (pfu)/cell. The infected CEF were harvested 48 h later and continued to the plaque
purification by fluorescence-activated cell sorting (FACS).

For virus plaque purification, CEF cells were washed once with phosphate-buffered
saline (PBS) before the infection with the DEV-OmpH-V5 from stock virus. The inocu-
lum was removed at 2 h post-infection and replenished with either fresh medium or 2%
Minimum Essential Medium (MEM)–agarose overlay.

2.5. Fluorescence-Activated Cell Sorting for Plaque Purification of the Recombinant Virus

Prepare two 96-well plates preseeded with 2 x 104 CEF cells per well the day before
sorting. Then 48 h post-infection, the transfected/infected CEFs were trypsinized, resus-
pend and transfer into a 1.5 mL microcentrifuge tube with 50 µL of FBS. Centrifuge at
200× g for 5 min. Resuspend the cells in 1 mL of PBS with 1% FBS. Count the cell numbers
using a hemocytometer and adjust the number of cells to 1 × 106 cells/mL. After that,
transfer the cells to a polystyrene sorting tube through its strainer cap. Sort the single cells
expressing GFP into 96-well plates seeded with CEFs using the cell sorter according to the
manufacturer’s instruction. Incubate the sorted cells for 3 d at 38.5 ◦C with 5% CO2.

2.6. The Excision of the GFP Cassette from DEV-GFP-OmpH-V5 with Cre Treatment

For the excision of GFP expression cassette using Cre recombinase, 1 mg of pcDNA3-
Cre was transfected into CEF in 12-well plates pre-seeded on the day before. At 24 h post
transfection, the cells were infected with MOI 0.01 of DEV-GFP-OmpH-V5 at 24 h post
transfection [31]. Two days later, the supernatant was kept and used to infect fresh CEF
cells in 6-well plates and then overlayed with 2% agar-MEM to get the plaque without GFP.
The excision of GFP from the virus by Cre recombinase treatment was confirmed by 3′

junction PCR using primer pairs OmpH-3F and LORF11-R, which amplifies the junction
between OmpH cassette and LORF11, and other primer pairs OmpH-3F and UL44-F, which
amplifies the junction of ompH cassette and UL44.. The primer sequences used for PCR
described above are listed in Table 3.

Table 3. Primers used for junction PCR and OmpH *-V5 gene inserted verification.

Primer Sequences

UL55-F GGCGCGAGAAACTAGTGGT
UL55-R CGCGCAAAAAGTAAAGACCCA
UL44-F TTTAGGCGTTTTGCCCGTTC

UL44.5-R GGCTGGAATTTTAACCGGCG
OmpH-3F ACGTGCTCTTGAAGTGGGTT
OmpH-5R GCGAAACCCGCATAAAGACG

Omp-F CAACAGTTTACAATCAAGAC
OmpH-V5-R GCGGCCGCTTACGTAGAATCGAGACCGAG

* Genbank accession number: U50907.1.

2.7. Western Blot Analysis

The expression of OmpH protein in recombinant virus-infected CEF cells was deter-
mined by Western blot analysis using mouse polyclonal anti-OmpH as modified from the
method as described previously [36,37]. Briefly, 2.5 × 106 primary CEF were seeded into
T25 flask the day before infection. The following day, the parental virus and each recom-
binant virus were diluted with growth medium to MOI 0.01 and added to the flask were
then incubated at 38.5 ◦C and 5% CO2. At 48 h post infection, more cytopathic effects (CPE)
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were shown. The infected CEF cells were collected and boiled with TruPAGE LDS sample
buffer (Sigma) for 7 min. The samples were separated on a 4–12% TruPAGETM Precast
Gel, and the resolved proteins were transferred onto PVDF membranes. Immunoblots
were blocked with 5% skimmed milk, then incubated with anti-OmpH primary antibodies
(1:5000 dilution). After probing with primary antibodies, the blots were incubated with
secondary antibody IRDye680RD goat anti-mouse IgG (LI-COR) and visualized using
Odyssey Clx (LI-COR). On the other hand, duck serum positive DEV was used as primary
antibody for DEV loading control using the same strategy.

