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Abstract

Background: The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine
proteins are not well understood.

Methodologies/Principal Findings: Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated
primarily through activation of p38MAPK and that the atypical PKC iota (PKCi) enzyme antagonizes polyglutamine-induced
cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues
cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells
depleted of PKCi by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine
repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of
neurodegeneration (spinocerebellar ataxia 1, or SCA-1).

Conclusions/Significance: Taken together, our data implicate activated p38MAPK in disease progression and suggest that
its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders.
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Introduction

The polyglutamine diseases encompass at least 9 different

disorders including Huntington’s disease (HD) and five spinocer-

ebellar ataxias (SCA-1, SCA-2, SCA-3, SCA-6 and SCA-7

(reviewed in [1]). These are dominantly inherited diseases typically

detected in the third or fourth decade of life. No effective

therapeutic interventions are currently available, and the polyglu-

tamine diseases are generally fatal. Polyglutamine disorders arise

from expansion of a CAG repeat within the coding region of genes

such that the length of the encoded polyglutamine stretch exceeds

a critical threshold. At the ultrastructural level, disease progression

features heat shock protein (HSP)-containing nuclear ubiquiti-

nated inclusions [2] that have accumulated an assortment of

cellular host components in association with the polyglutamine-

containing protein [3]. There is evidence from experiments

performed in cultured mammalian cells and animal models of

disease that polyglutamine expanded proteins adversely affect

basic biological processes (reviewed in [4]). Their expression has

been associated with impaired proteolysis [5], loss of transcrip-

tional control mechanisms [6] and with altered regulation of cell

death/survival pathways (reviewed in [7]).

The mitogen-activated protein kinases (MAPK) are involved in

the integration and processing of multiple extracellular signals and

their induction triggers diverse biological responses (reviewed in

[8,9]). While the activation of the extracellular regulated kinase 1/

2 (hereafter referred to as ERK) by mitogenic and proliferative

stimuli is coupled to cell survival [10], stress inducible kinases JNK

and p38MAPK respond to environmental stress and their

sustained activation transduces signals leading to cell death

(reviewed in [11]). Protein kinase C (PKCs) family members have

been positioned upstream of ERK and are potent modulators of its

activation (reviewed in [12]). With the current exception of the

stress-inducible kinase JNK whose excessive activation has been

well documented in neurodegenerative diseases [13] and reviewed

in [14], the mechanistic relationship between the stress inducible

host signaling pathways and expanded polyglutamine-induced

toxicity remain controversial. It has been shown, for example, that

the mutant huntingtin (Htt) protein causes aberrant activation of

epidermal growth factor receptor (EGFR) signaling [15], a finding

which has been contradicted by more recent reports in which

EGFR signaling was disrupted by expression of the expanded

polyglutamine protein [16,17]. In a Drosophila model of polyglu-

tamine toxicity, the mutant Htt protein has been shown to disrupt

EGFR signaling through interference with the ERK cascade [18]

while in a cell culture model it has been shown to activate the pro-

survival pathway mediated through ERK [19]. All these anomalies

are consistent with gain of function effects of expanded

polyglutamine proteins. There is ample evidence from experi-

mental systems that a simple polyglutamine tract can be toxic
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without the context of its natural surrounding protein sequence

[20,21] but possible loss of function effects in polyglutamine

proteins must also be considered. The normal huntingtin protein,

for example, has been shown to increase transcription of brain-

derived neurotrophic factor (BDNF), which is required for survival

of striatal neurons [22,23]. Loss of this activity in the mutant

protein may therefore contribute to neuronal loss in diseased

individuals. Insulin-like growth factor I also has neuroprotective

activity in the context of polyglutamine-induced cytotoxicity

[24,25], and like BDNF activates the survival pathway mediated

through the phosphoinositide 3-kinase (PI3-K) [26–28]. Kinases

activated downstream in this pathway include PKB/Akt and the

atypical protein kinase C iota (PKCi) [29,30,31–34]. The toxicities

of huntingtin and ataxin-1 gene products are modulated by their

phosphorylation states [35,36], but while the role of PKB/Akt

activity has been studied in this context nothing is known of the

role of PKCi.
As a starting point the current study sought to address the role

of MAPK signaling pathways in polyglutamine disorders including

Huntington’s disease and SCA-1. Our findings suggest that

expanded polyglutamine proteins mediate adverse effects through

activation of p38MAPK signaling and that this cytotoxicity is

antagonized by PKCi, which enhances protective signaling

through the ERK pathway. We show that pharmacological

inhibition of p38MAPK rescues cells from polyglutamine-induced

cell death whereas inhibition of ERK signaling or depletion of

PKCi by RNA interference enhances cytotoxicity.

Methods

Reagents and antibodies
Custom RNA interference duplexes were synthesized by

Dharmacon RNA Technologies Inc. (Lafayette, CO, USA). A

control duplex having the following sense RNA sequence

AUUCUAUCACUAGCGUGACUU (non-specific control du-

plex) was purchased from Dharmacon Research, Inc and used as a

control. RNA duplex concentrations were determined by

measuring absorbance at 260 nm and calculating concentrations

using extinction coefficients provided by the manufacturer.

Propidium iodide and MTT reagents were purchased from

Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada). P38MAPK

inhibitors, SKF86002 and SB202190 were purchased from

Calbiochem (San Diego, CA, USA) and Biosource (Camarillo,

CA, USA) respectively. The MEK inhibitor U0126 was from

Promega (Madison, WI, USA). The goat polyclonal antibodies

nPKCæ (used to detect PKCi) and ataxin-1 were from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA, USA). The mouse

monoclonal phospho-p38MAPK and phospho-ERK 1/2 antibod-

ies and the rabbit polyclonal p38MAPK antibody were from Cell

Signaling Technology (Beverly, MA, USA). Pan ERK monoclonal

antibody was from Transduction Laboratories (Lexington, KY,

USA). GFP, Htt-25 and Htt-103 were detected with a mouse

monoclonal AFP antibody purchased from Quantum Biotechnol-

ogies Inc.(Montréal, Québec, Canada). Phospho-ATF2 and total

ATF2 levels were detected with rabbit polyclonal antibodies

purchased from Cell Signaling Technology (Beverly, MA, USA).

