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First-trimester vaginal microbiome 
diversity: A potential indicator of 
preterm delivery risk
Mohammed Monzoorul Haque, Mitali Merchant, Pinna Nishal Kumar, Anirban Dutta & 
Sharmila S. Mande

Preterm birth is a leading cause of global neonate mortality. Hospitalization costs associated with 
preterm deliveries present a huge economic burden. Existing physical/biochemical markers for 
predicting preterm birth risk are mostly suited for application at mid/late pregnancy stages, thereby 
leaving very short time (between diagnosis and delivery) for adopting appropriate intervention 
strategies. Recent studies indicating correlations between pre/full-term delivery and the composition 
of vaginal microbiota in pregnant women have opened new diagnostic possibilities. In this study, we 
performed a thorough meta-analysis of vaginal microbiome datasets to evaluate the utility of popular 
diversity and inequality measures for predicting, at an early stage, the risk of preterm delivery. Results 
indicate significant differences (in diversity measures) between ‘first-trimester’ vaginal microbiomes 
obtained from women with term and preterm outcomes, indicating the potential diagnostic utility 
of these measures. In this context, we introduce a novel diversity metric that has significantly better 
diagnostic ability as compared to established diversity measures. The metric enables ‘early’ and highly 
accurate prediction of preterm delivery outcomes, and can potentially be deployed in clinical settings 
for preterm birth risk-assessment. Our findings have potentially far reaching implications in the fight 
against neonatal deaths due to preterm birth.

Technological advances in medical diagnostics and therapeutics in the last decade have greatly reduced the bur-
den of several life-threatening diseases affecting young children1. The Millennium Development Goals (MDG) 
report released by UN in 2015 indicates significant reduction in the incidence rates of malaria, tuberculosis, 
measles, and AIDS in the last 15 years2. However, amidst these encouraging signs of improvement, the report 
highlights that a majority of deaths in children (under 5) occur within the first 28 days of life (i.e. the neonatal 
period). Complications arising due to preterm births are indicated as the single largest contributor to neonatal 
deaths3,4. Surprisingly, in comparison to the decrease in incidence rates of other diseases across the globe, the rate 
of preterm births has remained more or less constant, irrespective of a country’s economic status. For instance, 
in 2014, the rate of preterm births in US stood at 9.6%, which is quite comparable to the rate (~12%) tracked in 
countries from the developing world (Brazil, India, and Nigeria)5. Overall, these trends highlight the urgent need 
for greater international attention on developing improved methods for diagnosis, prevention, and management 
of preterm births.

The entire cascade of patho-physiologic events that cause a preterm delivery (PTD) is not completely under-
stood till date. Genetic predisposition, maternal risk factors (e.g., age, smoking, alcohol intake, reproductive his-
tory), urinary tract infections, intrauterine infections, etc., are typically associated with increased PTD risk. Given 
the variety of predisposing factors that contribute to an increased PTD risk6,7, there exist intervention approaches 
that can potentially promote a healthy full-term gestation outcome8,9. However, the success of these intervention 
approaches is dependent on identification of high-risk subjects as early as possible during pregnancy3. Given this 
context, diagnostic markers (physical and/or biochemical) that can accurately indicate, at an early stage of preg-
nancy, the possibility of progression towards a preterm delivery outcome assume a lot of significance10,11. Figure 1 
provides an overview of approaches (and few commercial in vitro diagnostic offerings) used for determining PTD 
risk. Given below is a summary of various methods depicted in Fig. 1.

Briefly, general factors considered for ‘risk scoring’ include ethnicity, socio-economic status, periodontal 
health, blood pressure, weight, diabetes, smoking, alcohol consumption, inter-pregnancy duration, etc.10,12–14. 
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The clinical predictive values of the stated factors are however quite limited. Pathologic manifestations such 
as bacterial vaginosis or urinary tract infections during pregnancy, unless properly addressed, are also known 
to adversely impact pregnancy outcome in most cases15–18. Several studies have also investigated associations 
between ‘physical markers’ (e.g. cervical length, uterine artery pulsatility index, etc.) and the eventual pregnancy 
outcome (term or preterm)19,20. Most studies indicate cervical length shortening in the second trimester of preg-
nancy to be associated with higher risk of spontaneous preterm birth19,21–23. More than its utility in indicating an 
impending preterm birth outcome, cervical length appears to have a good negative predictive value. CerviLenz is 
a commercially available device that finds utility in measurement of cervical length24.