2.8. Indirect Immunofluorescence Analysis (IFA)

The expression of V5-tag in recombinant virus-infected CEF cells was evaluated by
immunofluorescence assays using immunocytochemistry. CEF cells grown in 24-well
plates were infected with parental virus and each recombinant virus at MOI 0.01 for 48 h
before harvesting. After fixing with ice cold acetone:methanol (1/1) for 10 min, the V5-tag
expression was analysed using monoclonal mouse anti-V5 monoclonal antibody (Bio-
Rad) in dilution 1:1000 followed by rabbit anti-mouse IgG labelled with Alexa Fluor 488
(Invitrogen) in dilution 1:200 to detect V5-tag expression. Moreover, the DEV-infected
cells were detected with anti-DEV polyclonal rabbit serum in dilution 1:200 followed by
goat anti-rabbit IgG labelled with Alexa Fluor 568 (Invitrogen, Waltham, MA, USA) in
dilution 1:200, respectively. The positive stained cell images were taken using an IncuCyte
in 36 separate regions per well per sample.

2.9. Stability of the Inserted Genes in the Recombinant Viruses

The recombinant viruses DEV-OmpH-V5 were grown sequentially in CEF cells for
15 passages. The expression of V5-tag was examined after every 5 passages by IFA and
the integrity of the ompH gene insert was examined using DNA extracted from every
5 passages by PCR with outside primer pairs located at the flanking region of the insertion
site as previously described. The primer sequences used for PCR described above are listed
in Table 3.

2.10. Growth Properties of the Recombinant DEV-OmpH-V5

To determine the growth kinetics of the recombinant DEV-OmpH-V5 compared with
DEV wild type, CEF cells were infected at an MOI of 0.01 of each virus. Then, the super-
natants were harvested at different time points after infection (12 h, 24 h, 48 h, 72 h), and
viral titers were determined by plaque assay.

2.11. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software,
La Jolla, CA, USA). Paired student t-test and one-way ANOVA were used to test differences
between different groups. p values < 0.05 were considered significant.

3. Results
3.1. Targeted Knock-in of GFP-OmpH-V5 Expression Cassette into to Multiple Sites of DEV
Genome Using CRISPR/Cas9 System

We first aimed to determine whether CRISPR-Cas9 system can be used to knock-in
a foreign gene in nine intergenic regions located in the forward and reverse DNA strand
of DEV genome without any potential adverse effects on viral replication. For this, we
attempted to knock-in the GFP-OmpH-V5 expression cassette into nine distinct intergenic
regions of DEV genome using different sgRNA targeting plasmids (Table 1) to examine
the suitability of each insertion site to tolerate the foreign gene expression cassette in the
recombinant DEV vector. After 48 h infection with DEV (0.1 MOI), the number of positive
green plaques or areas of infected cells were analysed using fluorescent microscope as
well as IncuCyte S3 Live-Cell Image analyser. In the determination based on the highest
numbers of GFP-positive green infected cell areas, the sgRNAs targeting the UL55-LORF11,
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followed by UL44-44.5 intergenic regions of DEV genome, appeared to be the most efficient
(Figure 2).

Figure 2. The total positive green cell area measurement with multiple gRNA target sites in first
plaque purification of DEV-OmpH-V5. Error bar = standard error of mean. (* p < 0.05, *** p < 0.001).

Moreover, the GFP-positive DEV plaques generated using the UL55-LORF11 and
UL44-44.5 targeting sgRNAs continued to express GFP after repeated plaque purification
compared to the other sgRNAs where the GFP expression disappeared during plaque
purification. Based on these results, UL55-LORF11 and UL44-44.5 intergenic regions were
selected for the CRISPR/Cas9-based gene editing for the generation recombinant DEV-
OmpH-V5 in this study (Figure 3A). The two individual sgRNAs were designated as
gRNA-7 and gRNA-9, respectively.