The mouse monoclonal actin antibody was purchased from

Sigma-Aldrich Canada (Oakville, ON).

Expression constructs and transgenic mice
The pEGFP-N1 expression construct which served as a control

in transient transfection experiments was purchased from

Clontech (Palo Alto, California, USA). The Htt-25 and Htt-103

expression constructs (gifts from Dr. Ron Kopito) contain a

synthetic insert encoding exon 1 of human Huntingtin containing

a polyglutamine tract of either 25Q or 103Q fused to the yellow

fluorescent reporter protein (YFP). The plasmids encoding the full

length human ataxin-1 proteins with a polyglutamine tract of 30Q

or 83Q were a gift from Dr. Huda Zoghbi. The origin of the B05

transgenic line carrying a mutant Ataxin-1 allele with 82 CAG

repeats and the A02 line with a CAG repeat of 30 codons was

described in a paper from the laboratory of Dr. Harry Orr [37],

from whom these lines were obtained.

Cell culture and transfections
The human U87MG cell line (a gift from Dr. W. Cavenee,

Ludwig Institute for Cancer Research, La Jolla, CA) was

maintained at 37uC and 5% CO2 in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 100 units/ml penicillin,

100 mg/ml streptomycin, 2 mM glutamine and 10% (v/v) of a 2:1

mixture of donor bovine serum and fetal bovine serum. For RNA

interference experiments, cells were transfected using Oligofecta-

mine (Invitrogen Canada, Inc., Burlington, ON) as per the

supplier’s protocol. Final concentrations of RNA in the transfec-

tions were 5.3 nM for siPKCiA and 20 nM for siPKCiB. Control

RNA concentrations were matched to the specific siRNA duplex

used in the experiment. For transient transfections, cells were

plated in either 96- or 6 well dishes 24 hours prior to transfections.

Subsequently, they were transfected using GeneJuice Transfection

Reagent (Novagen, Madison, WI, USA) as per the supplier’s

protocol. 0.5 mg of plasmid DNA was used in each well of a 96

well dish. A total amount of 3 mg of plasmid DNA was used in

each well of a 6 well dish. For p38MAPK inhibition experiments

using SKF86002 and SB202190, cells in 96 well plates were

transfected with RNA duplexes. 24 hours post-transfection, cells

were pre-treated for 2 h with 20 mM of the respective inhibitor.

ERK inhibition experiments were performed in a similar manner

using the MEK inhibitor U0126 at a final concentration of

20 mM. Following this incubation period cells were transiently

transfected with various expression constructs.

Survival assays
Survival assays were performed by MTT, trypan blue exclusion

and flow cytometry. For MTT assays, cells in 96 well microtitre

plates were transfected with RNA duplexes as described above.

6 h post-transfection, they were transiently transfected with the

GFP control vector, Htt-25, Htt-103, Atx-30 or Atx-83 as

indicated. 24 h post-transfection of the plasmid DNA cell survival

was assessed using the MTT (3-(4,5-cimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide) assay as described previously

[38]. Background values were determined by carrying out the

assay in wells containing media without cells. Toxicity was

measured by trypan blue exclusion in pooled fractions consisting

of attached and detached cells. For flow cytometry experiments,

adherent and non-adherent cells were harvested and fixed with

70% (v/v) ethanol in PBS. Cell nuclei were stained with propidium

iodide. DNA content was analyzed by flow cytometry using a BD

LSR flow cytometer (Becton Dickinson, San Jose, CA). Data was

acquired using Cell Quest software (Becton Dickinson, San Jose,

CA) and were analyzed using Mod Fit LT software (Verity

Software House, Inc., Sopsham, ME).

Western blot analysis
U87MG cells were harvested in protein lysis buffer consisting of

100 mM Tris pH 6.8, 20 mM DTT, 4% SDS, 5% glycerol.

Protein concentrations were determined using the Bradford assay

reagents (Bio-Rad, Hercules, CA, USA). Reduced proteins were

separated through 4–12% bis-tris polyacrylamide gels using an

p38MAPK in polyQ Toxicity
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Xcell II min cell system (Invitrogen, San Diego, CA, USA).

Proteins were transferred onto PVDF nylon membranes (Amer-

sham Pharmacia Biotech, Buckinghamshire, UK) and stained with

amido black prior to probing with the appropriate primary

antibody. Proteins were detected using the HRP method and

SuperSignal West Pico Chemiluminescent Substrate reagents

(Pierce, Rockford, IL, USA). Proteins were visualized using the

GeneGnome (Syngene, Frederick, MD,USA). Sequential probing

of membranes was performed after stripping with the use of

Western Blot Stripping Buffer (Pierce, Rockford, IL, USA) for

30 min at room temperature. Mouse cerebella were harvested by

homogenization in protein lysis buffer (20 mM Tris-HCl pH 7.5,

150 mM NaCl, 0.5 mM EDTA, 1% NP-40 and 20% glycerol)

containing the following protease and phosphatase inhibitors:

200 mg/ml phenylmethylsulfonyl fluoride, 5 mg/ml leupeptin,

2 mg/ml aprotinin, 200 mM NaF, 200 mM NaPPi and 10 mM

NEM. Soluble protein was quantified as described above. Proteins

were resolved on a 10% SDS-polyacrylamide gel and electro-

blotted onto a Hybond C nitrocellulose membrane (Amersham

Biosciences Corp, Baie d’Urfé, QC). The membranes were stained

with Ponceau S prior to immunoblotting with the appropriate

primary antibody. Proteins were visualized as described above.