A few biochemical markers identified from cervico-vaginal secretions, amniotic fluid, urine, saliva, serum, 
and plasma also find utility in assessment of premature delivery risk (Fig. 1). These include inflammation markers 
like cervical IL-6, serum C-reactive protein (CRP), and other proteins like fetal fibronectin, β-hCG, placental 
α-microblobulin etc.10,25–30. Amongst these, fetal fibronectin (Ffn) has been reported to be the most effective 
marker, having more than 60% sensitivity in predicting spontaneous preterm births, based on sampling done 
during ~22–24 weeks of gestation27,28. Inflammation markers like IL-6, tested at a similar time-period during 
pregnancy, can also predict an impending preterm delivery, albeit with lesser sensitivity10,31. On the other hand, 
hormonal markers like β-hCG have been reported to predict spontaneous preterm birth outcomes with high sen-
sitivity, but are applicable only during late stages of pregnancy (~34 weeks of gestation)32,33. Some recently devel-
oped in vitro diagnostic tests rely on comprehensive proteomic and metabolomic analyses of biological samples 
(blood, amniotic fluid, etc.) and combine multiple risk predictors in order to increase sensitivity of prediction. 
For example, while a test offered by SERA prognostics provides risk assessment based on the detected levels of 
two blood proteins (viz. SHBG & IBP4)34,35, another test offered by Metabolon relies on a metabolomic analysis of 
the amniotic fluid36. It is likely that high costs and limited accuracy (~60–80%) of the methods depicted in Fig. 1 
deter gynaecologists and public health organisations from recommending routine (wide-spread) clinical usage. 
The false positive prediction rates of depicted methods also remain high10,11. Even a single false prediction will 
needlessly subject a pregnant woman to unnecessary mental turmoil, whilst also incurring personal/state-funded 
diagnostic and monitoring costs.

In a significant shift from physical and/or biochemical diagnostic markers, a few recent studies have indicated 
the potential of employing characteristics of vaginal microbial communities (in pregnant women) as a diagnostic 
marker for predicting pre/full term outcomes23,37–44. Observations indicate that taxonomic profiles derived from 
vaginal microbiomes of preterm subjects tend to cluster as a somewhat distinct group (typically referred to as CST 
viz., community state type). The consistent presence of species belonging to known bacterial pathogens such as 
Gardenerella, Atopobium, Ureaplasma, etc., (with certain abundance) in samples grouping into a preterm delivery 
associated CST, has fuelled a lot of research focus in this direction37. Reports from these efforts also indicate subtle 
differences in alpha-diversity metrics (particularly with respect to species diversity and evenness measures) between 
taxonomic profiles obtained from vaginal microbiome samples taken from preterm and full-term subjects38,40.

In this study, we performed a systematic analysis of taxonomic diversity profiles corresponding to 1621 pub-
licly available vaginal microbiomes (sampled from 303 pregnant women) pooled from four recent studies37,38,44,45. 
Table 1 provides details of the four studies. The aim was to understand and investigate temporal differences, if 
any, between the community structures of vaginal microbiomes sampled from pregnant women during various 
stages of their pregnancy. Further, suitable experiments were designed for evaluating and comparing the effi-
ciency of various diversity measures in differentiating between vaginal microbiomes sampled from pregnant 
women with reported “term” or “preterm” delivery outcomes. The overall objective of this study was to obtain a 
possible answer for the following question. Are there potential (temporal) signatures in the microbial community 
structure of vaginal samples (in pregnant women) that can indicate predisposition to preterm birth?

Figure 1.  An overview of approaches (and few commercial IVDs i.e. in vitro diagnostic offerings) that are used 
for determining preterm delivery risk.
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Results and Discussion
Changes in vaginal microbiome diversity across various stages of pregnancy were first evaluated using Shannon 
diversity40,46 as a metric. In order to obtain a clear picture of microbial community transition at various time 
points in pregnancy, and to minimize the effects of outliers, taxonomic profiles corresponding to 1621 samples 
pooled from 4 studies (Table 1) were divided into 15 overlapping week-wise groups. Shannon diversity values 
of each of the samples were computed using their respective taxonomic abundance profiles. Figure 2 depicts 
the Shannon diversity trends across the 15 temporally overlapping groups for the evaluated ‘term’ and ‘preterm’ 
samples. Results indicate that women with preterm delivery outcomes tend to have lesser diversity in their vaginal 
microbiome during their first 15–20 weeks of pregnancy as compared to women with term delivery outcomes. 
After approximately 20 weeks of pregnancy, the vaginal microbiome diversity in case of both term and preterm 
outcomes appear to converge and remain more or less stable in the remaining weeks of pregnancy.