Figure 3. Schematic illustration of the recombinant DEV-OmpH-V5. (A) Full-length of the attenuated
commercial DEV vaccine strain used in this study. The scissor icon represents the gRNA targeting
sites in the intergenic region of DEV genome (UL55-LORF11 and UL44-44.5) for OmpH-V5 gene
insertion via CRISPR-Cas9 base gene knock-in. (B) Two portions of the genome selected to insert
fragment of the GFP and the OmpH-V5 expression cassettes released by Cas9/sgA cleavage from
donor plasmid. (C) The recombinant DEV expressing the reporter GFP and OmpH-V5 before the
GFP gene is excised by Cre recombinase. (D) After GFP excision, the recombinant vaccine candidate
terms are DEV-OmpH-V5 of UL 55-LORF11 and UL44-44.5.
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3.2. Generation of Recombinant DEV-GFP-OmpH-V5 Using NHEJ-CRISPR/Cas9-Mediated
Gene Insertion

The donor plasmid that carries the GFP reporter gene cassette flanked by the SgA
target sites [28] was used for the generation of GFP-OmpH-V5 expression fragment for
designed integration. Two plasmids of the SgA for targeting the donor plasmid to release
the insert fragment and gRNA-7 and gRNA-9 for targeting viral genome at UL55-LORF11
and UL44-44.5 intergenic regions, respectively, were cloned into pX459-v2 that expresses
the codon-optimized S. pyogenes Cas9 (Cas9) as a bicistronic mRNA with the puromycin-
N-acetyltransferase gene and the vectors expressing sgRNAs driven by the U6 promoter.
The concurrent cleavage processing of donor plasmid DNA and the viral genome targeted
by Cas9 result in the insertion of the GFP-OmpH-V5 cassette into the UL55-LORF11 and
UL44-44.5 loci, as shown in Figure 3B.

Twenty-four hours post co-transfection of the donor plasmid with SgA and each
Cas9/sgRNA vector, CEF cells were infected with DEV-wild type (DEV-WT) at MOI 0.01.
Observation of GFP positive plaque 48 h post infection indicated successful insertion of
OmpH-V5 expression cassette into the DEV genome. After that, the supernatant and cells
were harvested and used to infect fresh CEF cells for plaque purification. Furthermore, the
single cell fluorescence-activated cell sorting (FACS) technique was also applied to facilitate
virus purification. Through CRISPR/Cas9 mediated recombination, the single cells positive
for GFP signals were sorted into a 96 well plate pre-seeded with CEF cells. The purity
of progeny GFP-positive virus, detected 48 h post-sorting, was confirmed by PCR using
primers specific for the DEV insertion sites (UL55-F & LORF11-R and UL44-F & UL44.5-R).
As shown in Figure 4b, the band specific for the DEV wild type was not detected by PCR in
the sorted population of cells were infected with purified GFP virus. While the larger of
the PCR fragments of GFP-OmpH-V5 cassette did not show in this time causes related to
cycling conditions, this may not be sufficient for longer target sequences. However, this
inserted cassette will be confirmed with 5′ and 3′ junctions in the next step. This purified
recombinant virus is termed DEV-GFP-OmpH-V5, as indicated in the Figure 3C.

The insertion of GFP-OmpH-V5 cassette at each locus was double confirmed by PCR
with 5′ and 3′ junction site-specific primers (Figure 4a) and sequencing of the PCR products.
Positive PCR bands on 3′ junction site were observed in all the samples except DEV-WT
and the H2O negative control (Figure 4c). Moreover, PCR with primers OmpH-F and
OmpH-V5-R confirmed the presence of the full OmpH-V5 insert in each recombinant
DEV-GFP-OmpH-V5 infected CEF (Figure 4d). Details of the primers used are as shown in
Table 3.