Immunohistochemistry
Cerebella from age-matched nontransgenic, A02 and B05 mice

were excised and fixed in 10% phosphate-buffered formalin

overnight at room temperature. Tissues were paraffin-embedded

and sectioned sagitally using a microtome at a thickness of 5 mm.

Deparaffinized sections were heated in a solution of 10 mM

sodium citrate (pH 6.0) in 700W microwave for 10 minutes.

Endogenous peroxidase activity was blocked by incubating in

methanol containing 3% hydrogen peroxide for 20 minutes.

Sections were washed with PBS (pH 7.4) and incubated for

30 minutes with 1.5% normal goat serum (Santa Cruz Biotech-

nologies Inc., SC, CA, USA) to block nonspecific binding. Sections

were then incubated overnight at 4uC with the phospho-

p38MAPK antibody (Cell Signaling Technology, Beverly, MA,

USA). The reaction product was visualized with the ABC system

(DAKO Diagnostics Canada Inc.). The use of animals in these

experiments followed the guidelines of the Animal Care

Committee of the University of Ottawa and was approved under

protocol number ME-212.

Statistical analysis
Unless otherwise indicated, all values are represented as the

average of three independent experiments performed in triplicate,

with error bars indicating standard error of the mean. Statistical

significance was determined by a two tailed Student’s t-test. Values

were considered significant when P,0.05.

Results

PKCi modulates the sensitivity of cells to polyglutamine-
induced cellular death

We used a previously described siRNA strategy [38] to

investigate the role of PKCi depletion in polyglutamine-induced

cytotoxicity. This method specifically depletes PKCi RNA and

protein with no effect on other PKC enzymes [38]. We used

U87MG cells which have been shown to have an elevated basal

ERK activity as a result of increased signaling through the EGFR

pathway [39]. We reasoned that if ERK was protective such a cell

model would be less sensitive to expanded polyglutamine induced

toxicity. The use of cells from a glial as opposed to neuronal

lineage is unlikely to be of consequence in that similar results were

obtained in glioblastoma and neuroblastoma cell lines (as

described below). To assess whether the depletion of PKCi would

affect cell survival in the presence of an expanded polyglutamine

protein, U87MG cells were transfected with a control or one of

two siPKCi RNAs (siPKCiA and siPKCiB). Cells were then

transiently transfected with either a GFP control plasmid or

constructs encoding exon 1 of the Huntingtin protein containing a

normal polyglutamine tract of 25Qs (hereafter referred to as Htt-

25) or with a pathogenic tract of 103Qs (hereafter referred to as

Htt-103) fused to the yellow fluorescent protein (YFP) reporter.

Similar expression constructs encoding exon 1 of the Htt protein

with an expanded polyglutamine tract have been previously used

in cell culture models of polyglutamine toxicity [6,40] and in the

generation of the well characterized R6/2 transgenic mouse line

[41]; R6/2 mice develop a progressive neurological phenotype

with motor symptoms resembling those in HD [42]. By phase

contrast microscopy, a pronounced effect was observed in PKCi
depleted cells expressing Htt-103 wherein a significant increase in

the number of shrunken, rounded and detached cells was noted

(Figure 1A). Analogous to other cell culture systems used in the

study of polyglutamine biology (3T3, PC12, SHY-5Y cells, etc),

U87MG cells expressing Htt-103 were found to accumulate visible

nuclear inclusions as early as 24 hours post-transfection

(Figure 1B). No such inclusions were observed in cells expressing

GFP alone or Htt-25 (Figure 1B). Depletion of PKCi was assessed

by Western blot analysis with an antibody recognizing PKCi in

extracts from U87MG cells transfected with either the control or

siPKCiA and siPKCiB; a reduction in the protein levels was

observed at 24 and 48 hours post-transfection (Figure 1C). The

transfection efficiency of the Htt proteins in U87MG cells was

estimated at ,80% as assessed by fluorescence microscopy

(Figure 1B). Similar levels of expression of GFP, Htt-25 and Htt-

103 were confirmed by Western blot analysis of extracts from

transfected cells with an antibody specific for the fluorescent

protein reporter (Figure 1D). Quantification of survival with the

use of a metabolic assay (MTT) revealed that the depletion of

PKCi sensitized cells to the expression of Htt-103 such that

survival was reduced by approximately 25% when compared to

cells transfected with the control RNA (Figure 2B). The survival of

U87MG cells transfected with an Htt-25 expression plasmid was

no different then that of cells expressing GFP alone (Figure 2A).

When compared to GFP transfectants, the depletion of PKCi
mildly sensitized cells to the expression of Htt-25 but to a lesser

extent than did expression of Htt-103 (Figure 2A and B). The data

obtained by MTT analysis were consistent with survival as

measured by the trypan-blue exclusion method (Figure 2C) and by

flow cytometric analysis (Figure 2D) of Htt-103 transfected cells,

both of which revealed an increase in cell death in PKCi depleted

cells when compared to control RNA transfectants. These data

suggested that the depletion of PKCi was sensitizing cells to the

expression of expanded polyglutamine proteins. As assessed by

MTT, the exogenous expression of flag-tagged PKCi was found to

modestly increase the resistance of cells to the toxic effects

associated with expression of Htt-103 (Figure 2E). The overex-

pression of PKCi in these stable transfectants was confirmed by

Western blot analysis with both the PKCi and flag tag antibodies

respectively (Figure 2F).