The observed temporal differences (with respect to Shannon diversity) between microbial communities in 
vaginal samples taken from subjects with term or preterm delivery outcomes indicate the possibility of employ-
ing a suitable diversity metric that can effectively capture the microbial community structure (in early weeks of 
pregnancy) and can therefore be potentially employed as a screening/diagnostic marker for predicting preterm 
delivery risk. Given this context, the following experiments were performed with the objective of evaluating 
and comparing the capability of various existing diversity measures (including Shannon diversity) in predicting 
pregnancy delivery outcomes (term or preterm) from a taxonomic profile corresponding to a sampled vaginal 
microbiome.

All available microbiomes were segregated into 33 week-wise groups. Group ‘WeekN’ comprised of all vaginal 
microbiomes that were sampled at any time-point on or before the Nth week of pregnancy (N ranging between 
8–40). Microbiomes in each group were labelled into classes ‘Term’ or ‘PTD’, denoting (reported) ‘full-term’ or 
‘preterm’ delivery outcome respectively. Besides Shannon diversity, other widely used/reported alpha diversity 
indices, viz., Chao1 and Simpson, denoting species richness and evenness respectively47–49, were computed for 
taxonomic profiles corresponding to microbiomes in all groups. Given that vaginal microbiomes have an over-
whelming predominance of microbial species belonging to Lactobacillus, with other taxa playing the minority 
role (as the ‘tail’), microbial abundance distribution (upon ordering) resembles a highly skewed Lorenz curve 
(analogous to inequitable distribution of wealth in human populations). Keeping this in mind, statistical meas-
ures of inequality, viz., Gini, Atkinson, Theil, Decile ratios, and Ricci-Schutz indices were also computed for 
individual taxonomic profiles of all vaginal microbiomes50–55. For each group, the diagnostic value (ability) 

Study (No. of 
subjects) Reference

No. of term 
samples

No. of preterm 
samples

16S variable region 
amplified for sequencing

Study 1 (37) DiGiulio et al., PNAS, Sep 2015 
(doi:10.1073/pnas.1502875112) 517 181 V3–V5

Study 2 (41) Romero et al., Microbiome, May 2014 
(doi:10.1186/2049-2618-2-18) 163 43 V1–V3

Study 3 (22) Romero et al., Microbiome, Feb 2014 
(doi:10.1186/2049-2618-2-4) 139 — V1–V3

Study 4 (173)
https://www.ncbi.nlm.nih.gov/
bioproject/?term=prjeb10913 (Project 
id: PRJEB10913)

578 — V4–V5

Table 1.  Details of microbiome studies considered in the present analysis. Only those microbiome samples 
were considered that had at least 500 taxonomically assigned sequences and were collected from pregnant 
women within 40 weeks of gestation.

Figure 2.  Shannon diversity trends across the 15 temporally overlapping groups for the evaluated ‘term’ and 
‘preterm’ samples. Results indicate that women with preterm delivery outcomes tend to have lesser diversity 
in their vaginal microbiome during their first 15–20 weeks of pregnancy as compared to women with term 
delivery outcomes.

http://www.pnas.org/content/112/35/11060
https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-18
https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-4
https://www.ncbi.nlm.nih.gov/bioproject/?term=prjeb10913
https://www.ncbi.nlm.nih.gov/bioproject/?term=prjeb10913
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of individual indices to differentiate between term and PTD outcomes was estimated in terms of Mathews 
Correlation Coefficient (MCC), a measure that captures both specificity and sensitivity (details in methods sec-
tion), at a threshold value that best separates the compared classes56. ‘Extent of Segregation’ (ES), an additional 
feature (Supplementary Figure 1) that quantifies the differentiating capability of a metric was also computed in 
order to evaluate metrics achieving a perfect MCC value of 1 (i.e. complete separation between case and con-
trol samples). In addition to the mentioned diversity and inequality metrics, we also computed ‘Taxonomic 
Composition Skew’ (TCS), a novel metric, for all samples. Supplementary Information provides a brief back-
ground that places TCS metric in the context of other existing diversity and inequality metrics, and the method-
ology adopted for computing TCS (along with a worked-out example).