Sequencing results revealed that insertion occurred in both sense (UL55-LORF11)
and anti-sense (UL44-44.5) directions. Some of the clones of both insertion sites did show
some indels, but this did not affect the open reading frame of the inserted OmpH-V5
gene expression cassette (data not shown). Taken together, these results demonstrated
the usefulness of the CRISPR/Cas9 system as a powerful tool for the rapid generation of
recombinant DEV.
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Figure 4. Verification of the recombinant DEV-OmpH-V5 by PCR. (a) The name and position of
primers use for verification purification (Square shape) and 5′ and 3′ junction PCR (Oval shape).
(b) The purification of DEV-GFP-OmpH-V5 recombinant virus in each insertion site and DEV wild
type were detected by PCR. The primers pair between each intergenic region of DEV genome labelled
under the panel. (c) 3′ junction PCR verification of DEV-GFP-OmpH-V5 with specific primers in
each site to confirm integration and identification insertion sites. Sense orientation insertion of DEV-
GFP-OmpH-V5 of UL55-LORF11 was detected by primer pair OmpH-3F & LORF11-R and anti-sense
direction of UL44-44.5 was detected by primer pair OmpH-3F and UL44-R. (d) The confirmation
of whole OmpH-V5 gene inserted in each recombinant DEV comparing with DEV wild type was
identified by PCR using primers OmpH-F and OmpH-V5-R. The molecular size of DNA is indicated
in the left lane.

3.3. Excision of the GFP Cassette from DEV-GFP-OmpH-V5 Using Cre Recombinase

Excision of the GFP expression cassette from DEV-GFP-OmpH-V5 virus was achieved
using Cre recombinase expressed from pcDNA3-Cre construct transfected into CEF 24 h
after infection (MOI 0.01) with DEV-GFP-OmpH-V5 virus. GFP-negative virus plaques
could be observed 48 h post infection, with the removal of GFP cassette from more than 70%
of the DEV-GFP-OmpH-V5 virus genome compared to those cells not having Cre plasmid
transfection-infection (Figure 5). Infected tissue culture supernatant virus was harvested
and used to infect fresh CEF cells for further selection and purification of GFP-negative
plaques using overlay with 2% agar-MEM. GFP-negative virus plaques were further picked
up and purified to obtain recombinant virus stocks. The purified recombinant virus stocks
after the excision of the GFP cassettes were further confirmed to have the OmpH-V5
cassette by primers at both ends of each size and junction PCR with specific primers of
each insertion site, as described previously in Figure 4a (data not shown). As expected, the
GFP expression cassette was deleted from the virus stocks while the OmpH-V5 cassette
was retained. The resulting recombinant viruses were redesignated as DEV-OmpH-V5 of
UL55-LORF11 and DEV-OmpH-V5 of UL44-44.5, as indicated in the Figure 3D.
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Figure 5. The Excision of the GFP Cassette from DEV-GFP-OmpH-V5 by Cre-Lox system. Before
Cre plasmid addition, DEV-GFP-OmpH-V5 plaque under were observed under bright-field (1) and
fluorescent microscopy (2). After Cre plasmid treatment (3), this panel shows more than 70% of GFP
cassette was removed from the DEV-GFP-OmpH-V5 virus genome. fluorescent microscopy.

3.4. Characterization of the Recombinant DEV-OmpH-V5 Expressing OmpH-V5 Cassettes

As shown in Figure 6a, lower, the expression of OmpH protein was examined by
Western blotting with anti-OmpH polyclonal mouse antibody using lysates of cells infected
with DEV-WT or each recombinant DEV-OmpH-V5. The recombinant OmpH protein was
used as positive loading control. As expected, the cell lysates from both recombinant
DEV-OmpH-V5 infected cells (loaded in duplicate lanes) demonstrated 39.5 kDa OmpH-V5
protein identical to the positive OmpH protein control, which was absent in the cell lysates
infected with DEV-WT. As shown in Figure 6a, upper, the antibody specific to DEV as a
DEV loading control showed a positive band of all viruses.