Impaired ERK activation sensitizes cells to polyglutamine-
expanded proteins

It has been previously reported that PKCi is positioned

upstream of the mitogen-regulated kinase ERK [43] and it was

therefore conceivable that PKCi depletion would affect ERK

activation. To test this hypothesis, we examined the basal levels of

p38MAPK in polyQ Toxicity
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activated ERK in PKCi depleted cells. Cell extracts from control

or siPKCiA RNA transfected cells were analyzed by Western blot

analysis with an antibody recognizing phospho-ERK. The analysis

revealed a reduction in ERK phosphorylation in PKCi depleted

cells when compared to the levels in U87MG cells transfected with

the control RNA (Figure 3A). These data suggested that U87MG

cells have elevated basal levels of activated ERK most probably

due to the constitutively active EGFR pathway and that PKCi
depletion affects ERK induction. To investigate specifically

whether the loss of ERK signaling due to PKCi depletion was

the basis for the increased sensitivity observed in PKCi depleted

cells to expanded polyglutamine protein expression, we made use

Figure 1. Morphological alterations in PKCi depleted cells expressing Htt-103. A) U87MG cells transfected with the control or with siPKCiA
and siPKCiB were transiently transfected with plasmids encoding GFP, Htt-25 or Htt-103 for 24 hours. Cell morphology was assessed by phase
contrast microscopy. An increase in the number of shrunken, rounded and detached cells was observed in PKCi depleted cells expressing Htt-103
when compared to control RNA transfected cells or cells expressing GFP or Htt-25. Magnification was 406. B) U87MG cells expressing GFP, Htt-25 or
Htt-103 for 24 hours were visualized under fluorescence (bottom panel) to assess transfection efficiency. Upper panels represent the same field of
view visualized under white light. Arrowheads demonstrate nuclear inclusions in Htt-103 expressing cells. Scale bars represent 100 mm. C) Western
blot analysis with a PKCi specific antibody of cell extracts from U87MG cells transfected in duplicate with either the control or siPKCiA and siPKCiB
showing the reduction in the protein levels of PKCi at 24 and 48 hours post-transfection. The membrane was re-probed with an antibody directed
against Pan-ERK which served as a loading control. D) Western blot analysis of cell extracts from cells transfected with either control or siPKCiA
expressing GFP, Htt-25 or Htt-103 with an antibody raised against AFP. No significant difference in the protein levels of GFP, Htt-25 and Htt-103 were
observed in extracts from control and PKCi transfected cells. The membrane was re-probed with an antibody directed against Pan-ERK which served
as a loading control.
doi:10.1371/journal.pone.0002130.g001
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Figure 2. Depletion of PKCi sensitizes cells to polyglutamine induced toxicity. A) and B) U87MG cells transfected for 24 hours with either
control or siPKCiA and PKCiB were plated in 96 well dishes. Subsequently, cells were transfected with expression constructs encoding GFP, Htt-25 (A)
and Htt-103 (B) and cell survival was measured by MTT assay. A) The survival of mock RNA transfected cells expressing Htt-25 was comparable to cells
expressing GFP alone. A slight decrease in cell survival was observed in PKCi depleted cells expressing Htt-25 when compared to GFP transfectants (*
p,0.05). B) A marked decrease in cell survival was observed in control RNA transfected cells expressing Htt-103 that was further pronounced in PKCi
depleted cells (* p,0.05). C) Survival as measured by trypan blue exclusion of U87MG cells transfected with control or siPKCiA in the presence or
absence of Htt-103. In accordance with the MTT assay, an increase in the population of dead cells was observed in control transfected U87MG cells
expressing Htt-103 which was further increased in PKCi depleted cells. D) Flow cytometric analysis of cells transfected with either the control or
siPKCi expressing Htt-103 showing an increase in the number of dead cells in PKCi depleted cells when compared to control transfected cells. Data
represents the average of three independent experiments, with error bars indicating standard deviation (** p,0.01). E) U87MG cells stably expressing
flag epitope tagged PKCi (ftPKCi) were transiently transfected with the Htt-103 expression construct for 24 hours. Survival as assessed by MTT

p38MAPK in polyQ Toxicity
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of U0126, a specific inhibitor of MEK (positioned directly

upstream of ERK). U87MG cells were either untreated or treated

with U0126 prior to transfection with the GFP control vector, Htt-

25 or Htt-103 plasmids. Twenty-four hours post-transfection, cell

survival was assessed by the MTT assay. The data presented in

figure 3B revealed that blockade of ERK recapitulated the findings

in PKCi depleted cells: the survival of cells expressing Htt-103 was

significantly compromised (Figure 3B). The survival of Htt-25

expressing cells treated with the inhibitor was comparable to that

of GFP transfectants (Figure 3B). The efficient blockade of ERK

activation in U0126 treated cells was confirmed by Western blot

analysis of cell extracts from cells transfected with Htt-103 with the

phospho-ERK specific antibody (Figure 3C). The data in

Figure 3C also revealed that the expression of the expanded

polyglutamine protein has no effect on ERK induction when

compared to GFP transfectants. Taken together, they suggest that

the status of ERK is strictly dependent on PKCi and not the

expression of the expanded polyglutamine protein.