Results depicted in Table 2 indicate that all evaluated diversity and inequality measures obtain positive MCC 
values. This clearly indicates significant differences (in taxonomic diversity) between vaginal microbiome samples 
obtained from women with term or PTD outcomes. Interestingly, these differences are observed to be more pro-
nounced in (approximately) the first trimester of pregnancy (<15 gestation weeks). With increasing gestational 
age, the MCC values for various indices progressively decrease, but still remain above a value of 0.25. Although 
this indicates that diversity and inequality measures (in the late second and third trimesters of pregnancy) exhibit 
contrasting trends between term and PTD cases at a population level, their utility in subject-specific risk assess-
ment appears to be limited. Amongst the compared indices, TCS is observed to outperform others, with the dif-
ference appearing more prominent until 15–20 weeks of gestation (Table 2). A statistical comparison (employing 
Wilcoxon signed rank test) indicates that MCC values obtained using TCS (until 20th week of pregnancy) are sig-
nificantly higher (Benjamini-Hochberg corrected p-values < 0.008) than that obtained using other diversity and 
inequality measures. Furthermore, TCS is observed to obtain perfect MCC values of 1 (until Week-10), thereby 
indicating that a vaginal microbiome sample (obtained from a subject at any time point in pregnancy on or before 
the 10th gestation week) can be employed for accurately diagnosing/predicting the risk of a preterm delivery out-
come while avoiding false alarms. Even when samples obtained on or before 20th gestation week were considered, 
TCS could provide an MCC value of 0.823, indicating sufficiently high sensitivity and specificity of prediction. 
A comparison of ‘Extent of Segregation’ (ES) values obtained for various metrics also indicates that ES provided 
by TCS is significantly higher (Wilcoxon signed rank test, Benjamini-Hochberg corrected p-values < 0.005) than 
that obtained with other metrics. Higher ES values indicate increased confidence with respect to the differentiat-
ing capability of the metric.

Results obtained using microbiome datasets cumulated from all 4 studies indicate existence of differences 
in vaginal microbial community structures (during the first 15–20 weeks of pregnancy) in pregnant subjects 
with term and preterm delivery outcomes. However, with increasing gestation age, these (diversity) differences 
are observed to become less pronounced. In order to assess whether these differences in term and preterm vag-
inal microbial communities (in the “early” stages of pregnancy) remain consistent between individual studies 
and across datasets sampled from women with diverse ethnicities, suitable internal and external cross-validation 
experiments were designed and performed in the following manner.

Internal cross-validation experiments were performed using vaginal microbiome taxonomic profiles corre-
sponding to two sets of samples belonging to study 1, which was the largest amongst the four studies in terms 
of number of samples (Table 1). The two sets comprised of samples that were obtained during the first 15 weeks 
(set 1) and the first 20 weeks (set 2) of pregnancy, respectively. In each set, two-thirds of samples were ran-
domly selected and used as a ‘training corpus’ for determining an optimal threshold value of TCS metric that 
would provide maximal separation (quantified in terms of MCC) between the microbiome samples correspond-
ing to preterm (case) delivery and term (control) delivery outcomes. The efficiency of the determined “thresh-
old” value (in predicting pregnancy outcome) was subsequently evaluated using the corresponding ‘test corpus’, 
which comprised of data pertaining to the remaining one-third of the microbiome samples. In each set, the above 
cross validation procedure was iterated 1000 times. During each of these iterations, the ability of the determined 
“threshold” TCS value to differentiate between microbiome samples (of respective test corpus) corresponding to 
cases (preterm) and controls (term) was evaluated in terms of six parameters, namely, accuracy, sensitivity, spec-
ificity, positive predictive value (PPV), negative predictive value (NPV), and Matthews’s correlation coefficient 
(MCC). For the purpose of comparison, all other diversity and inequality metrics were also subjected to the same 
internal cross-validation exercise.

Results, in terms of six evaluation parameters (mentioned above), obtained across 1000 iterations of testing 
are summarized in Tables 3 and 4. Mean values of the evaluation parameters (along with respective standard 
deviations) generated from set 1, as well as, set 2 are depicted in Tables 3 and 4, respectively. Results in these 
tables are observed to concur with earlier observations depicted in Table 2. Diversity of microbial communities 
indeed appears to be a good indicator of pregnancy outcome. Amongst the compared metrics, TCS is observed 
to have better prediction efficiency and a good balance between specificity and sensitivity of prediction (which is 
also reflected in the MCC values). A statistical comparison of evaluation parameter values obtained (across 1000 
iterations) using TCS metric with those obtained using other metrics for both subsets of (testing corpus) samples 
are further provided in Tables 3 and 4 respectively. As evident from the data shown in these tables, in majority of 
cases, TCS obtains significantly higher values of accuracy, sensitivity, specificity, PPV, NPV, and MCC, thereby 
clearly indicating its potential utility in accurately diagnosing/predicting the risk of the preterm delivery from 
vaginal microbiome samples in the early stages (i.e. first 15–20 weeks) of pregnancy.