Figure 6. Cont.
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Figure 6. Characterization of each recombinant DEV-OmpH-V5 infected CEF cells. (a) Lower panel
shows the expression of OmpH protein was analyzed by Western blot using anti-OmpH polyclonal
antibody. The positive OmpH expression of CEF cell lysate infected with rDEV-Omp-V5 of UL55-
LORF11 (lane 3 and 4) and rDEV-Omp-V5 of UL44-44.5 (lane 5 and 6) were duplicate loaded into each
lean. While CEF cells lysate infected with DEV-WT was loaded into lane 2 for negative control. The
recombinant OmpH protein was loaded in last lane for positive control. The molecular weight was
indicated in first lane. Upper panel shows antibody specific to DEV as a DEV loading control. (b) This
panel shows the confirmation the successful of V5 expression by indirect immunofluorescence assay
(IFA) with anti-V5 monoclonal antibody (green) sequentially strained with DEV-infected mouse
serum (red) for detection of DEV infected-cells. The region of merged images was taken by Incucyte
machine. (c) Upper panels display plaque morphology of DEV wild type, DEV-OmpH-V5 of UL55-
LORF11 and DEV-OmpH-V5 of 44-44.5. Lower graph shows the plaque diameters of CEF cells
infected with recombinant DEVs and DEV wild type were measured at 6 days post infection. (d) The
multi-step growth kinetic curve of recombinant DEVs and DEV wild type infected CEF cells at MOI
0.01. Supernatants were collected and viral titers were determined at the indicated time points
post-inoculation by plaque assay. (p < 0.01).

The expression of V5-tag in each recombinant virus-infected CEF cells was evaluated
by immunofluorescence assays (IFA). CEF cells infected with DEV-OmpH-V5 of UL55-
LORF11 and UL44-44.5 showed clear V5-specific positive staining (green) and DEV-specific
polyclonal serum positive (red) staining. As expected, CEF cells infected with parental
DEV showed positive red staining for the polyclonal serum, but not with the V5 antibody
(Figure 6b).

The replication property of each recombinant DEV-OmpH-V5 was determined by
virus plaque size and multistep replication kinetics compared to the DEV-WT. CEF cells
were infected with DEV-WT and DEV-OmpH-V5 of UL55-LORF11 and DEV-OmpH-V5
of UL44-44.5 (MOI 0.01) 48 h post-infection were used for the determination of plaque
sizes. Measurement of the average diameters of at least 10 plaques of each virus did
not show significant differences in the plaque sizes among all three viruses (Figure 6c).
Similarly, a comparison of the multi-step replication kinetics of the three viruses did not
show significant differences between both recombinants (DEV-OmpH-V5 of UL55-LORF11
and UL44-44.5) and the parental viruses (DEV-WT), with the titers reaching approximately
107 PFU/mL at 72 h post-infection (Figure 6d). Thus, the insertion of the OmpH-V5
expression cassette in either of the loci did not appear to compromise the replication ability
of the recombinant DEV-OmpH-V5 compared to the DEV wild type.

3.5. Stability of the Inserted Genes in the Recombinant Viruses

To determine the stability of the ompH-V5 expression cassette during serial passage,
each recombinant DEV-OmpH-V5 was passaged continuously 15 times on CEF cells and
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viral DNA was extracted from the supernatant and analyzed after every five passages using
outside primers of the insertion site (Figure 4a) that amplified the full length insert. As
is clear from the PCR results (Figure 7a), the recombinant virus infected cells consistently
showed the predicted full-length product at each of the passage levels. The absence of a
lower band in the recombinant virus, accompanied with no variability in the size of ompH-
V5 gene in during serial passaging of both recombinant viruses in cultured cells, indicated
that the ompH-V5 gene was stably inserted into the DEV genome both insertion sites.