Expression of Htt-103 is associated with induction of
p38MAPK and its pharmacological blockade rescues cells
from polyglutamine-induced toxicity

Given that the blockade of ERK signaling preferentially

sensitized Htt-103 expressing cells when compared to Htt-25

transfectants, we reasoned that the expanded polyglutamine may

be affecting stress-inducible pro-apoptotic pathways. The activa-

tion of the p38MAPK pathway in response to environmental and

genotoxic stress is well characterized [44–46] and its induction in

response to amyloid beta treatment has been well documented

[47,48]. Expanded polyglutamine proteins have recently been

shown to induce death in cell culture models (reviewed in [49]) but

the role of p38MAPK has not been investigated. To investigate the

role of this kinase, we analyzed cell extracts from control and

PKCi depleted cells expressing GFP, Htt-25 and Htt-103 by

Western blot analysis with a phospho-p38MAPK antibody. The

analysis revealed that the expression of Htt-103 resulted in a

similar increase in p38MAPK phosphorylation in both the control

and siPKCiA transfected cells. These data suggested that the status

of PKCi has no effect on expanded polyglutamine induced

p38MAPK activation (Figure 4A) and that the increased sensitivity

observed in PKCi depleted cells was a reflection of a diminished

activation of ERK. The levels of phospho-p38MAPK remained

unchanged in GFP expressing cells and were minimally affected in

Htt-25 transfectants (Figure 4A). This suggested that the activation

of p38MAPK may be the basis for the increased cell death

observed in Htt-103 expressing cells and that interfering with its

phosphorylation may rescue cells from polyglutamine-induced

toxicity. Inhibition of p38MAPK with the use of SKF86002, a

specific p38MAPK inhibitor, resulted in a significant rescue of

Htt-103 expressing U87MG control and siPKCiA transfected cells

such that their survival was comparable to Htt-25 and GFP

transfectants treated with the inhibitor (Figure 4B). Similar results

were obtained by blockade of p38MAPK with the use of

SB202190, a different p38MAPK inhibitor; its inhibition resulted

in a statistically significant increase in cell survival of PKCi
depleted cells expressing Htt-103 (Figure 4C). The efficient

blockade of p38MAPK activation in SKF86002 treated cells was

confirmed by Western analysis of cell extracts from Htt-103

expressing cells with a phospho-ATF2 antibody, a downstream

analysis revealed a modest increase in survival in PKCi transfectants when compared to the parental U87MG cells (** p,0.01). F) Western blot analysis
of triplicate cell extracts from untransfected U87MG and cells stably expressing flag-tagged PKCi with antibodies raised against PKCi and the flag
epitope tag respectively. The flag tag specific antibody detected ectopically expressed PKCi in transfected cells, which was absent in the
untransfected control cell extracts. The PKCi antibody detected endogenous and exogenous PKCi in lysates from U87MG cells and cells stably
expressing PKCi. Pan-ERK served as the loading control. MTT and trypan blue data are represented as the average of three independent experiments
performed in triplicate, with errors bars indicating standard error of the mean.
doi:10.1371/journal.pone.0002130.g002

Figure 3. PKCi-mediated ERK activation protects cells from
expanded polyglutamine-induced cytotoxicity. A) Western blot
analysis of cell extracts from control and siPKCiA transfectants with the
phospho-ERK specific antibody. The basal levels of ERK phosphoprotein
were significantly reduced in PKCi depleted cells when compared to
control RNA transfectants. Total ERK levels were assessed with the pan
ERK antibody which also served as a loading control. B) U87MG cells
were pre-treated with the MEK inhibitor U0126 for 2 hours prior to
transfection with GFP, Htt-25 and Htt-103. Cell survival was assessed by
MTT 24 hours post-transfection. Blockade of ERK in Htt-103 expressing
cells resulted in a significant reduction in cell survival when compared
to untreated Htt-103 expressing cells (* p,0.05). Data are represented
as the average of three independent experiments performed in
triplicate, with error bars indicating standard error of the mean. C)
Western blot analysis of extracts from untreated and U0126 treated
U87MG cells expressing Htt-103 with the phospho-ERK antibody
confirming the blockade of ERK phosphorylation in U0126 treated
cells. Pan-ERK was used to detect total ERK levels and actin served as a
loading control.
doi:10.1371/journal.pone.0002130.g003
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Figure 4. Expanded polyglutamine proteins induce p38MAPK. A) Western blot analysis of extracts from control and siPKCiA transfected cells
expressing GFP, Htt-25 or Htt-103 with the phospho-38MAPK antibody showing the phosphorylation of p38MAPK in extracts from control and
siPKCiA transfected cells expressing Htt-103. Phospho-p38MAPK levels were slightly increased in extracts from cells transfected with Htt-25 when
compared to GFP transfectants. The levels of total p38MAPK remained unchanged in all extracts as assessed by Western blot analysis with the
p38MAPK antibody. Efficient depletion of PKCi was confirmed by re-probing the membrane with the PKCi specific antibody. B) and C) Control or
siPKCiA transfected cells were either left untreated or were pre-treated with p38MAPK inhibitors, SKF86002 (B) and SB202190 (C) for 2 hours prior to
transfection with GFP, Htt-25 or Htt-103. 24 hours post-transfection, cell survival was assessed by MTT which revealed an increase in survival of Htt-
103 expressing cells by treatment with SKF86002 in both control and siPKCiA transfected cells (** p,0.01). The survival of Htt-103 expressing cells
treated with SB202190 was less pronounced when compared to SKF86002 treated cells but was still statistically increased in PKCi depleted cells when
compared to the untreated counterparts (* p,0.05). D) Western blot analysis of cell extracts from cells expressing Htt-103 that were either untreated
or treated with SKF86002 with the phospho-ATF2 antibody. The analysis revealed an abrogation of ATF2 phosphorylation in Htt-103 expressing cells
treated with SKF86002. Re-probing the membrane with an ATF-2 antibody revealed no significant difference in the total levels of ATF2 protein. Actin

p38MAPK in polyQ Toxicity
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target of p38MAPK (Figure 4D). Flow cytometric analysis of Htt-

103 expressing cells treated with SKF86002 revealed that

inhibiting p38MAPK increased the survival of Htt-103 transfec-

tants in both control and PKCi depleted cells (Figure 4E). To

further dissect the relative importance of ERK and p38MAPK in

polyglutamine-induced death, we treated GFP, Htt-25 and Htt-

103 expressing U87MG cells with SKF86002 in combination with

U0126. By MTT analysis, we found that pharmacological

inhibition of p38MAPK alone or in combination with ERK

inhibition resulted in a similar and significant rescue of cells from

death associated with expression of Htt-103 (Figure 4F). These

data suggest that the induction of p38MAPK contributes to

polyglutamine-induced cytotoxicity and that whether in the

presence or absence of activated ERK, its inhibition is sufficient

to block cell death.