To further evaluate the robustness of diversity metrics (with respect to their differentiating capability between 
term and preterm pregnancy outcomes) across studies/ethnicities, the following external validation experiment 
was performed. Mean thresholds of various metrics (including TCS) obtained during the internal cross-validation 
experiments (performed using data from Study 1) were employed to check their applicability with microbiome 
data collected from the other three studies, viz. Studies 2, 3, and 4 (considering them as external validation data). 
In the current scenario, external validation data should ideally comprise of vaginal microbiome samples taken 
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from pregnant women from a different geography or ethnicity. Although, studies 2 and 3 comprise of samples 
obtained from American women (similar to that of Study 1), data from these studies have differences with respect 
to racial distribution of the subject cohort, experimental protocols, and the 16 S variable regions sequenced37,44. 
In an absolute contrast, the external validation data also comprises data from Study 4, wherein samples were 
obtained from Chinese subjects. Results of external validation are provided in Tables 5 and 6. Similar to the 
internal cross-validation experiments, external validation was also performed for two subsets of samples using 
data cumulated till 15 weeks and 20 weeks, respectively. Results, with respect to all six evaluation parameters (viz. 
accuracy, sensitivity, specificity, PPV, NPV, and MCC), clearly indicate and lend support to the hypothesis regard-
ing distinct differences between vaginal microbial community structure (in early stages of pregnancy) between 
women with term and preterm delivery outcomes. More so, this hypothesis appears to hold true irrespective of 
the ethnicity/geography. Results also confirm the relatively better efficiency of TCS metric (compared to other 
diversity metrics) in capturing the community level differences prevalent in vaginal microbiomes (in the first 
15–20 weeks of pregnancy).

Gestation 
weeks

Number of evaluated 
microbiome samples

Mathews Correlation Coefficient (MCC)* obtained with various diversity and inequality 
measures

(WeekN) PTD TERM Total TCS Shannon Simpson Chao1 Gini
Ricci-
Schutz Atkinson Theil

Decile 
ratio 
(90:10)