Figure 7. Stability of recombinant DEV-OmpH-V5. (a) Detection of OmpH-V5 gene insertion in
DEV-OmpH-V5 was confirmed by PCR using primer at both ends of each insertion site during serial
5 passages compared with DEV-WT infected CEF as controls, indicating that the recombinant virus is
stable. The lane numbers represent the passage numbers of the recombinant virus. (b) Detection of
V5 expression of recombinant DEV was assessed by IFA. Merged images of positive double stained
DEV-OmpH-V5 infected CEF with anti-V5 (Green) and anti-DEV (Red) was taken by Incucyte at 5th,
10th, and 15th passages.

We have also examined the V5 expression every five passages of 15 serial passages by
IFA (Figure 7b). Once the insert was lost from any of the recombinant viruses during serial
passages, the cell staining would only show positive labelling with the anti-DEV antibody.
Here, the detection of doubly stained cells demonstrating the expression of both antigens in
the recombinant DEV confirmed the stable integration of the foreign gene. There was also
no apparent effect on the replication ability of the recombinant virus during all sequential
passage. These results indicated that ompH-V5 gene was stably integrated in both insertion
sites of the DEV genome without any adverse effects on viral replication.

4. Discussion

Previous studies considering an ompH gene of P. multocida identified it as highly
protective gene and suggested it to be a candidate vaccine for fowl cholera in duck which
induced an efficient antibody response, able to reduce the degree of adhesion of the
P. multocida strain to the duck embryo fibroblast cells, along with successfully inducing
high levels of lymphocyte proliferation, providing clinical protection [10,11].

The DEV genome has been exploited as a recombinant viral vaccine vector using
conventional reverse genetics techniques on full length BAC or Fosmid clones of the DEV
genome [15,17,32,33]. While these tools are valuable for the development of recombinant
vaccines, BAC recombineering and Fosmid library approaches face many challenges, in-
cluding the significant time needed for the insertion of foreign gene inserts and subsequent
removal of the BAC plasmid [27]. Moreover, the viral genome in the bacteria is often unsta-
ble [27], causing difficulty to generate difficultly recombinant viruses. Compared to this,
the CRISPR-Cas9-based gene editing method described in this study is much faster and
very efficient saving significant amount of time because the DNA double-strand cleavage
to insert a foreign gene and rejoin cleaved DNA cleavage will be completed on the virus
genome directly. Recently, the number of studies on animal viral vector vaccine develop-
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ment utilizing the CRISPR/Cas9 system with insertion or deletion of the gene has been
increasing because of its high efficiency, specificity, versatility, flexibility, simplicity, and low
cost compared to the other viral genome editing techniques [34]. A majority of the recent
studies utilized successfully CRISPR/Cas9 for recombinant vaccines focusing on foreign
viral gene expression on several viral vectors, such as herpesvirus of turkey (HVT) [27–29],
infectious laryngotracheitis virus (ILTV) [30], and duck enteritis virus (DEV) [19,31]. This
present study is the first report that demonstrates the effective use of the CRISPR/Cas9
and Cre-Lox system for the development vaccine opportunities with the potential for
simultaneous protection against two major viral and bacterial pathogens that cause acute
contagious diseases in ducks.