Full-length expanded human Ataxin-1 protein induces
cell toxicity in a p38MAPK dependent manner

To investigate whether the depletion of PKCi and p38MAPK

pathways represent a general mechanism of expanded polygluta-

mine toxicity, we transfected control or PKCi depleted cells with

an expression construct encoding the full length ataxin-1 gene

product with an expanded polyglutamine tract of 83Q (hereafter

referred to as Atx-83). The length of the polyglutamine repeat in

normal, unaffected humans is from 6 to 40 residues and mice

expressing full length ataxin-1 with 30Qs (Atx-30) show no

phenotype effects [37]; the Atx-30 expression was therefore a

suitable control for the expanded (83Q) protein in our experi-

ments. We were unable to detect expression of an ataxin-1 protein

with only 2 glutamine residues and speculate that this variant may

be unstable (data not shown). Western blot analysis of cell extracts

from Atx-30 and Atx-83 transfected cells with the phospho-

p38MAPK antibody revealed an increase in p38MAPK activation

in Atx-83 expressing cells when compared to Atx-30 and parental

U87MG cells (Figure 5A). Additionally, the ectopic expression of

Atx-30 and Atx-83 resulted in an increase in total levels of

p38MAPK as assessed by Western analysis of the same membrane

with the antibody raised against total p38MAPK (Figure 5A). An

increase in p38MAPK activation in response to ectopic expression

of Atx-83 was also observed in NIH-3T3 fibroblasts and HT4

neuroblastoma cells suggesting that its induction represents a cell

type independent mechanism of polyglutamine cytotoxicity

(Figure 5B). By MTT assay, we found that the survival of control

RNA transfected U87MG cells expressing Atx-83 was reduced

when compared to cells expressing the non-expanded Atx-30

counterpart 24 hours post-transfection (Figure 5C). The sensitivity

of cells expressing Atx-83 was significantly increased in PKCi
depleted cells; survival was reduced by approximately 20% when

compared to control RNA-transfected cells expressing an empty

vector control (Figure 5C). Pharmacological inhibition of

p38MAPK with the use of SKF86002 in Atx-83 expressing cells

recapitulated the findings in Htt-103 transfectants; a statistically

significant increase in cell survival was observed in control RNA

transfectants and was more pronounced in PKCi depleted cells

(Figure 5C). To confirm that the rescue observed in SKF86002

treated cells was attributable to blockade of p38MAPK signaling,

we transiently co-transfected U87MG cells with the Atx-30 or Atx-

83 plasmids in conjunction with constructs encoding either flag

tagged wild-type p38 alpha (wt p38) or its dominant-negative

kinase dead counterpart (KD p38). These expression constructs

have previously been used to examine the contribution of

p38MAPK signaling in cultured cells [50,51]. By MTT analysis

we found that expression of the kinase dead p38MAPK increased

survival of Htt-103 expressing cells in a similar manner to

blockade with SKF86002 suggesting that the decrease in survival is

due to activation of p38MAPK. The expression of wt p38 had no

significant impact on survival of Atx-83 expressing cells

(Figure 5D). The expression levels of Atx-30 and Atx-83 were

similar as assessed by Western blot analysis with an ataxin-1

specific antibody (Figure 5E).

Expanded polyglutamine protein induced p38MAPK in
the cerebella of SCA-1 transgenic mice

The in vivo induction of p38MAPK was examined in the

previously characterized B05 mouse model of spinocerebellar

ataxin-1 (SCA-1). In this model a human ataxin-1 cDNA with an

expanded CAG tract encoding 82 glutamines is specifically

expressed in Purkinje neurons (reviewed in [52]). The A02

transgenic strain expressing a similar construct with a non-

pathological expansion of 30 glutamines served as a control.

Western blot analysis of cerebellar extracts from aged-matched

3 month old mice with the phospho-p38MAPK antibody revealed

phosphorylation of p38MAPK in extracts from nine B05 mice (five

of which are shown in Figures 6A and B). In agreement with the

findings in cultured cells, the phosphorylation of p38MAPK in

lysates from A02 mice was lower than that detected in B05 extracts

but slightly increased when compared to lysates from nontrans-

genic controls (Figure 6A). Contrary to what was observed in

lysates from U87MG cells transfected with Atx-30 and Atx-83, re-

probing the membrane with the antibody raised against total p38

revealed that total p38MAPK levels remained unchanged in A02

and B05 lysates when compared to nontransgenic control lysates

(Figure 6A). We speculate that the induction of total p38MAPK

levels may simply represent a response of cultured cells to the

expression of Atx-30 and Atx-83. In B05 mice we observed a

significant induction in p38MAPK phosphorylation at 3 months

of age, while mice at 1 and 2 months of age show little or no

detectable p38MAPK phosphorylation (Figure 6C). This activa-

tion correlates well with the onset of behavioral and anatomical

anomalies in the mouse model of SCA-1. We examined the

localization of phosphorylated p38MAPK by immunohistochem-

istry in cerebella of 3 month old nontransgenic and B05 mice. We

found that phosphorylated p38MAPK was primarily localized to

the cytoplasm and nucleus of Purkinje neurons (Figure 6D),

showing that the increase in the levels of activated p38MAPK (as

detected by Western analysis) could be attributed to expanded

polyglutamine expression in those cells.