8 6 64 70 1 (25.65) 1 (7.59) 1 (8.64) 1 (7.51) 1 (0.90) 0.804 0.578 0.818 0.560

9 7 70 77 1 (21.84) 0.929 0.929 1 (4.51) 0.929 0.833 0.637 0.833 0.637

10 10 77 87 1 (21.84) 0.887 0.887 1 (4.51) 0.947 0.755 0.622 0.839 0.556

11 13 86 99 0.958 0.872 0.823 0.958 0.920 0.763 0.701 0.864 0.593

12 19 97 116 0.937 0.840 0.805 0.937 0.874 0.731 0.673 0.811 0.615

13 28 115 143 0.956 0.842 0.701 0.933 0.843 0.744 0.701 0.817 0.613

14 35 135 170 0.947 0.849 0.676 0.928 0.853 0.774 0.713 0.835 0.633

15 41 157 198 0.940 0.849 0.672 0.923 0.843 0.775 0.687 0.842 0.600

16 51 200 251 0.888 0.758 0.592 0.868 0.849 0.741 0.712 0.836 0.598

17 61 293 354 0.835 0.606 0.481 0.822 0.835 0.729 0.705 0.813 0.550

18 72 364 436 0.829 0.576 0.469 0.820 0.808 0.717 0.699 0.792 0.528

19 82 402 484 0.842 0.572 0.470 0.826 0.808 0.702 0.680 0.793 0.514

20 89 445 534 0.823 0.545 0.437 0.807 0.794 0.688 0.668 0.781 0.491

21 101 466 567 0.751 0.500 0.423 0.732 0.722 0.624 0.603 0.710 0.446

22 109 493 602 0.719 0.452 0.369 0.702 0.704 0.598 0.587 0.686 0.408

23 118 518 636 0.668 0.422 0.338 0.658 0.648 0.544 0.534 0.621 0.372

24 129 554 683 0.629 0.396 0.313 0.620 0.618 0.511 0.498 0.580 0.354

25 140 587 727 0.588 0.353 0.302 0.574 0.590 0.498 0.492 0.552 0.330

26 150 637 787 0.560 0.333 0.301 0.554 0.566 0.474 0.460 0.527 0.308

27 161 684 845 0.522 0.301 0.294 0.523 0.542 0.463 0.450 0.515 0.307

28 170 741 911 0.505 0.310 0.304 0.502 0.524 0.445 0.419 0.490 0.299

29 176 798 974 0.485 0.302 0.299 0.488 0.519 0.445 0.415 0.489 0.293

30 184 850 1034 0.463 0.292 0.290 0.465 0.490 0.418 0.400 0.468 0.289

31 190 908 1098 0.453 0.298 0.299 0.457 0.487 0.413 0.391 0.463 0.281

32 196 962 1158 0.436 0.301 0.302 0.442 0.471 0.388 0.367 0.442 0.273

33 205 1008 1213 0.431 0.310 0.310 0.433 0.448 0.370 0.354 0.423 0.276

34 213 1051 1264 0.427 0.321 0.317 0.428 0.434 0.359 0.347 0.408 0.273

35 219 1099 1318 0.414 0.324 0.320 0.417 0.427 0.355 0.342 0.401 0.272

36 222 1137 1359 0.402 0.317 0.315 0.407 0.418 0.346 0.341 0.390 0.273

37 224 1172 1396 0.391 0.322 0.320 0.395 0.408 0.339 0.331 0.382 0.271

38 224 1333 1557 0.392 0.324 0.321 0.396 0.407 0.343 0.331 0.382 0.266

39 224 1376 1600 0.388 0.322 0.319 0.391 0.403 0.339 0.330 0.377 0.264

40 224 1397 1621 0.383 0.323 0.319 0.388 0.397 0.334 0.328 0.371 0.265

Table 2.  Capability of various diversity indices and inequality measures in differentiating between vaginal 
microbiome samples corresponding to term and preterm delivery outcomes. *At each gestation week, the 
best attained MCC value is indicated in bold face font. A higher MCC value indicates that the metric is able to 
better differentiate between microbiome samples corresponding to term and preterm delivery outcomes. In 
cases where a threshold diversity/inequality value could completely differentiate/segregate between samples 
corresponding to term and preterm delivery outcomes (i.e. MCC = +1), the extent of segregation (ES) is 
indicated in brackets. A higher ES value indicates relatively better separation between the two groups of samples 
(term and preterm).
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It is pertinent to mention here that the number of microbiome samples corresponding to preterm delivery out-
come that could be collated for this study were limited. Availability of data from other ethnicities and geogra-
phies (besides US and China) would be essential for a more robust statistical validation of the above findings. It is 
expected that more data will become available in the coming years as interest in this field grows, allowing for a more 
comprehensive and statistically revealing meta-analysis. Furthermore, the concept of microbiome based diagnostics 
is still in its infancy, and translating the findings of this study to a clinical setting will have its own set of challenges.

Accuracy Sensitivity Specificity PPV NPV MCC

TCS
0.956 (0.03) 0.949 (0.08) 0.960 (0.03) 0.919 (0.07) 0.976 (0.04) 0.902 (0.07)

NA NA NA NA NA NA

Shannon
0.921 (0.04) 0.896 (0.09) 0.934 (0.04) 0.865 (0.09) 0.950 (0.04) 0.821 (0.09)

2.07E-94 1.79E-45 1.16E-65 1.22E-83 2.2E-58 1.7E-99

Simpson
0.849 (0.06) 0.646 (0.13) 0.944 (0.05) 0.851 (0.11) 0.851 (0.06) 0.642 (0.12)

4.2E-161 7.0E-160 5.43E-17 6.51E-68 5.4E-162 2.8E-163

Chao1
0.932 (0.03) 0.904 (0.08) 0.946 (0.04) 0.890 (0.08) 0.955 (0.04) 0.847 (0.07)

3.1E-97 2.2E-51 6.66E-33 6.35E-50 1.5E-69 4.2E-98

Gini
0.899 (0.04) 0.766 (0.11) 0.962 (0.05) 0.916 (0.10) 0.899 (0.05) 0.768 (0.09)

3.4E-146 1.2E-147 1 1 1.8E-151 2.3E-153

Ricci-Schutz
0.869 (0.05) 0.738 (0.12) 0.931 (0.05) 0.839 (0.11) 0.884 (0.05) 0.694 (0.11)

1.7E-158 1.7E-153 1.01E-56 1.72E-97 6.2E-159 7.5E-161

Atkinson
0.881 (0.05) 0.761 (0.12) 0.938 (0.04) 0.850 (0.09) 0.894 (0.05) 0.720 (0.11)