Previously, the two gene junctions UL27/UL26 and US7/US8 of DEV strain C-KCE
were shown to be suitable for the double insertion of the foreign gene for the construction
of recombinant C-KCE construction based on the CRISPR/Cas9-mediated gene editing
strategy with the HDR pathway [19]. Whereas the junctions UL27/UL26 of DEV genome
strain C-KCE can also be used for single insertion generating recombinant DEV via NHEJ
with Cre-Lox system, the stability of foreign gene has not been examined [31]. However,
the insertion of foreign genes into non-essential genes may partly affect properties of
the parental virus and expression of foreign antigens [38]. Therefore, it is important to
identify other sites in DEV genome where foreign genes can be inserted and expressed
stably without disrupting properties of the DEV parental virus, which provides new
appropriate sites for the future development of a multivalent DEV vaccine. Interestingly,
the present study explored several genomic loci in the DEV genome for new stable site by
CRISPR/Cas9 system. At least, our study has successfully identified the two new insertion
sites of DEV genome for the stable expression of foreign genes using NHEJ-CRISPR/Cas9
gene editing. The PCR and immunostaining confirmed that the foreign gene (an ompH gene
of P. multocida) could be integrated into two new targeting stable sites of DEV Jensen strain
intergenic region (UL55-LORF11 and UL44-44.5) and maintained as far as 15 passages,
indicating viral genetic stability. Furthermore, the fact that the recombinant viruses with
foreign gene insertions had similar growth kinetic and plaque size compared to the wild
type virus. These results are consistent with the results from previous studies. In 2014,
Weng et al. constructed the recombinant DEV-H5 using BAC at UL55-LORF11 of DEV
strain C-KCE. This HA expression cassette affects neither the growth kinetics of the virus
nor its protection against DEV [32,33]. Whereas another previous study that successfully
constructed recombinant virus v2085-H5∆gC using BAC clone in lieu of the UL44 locus,
the resulting foreign gene insertion effected viral titer significant reductions greater than
700-fold and plaque sizes increased in vitro when compared to the parental virus [17]. In
contrast, the recombinant DEV with the foreign gene inserted in the UL55-LORF11 and
UL44/44.5 by CRISPR/Cas9 did not alter pattern of variability in titers and plaque size
when compared to parental of DEV Jansen strain. These findings further confirm the
suitability both of UL55-LORF11 and UL44/44.5 sites as a foreign gene insertion for the
construction of DEV-based vaccines. The off-target effects are still a major concern in the
main limitations of the CRISPR technologies and can result in base deletion or insertion
(indel) after repair, in turn resulting in a frame shift mutation [39]. However, developing
a well-optimized and engineered CRISPR system can significantly reduce the off-target
effects. For instance, off-target effects can be reduced via increasing the nucleases cleavage
specificity or reducing the duration of Cas9 activity. Continuous efforts to understand all
their pitfalls, improving editing capabilities, and making advances in the delivery systems
will ensure the CRISPR system for the full potential to benefit society in near future [40].

As described, we have generated DEV recombinants with a foreign gene insertion
of UL55-LORF11 and UL44-44.5 in either orientation by junction PCR, using two primers
located at each end of the inserted sequence to identify in sense orientation and side
swapping to identify the insert in antisense orientation following previous suggestion
about the limitation of these applications [29]. Moreover, the beneficial effect of using
the donor plasmid with an excisable GFP marker flanked between LoxP site has been
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re-substantiated in this study using different insertion sites of different strain in the same
virus (DEV) or between different virus vectors (HVT and DEV) [28,31].

These experiments are now in progress to evaluate the possibility of multiple gene
loci in the DEV genome as a foreign gene stable insertion site for the future development
of DEV vectored vaccine using the powerful gene editing technique CRISPR/Cas9 and
Cre-Lox system. This study also suggests approaches for the rapid construction of multiple
recombinant vaccines with the potential for simultaneous protection against viral and
bacterial diseases of ducks. The same application could be a very promising candidate
locus for the rapid development of a series of bivalent or trivalent viral vector vaccines,
which is expected to be of great benefit in controlling and protecting against virus and
bacterial co-infection in duck diseases.

5. Conclusions

In the present study, DEV genomes of Jansen strain were edited to harbor and ex-
press specific bacterial antigens (an ompH gene of P. multocida) in the UL55-LORF11 and
UL44/44.5 using NHEJ/CRISPR-Cas9 system. Apparently, ompH-V5 gene expression
from the knock-in cassette was not impacted by the orientation of insertion. Furthermore,
those two insertion sites have been well verified as stably expressing the ompH gene of
P. multocida and suggested to further develop DEV vector recombinant vaccine. This may
become an alternative viral–bacterial bivalent vaccine strategy in the future. However,
further assessment of the efficacy and protection of this recombinant vaccine is warranted
in animal experiment.
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