served as a loading control. E) Flow cytometric analysis of control and siPKCiA transfected cells expressing Htt-103 that were either left untreated or
treated with SKF86002. The survival of SKF86002 treated, Htt-103 expressing cells was significantly improved when compared to the untreated
counterparts and was comparable to the survival of GFP and Htt-25 transfectants in both the mock and PKCi depleted cells. Data is represented as
the average of three independent experiments performed in duplicate with error bars indicating standard error of the mean. F) U87MG cells
transfected with GFP, Htt-25 and Htt-103 were treated with SKF86002 in combination with U0126. Survival was assessed by MTT assay 24 hours post-
transfection. As described above, treatment of Htt-103 expressing cells with U0126 resulted in reduced viability (* p,0.05) whereas treatment with
SKF86002 alone or in combination with U0126 rescued cells from polyglutamine toxicity to a level that was similar to p38MAPK inhibition alone (**
p,0.01). Data are represented as the average of three independent experiments performed in triplicate, with error bars indicating standard error of
the mean.
doi:10.1371/journal.pone.0002130.g004
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Figure 5. Expanded ataxin-1 toxicity is mediated through induction of p38MAPK. A) Western blot analysis of duplicate cell extracts from
U87MG cells expressing Atx-30 and Atx-83 with the phospho-p38MAPK antibody. An increase in phosphorylated p38MAPK was observed in lysates
from Atx-83 expressing cells when compared to lysates from mock transfected or cells expressing Atx-30. Total levels of p38MAPK were increased in
lysates from cells transfected with either Atx-30 and Atx-83 when compared to mock transfected cells as assessed by re-probing of the membrane
with the p38MAPK antibody. Actin served as a loading control. B) HT4 and NIH-3T3 cells were transiently transfected in duplicate with the Atx-83
expression construct. Cell extracts were analyzed by western blot analysis with the phospho-p38MAPK antibody. p38MAPK activation was observed
in cell extracts from both NIH-3T3 and HT4 cells expressing Atx-83. The induction of p38MAPK was not observed in lysates from cells expressing an
empty vector control. C) Untreated or SKF86002 treated control or siPKCiA transfected cells were transfected with Atx-30 or Atx-83 for 24 hours and
cell survival was assessed by MTT. The analysis revealed a decrease in survival of Atx-83 expressing cells in control RNA transfected cells that was
significantly more pronounced by PKCi depletion. Blockade of p38MAPK increased survival of Atx-83 expressing cells in both control and siPKCi
transfectants such that it was comparable to the survival of Atx-30 expressing cells. Data represent the average of three independent experiments
performed in triplicate, with error bars indicating standard error of the mean (* p,0.05). D) U87MG cells were co-transfected with Htt-103 and either
empty vector alone or expression constructs encoding wild-type (wt p38) or dominant-negative (KD) p38MAPK alpha. 24 hours post-transfection,
cells were analyzed by MTT which revealed a statistically significant increase in survival in cells co-expressing Htt-103 and dominant-negative
p38MAPK alpha (** p,0.01). The survival of cells expressing empty vector control alone or co-expressing Htt-25 with empty vector was not
significantly different. E) Western blot analysis of extracts from Atx-30 and Atx-83 transfected cells with an ataxin-1 specific antibody revealing a
similar level of expression. Actin served as a loading control.
doi:10.1371/journal.pone.0002130.g005
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Discussion

Clear evidence for the essential role of protein kinase C family

members in neuronal homeostasis has been provided by

neurodegeneration attributable to a loss of function mutation in

the PKCc gene in spinocerebellar ataxia type 14 (SCA-14, [53]).

No such genetic disorder has been mapped to the PKCi gene, but

evidence from overexpression studies indicates that PKCi can be

protective against a variety of cytotoxic insults including UV

damage and chemotherapy [38,54] and neurotoxic insults

including beta amyloid [55]. Conversely, inhibition of PKCi and

the closely related PKCf by the prostate apoptosis-response 4

(PAR-4) protein has been recently shown to increase proteolytic

processing of amyloid precursor protein [56,57] and to exacerbate

Ab accumulation and toxicity in mouse models of Alzheimer’s

disease [58,59] suggesting a role for PKCi in modulating survival.

Using specific MAP kinase inhibitors we have established that

p38MAPK is activated in expanded polyglutamine expressing cells

and that PKCi-mediated ERK activation can antagonize

polyglutamine-induced cell death in a cell culture model. Our

data are in accordance with a recent report demonstrating the

protective effects of ERK activation in expanded polyglutamine

expressing cells [19]. Based on our findings, we propose a

mechanism (schematically depicted in Figure 7) wherein

p38MAPK induction contributes significantly to the toxicity

observed in expanded polyglutamine expressing cells while ERK

activation serves to counteract its effects. The fate of cells

Figure 6. In vivo induction of p38MAPK in SCA-1 mice. A) and B)
Western blot analysis of cerebellar extracts from 3 month-old non-
transgenic, A02 and B05 mice with the phospho-p38MAPK antibody. An
increase in the protein levels of phospho-p38 was detected in the
extracts from B05 mice when compared to A02 and nontransgenic
control extracts. Total p38MAPK levels were similar as assessed by re-
probing the membrane with the p38MAPK antibody or actin. C)
Western blot analysis of cerebellar extracts from B05 mice at 1,2 and
3 months of age with the phospho-p38MAPK antibody. The analysis
revealed a detectable induction in p38MAPK activation in lysates from
mice at 3 month of age. Total levels of p38MAPK were assayed by re-
probing the membrane with the p38MAPK antibody which also served
as a loading control. D) Immunohistochemistry of mouse cerebella with
the phospho-p38MAPK antibody. Panel i) cerebellum of a B05 animal
and panel ii) cerebellum of a nontransgenic animal. Immunoreactivity
was observed in the cytoplasm and nucleus of Purkinje neurons in B05
and nontransgenic mice. Panel iii) section from a B05 animal stained
with the secondary antibody alone demonstrating the absence of
immunoreactivity by omission of the primary antibody. Scale bars
represent 25 mm.
doi:10.1371/journal.pone.0002130.g006