8.8E-152 2.7E-149 1.72E-44 2.86E-82 6.2E-156 1.1E-157

Theil
0.892 (0.04) 0.757 (0.12) 0.957 (0.06) 0.907 (0.12) 0.895 (0.05) 0.754 (0.09)

3.1E-147 8.2E-149 0.934440884 0.167376 3.5E-156 2.2E-156

Decile ratio 
(90:10)

0.802 (0.05) 0.405 (0.12) 0.987 (0.02) 0.944 (0.11) 0.780 (0.06) 0.527 (0.12)

2.9E-164 1.7E-164 1 1 1.3E-164 1.4E-164

Table 3.  Results of internal cross-validation experiments providing a comparison of the efficiency of the 
various evaluated diversity and inequality metrics in predicting a preterm delivery outcome. These experiments 
were performed using vaginal microbiome samples obtained before 15 weeks of gestation. Mean (and standard 
deviation) values of the six evaluation parameters obtained across 1000 iterations of cross-validation are 
provided. Benjamini-Hochberg corrected p-values indicating the relatively better efficiency of the TCS metric as 
compared to other metrics (Wilcoxon paired rank sum test) are also indicated in italics.

Accuracy Sensitivity Specificity PPV NPV MCC

TCS
0.965 (0.02) 0.970 (0.03) 0.964 (0.03) 0.922 (0.05) 0.986 (0.01) 0.921 (0.04)

NA NA NA NA NA NA

Shannon
0.855 (0.03) 0.759 (0.10) 0.899 (0.05) 0.773 (0.09) 0.896 (0.04) 0.662 (0.07)

2.5E-165 5.9E-163 1.3E-150 3.3E-163 2.2E-164 2.7E-165

Simpson
0.819 (0.04) 0.489 (0.09) 0.963 (0.02) 0.855 (0.08) 0.812 (0.04) 0.547 (0.08)

2.5E-165 6.5E-165 2.0E-01 5.4E-84 4.8E-165 2.7E-165

Chao1
0.947 (0.02) 0.936 (0.05) 0.952 (0.03) 0.896 (0.05) 0.972 (0.02) 0.878 (0.04)

6.1E-129 4.7E-81 4.8E-49 2.0E-78 3.3E-117 1.4E-138

Gini
0.908 (0.02) 0.820 (0.09) 0.947 (0.04) 0.880 (0.08) 0.925 (0.04) 0.784 (0.05)

2.5E-163 1.8E-154 7.2E-33 1.1E-55 4.6E-160 8.0E-165

Ricci-Schutz
0.868 (0.03) 0.730 (0.09) 0.929 (0.04) 0.826 (0.09) 0.888 (0.04) 0.684 (0.07)

8.1E-165 6.9E-165 2.9E-88 5.6E-134 4.8E-165 2.7E-165

Atkinson
0.859 (0.03) 0.703 (0.11) 0.929 (0.04) 0.820 (0.09) 0.878 (0.04) 0.662 (0.07)

2.5E-165 6.9E-165 1.7E-88 1.0E-130 4.8E-165 2.7E-165

Theil
0.899 (0.03) 0.809 (0.10) 0.940 (0.05) 0.867 (0.09) 0.919 (0.04) 0.766 (0.06)

2.3E-163 1.0E-157 9.0E-48 5.1E-65 7.1E-162 4.3E-165

Decile ratio 
(90:10)

0.795 (0.04) 0.347 (0.08) 0.991 (0.01) 0.949 (0.08) 0.777 (0.04) 0.492 (0.07)

2.5E-165 6.5E-165 1 1 4.8E-165 2.7E-165

Table 4.  Results of internal cross-validation experiments providing a comparison of the efficiency of the 
various evaluated diversity and inequality metrics in predicting a preterm delivery outcome. These experiments 
were performed using vaginal microbiome samples obtained before 20 weeks of gestation. Mean (and standard 
deviation) values of the six evaluation parameters obtained across 1000 iterations of cross-validation are 
provided. Benjamini-Hochberg corrected p-values indicating the relatively better efficiency of the TCS metric as 
compared to other metrics (Wilcoxon paired rank sum test) are also indicated in italics.
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Conclusion
The capability to ‘accurately’ predict a preterm delivery outcome, right in the first trimester of pregnancy, enables 
the following. Primarily, early prediction allows application/administration of available physical and/or pharma-
cological interventions (either prophylactic or therapeutic) to the concerned subject, with an aim of reducing/
completely obviating the impending risk. Moreover, it helps in initiating monitoring/surveillance of the con-
cerned subject and suitably enhancing levels of antenatal care. On a different note, early and (more importantly) 
‘accurate’ prediction also finds application in identifying/recruiting a cohort of high-risk subjects willing to par-
ticipate in clinical trials of novel intervention techniques that reduce the risk of preterm delivery outcomes and 
associated complications57.