Figure 7. Model of polyglutamine induced toxicity. Activation
p38MAPK signaling is counteracted by PKCi-mediated ERK activation in
expanded polyglutamine expressing cells. The pharmacological block-
ade of ERK with U0126 or by PKCi depletion sensitizes cells to
polyglutamine-induced death through a mechanism of exaggerated
induction of p38MAPK (A). In contrast, inhibition of p38MAPK
phosphorylation by SKF86002 or SB202190 rescues cells from
polyglutamine toxicity (B). The blockade of both signaling pathways
in cells expressing expanded polyglutamine proteins recapitulates
blockade of p38MAPK (B) indicating a causative association between
p38MAPK induction and polyglutamine induced death.
doi:10.1371/journal.pone.0002130.g007
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expressing polyglutamine proteins would therefore seem to be

determined, in part, by comparing the activation state of the two

signaling cascades. In this model the ERK cascade would generate

a pro-survival signal in response to PKCi-mediated input. The

p38MAPK cascade would generate a pro-death output specifically

in response to the expanded polyglutamine protein. If the

p38MAPK signal outweighed the ERK signal (as is the case by

expression of expanded polyglutamine proteins or by blockade of

ERK and/or PKCi signaling) the cell would respond by activating

its cell death program. In the presence of expanded polyglutamine

proteins the simultaneous blockade of both ERK and p38MAPK

signaling pathways was found to be functionally equivalent to

blockade of p38MAPK alone suggesting that the inhibition of

p38MAPK was sufficient to block cell death regardless of the

presence or absence of activated ERK (Figure 4F). To promote the

survival of neurons in neurodegenerative disorders it may

therefore suffice to block p38MAPK signaling (there may be no

added therapeutic benefit in promoting the ERK-mediated

survival signal, despite previously published evidence that ERK

activation promotes survival of polyQ-expressing PC12 cells [19]).

Consistent with our supposition that p38MAPK blockade should

be the therapeutic objective is recent evidence demonstrating that

the promotion of ERK-mediated signaling may ultimately

compromise neuronal viability ([60–62] and reviewed in [63,64]).

A recent report has implicated activated stress inducible JNK in

a cell culture model of HD [19] and its pharmacological blockade

resulted in a statistically significant but partial inhibition of cell

death [19]. Our data do not allow us to formally exclude a role for

JNK, and it is conceivable that the concerted action of both these

pathways mediate adverse effects on polyglutamine expressing

cells. Whether or not this is the case the almost complete rescue of

cell death by inhibition of p38MAPK under our experimental

design suggests a significant contribution of this kinase in

mediating toxicity.

The model presented in Figure 7 is based on data from

polyglutamine tracts in two quite different contexts (an expanded

polyglutamine tract appended to exon 1 of the huntingtin protein

and the pathogenic form of full length ataxin-1), suggesting that it

may have applicability to expanded polyglutamine proteins in

general. The activation of p38MAPK was detected in cultured

mammalian cells of different origins (glioblastoma, fibroblasts and

cells of neural lineage) and more importantly in cerebellar Purkinje

neurons of transgenic mice expressing the neuropathogenic ataxin-

1 cDNA at the age of onset of pathology (Figure 6 and [65]). In

conjunction with recent reports demonstrating p38MAPK induc-

tion in cellular [66] and animal models of Alzheimer’s disease

[67,68] and amyotrophic lateral sclerosis [69–71], our data suggest

that blockade of p38MAPK may have broad utility in delaying the

progress of neurodegenerative diseases, even those that do not

involve expanded polyglutamine proteins. Consistent with this

supposition is the finding that inhibition of p38MAPK is beneficial

in mouse models of disease [72,73] and in the suppression of

human inflammatory conditions [74–76]. Here we demonstrate

that pharmacological blockade of p38MAPK may potentially be

an efficacious intervention for the polyglutamine disorders. Such

an intervention may not only attenuate regional inflammation

(reviewed in [77]) and decrease the phosphorylation of HSP27 (a

downstream target of p38/MAPKAP 2/3 whose phosphorylation

status has been shown to modulate the cytotoxity of polyglutamine

expressing cells, [78]), but may delay or preclude the otherwise

inexorable neuronal loss that is associated with these diseases.

Other therapeutic modalities may become apparent as the

events downstream of p38 MAPK activation by polyglutamine

proteins become known. At this point it is not at all clear how

many and which of the several pathogenic mechanisms might be

affected by p38MAPK signaling. One plausible scenario is that

p38MAPK activation leads to transcriptional dysregulation

through negative effects on pivotal transcriptional regulators. For

example, the levels of the p300/CBP histone acetyltransferase

enzymes are known to be affected by expanded polyglutamine

proteins [6,79–81], and their loss correlates with reduced

expression of a set of target genes whose importance to neuronal

homeostasis is well established [79,82]. It has recently been shown

that p300 is degraded by the proteasome in response to p38MAPK

activation [83] and that partial inhibition of proteolysis may delay

the loss of p300/CBP in the SCA-1 model [84]. Consistent with

this model, inhibitors of histone deacetylases (HDACs) have been

shown to have beneficial effects in counteracting polyglutamine

protein toxicity [85–88] and recently reviewed in [89]. The

histone acetyltransferases would therefore seem promising as

downstream targets of p38MAPK, and we are currently seeking a

deeper understanding of this relationship.
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