In summary, this work explores and validates the utility of vaginal microbiome diversity in enabling ‘early’ 
prediction of preterm delivery outcomes. This work also introduces a novel diversity metric (TCS) that can accu-
rately predict a preterm delivery outcome, as early as in the first trimester of pregnancy. Validation results indi-
cate the potential utility of employing TCS metric in a clinical diagnostic setting (for accurate preterm birth risk 
assessment). We anticipate that the presented findings have far reaching implications in the fight against neonate 
mortality resulting due to preterm births.

Methods
OTU level taxonomic profiles (Greengenes OTUs version 13.5, clustered at 97% identity) corresponding to vag-
inal microbiome samples from four studies37,38,44,45 were obtained. Alpha diversity (Shannon, Simpson, Chao1) 
and inequality measures (Gini-coefficient, Ricci-Schutz, Atkinson, Theil, and Decile ratio) corresponding to the 
taxonomic profiles were calculated using R packages vegan (v2.0–10) and ineq (v0.2–13), respectively. In addi-
tion, the skew in abundances of different microbial groups in the taxonomic profiles was computed using the 
novel metric – TCS (details in Supplementary information). Evaluation parameters, viz. MCC, AUC, specificity, 
sensitivity, accuracy, PPV and NPV were calculated using R packages – ROCR, cross val v.1.0.3, and pROC. 
Matthews Correlation Coefficient (MCC), a measure that captures both specificity and sensitivity of prediction/
classification using a selected threshold value of the index under consideration, was computed using the equation 
below.

=
× − ×

+ + + +
MCC TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN) (1)

Wherein, TP, TN, FP, and FN represent the number of true-positive predictions, true-negative predictions, 
false-positive predictions, and false-negative predictions, respectively. A perfect MCC value of +1 indicates com-
plete separation between the microbiome samples corresponding to the preterm delivery and the term delivery. 
Other evaluation parameters were calculated from the generated confusion matrices using the following formulae 
(equations 2–6):

TCS Shannon Simpson Chao1 Gini
Ricci-
Schutz Atkinson Theil

Decile ratio 
(90:10)

Accuracy 1.000 0.954 0.931 0.977 0.977 0.954 0.828 0.977 0.966

Sensitivity 1.000 0.667 0.333 1.000 0.667 0.667 0.667 0.667 0.500

Specificity 1.000 0.975 0.975 0.975 1.000 0.975 0.840 1.000 1.000

PPV 1.000 0.667 0.500 0.750 1.000 0.667 0.235 1.000 1.000

NPV 1.000 0.975 0.952 1.000 0.976 0.975 0.971 0.976 0.964

MCC 1.000 0.642 0.373 0.855 0.807 0.642 0.323 0.807 0.694

Table 5.  Results of external validation experiments providing a comparison of the efficiency of the various 
evaluated diversity and inequality metrics in predicting a preterm delivery outcome. These experiments were 
performed using vaginal microbiome samples obtained before 15 weeks of gestation (from studies 2, 3, and 4).

TCS Shannon Simpson Chao1 Gini
Ricci-
Schutz Atkinson Theil

Decile ratio 
(90:10)

Accuracy 0.924 0.784 0.880 0.897 0.947 0.940 0.937 0.940 0.924

Sensitivity 0.667 0.500 0.111 0.778 0.556 0.556 0.611 0.611 0.167

Specificity 0.940 0.802 0.929 0.905 0.972 0.965 0.958 0.961 0.972

PPV 0.414 0.138 0.091 0.341 0.556 0.500 0.478 0.500 0.273

NPV 0.978 0.962 0.943 0.985 0.972 0.972 0.975 0.975 0.948

MCC 0.487 0.174 0.037 0.472 0.527 0.495 0.508 0.521 0.175

Table 6.  Results of external validation experiments providing a comparison of the efficiency of the various 
evaluated diversity and inequality metrics in predicting a preterm delivery outcome. These experiments were 
performed using vaginal microbiome samples obtained before 20 weeks of gestation (from studies 2, 3, and 4).
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= + + + +Accuracy (TP TN)/(TP TN FP FN) (2)

= +Sensitivity TP/(TP FN) (3)

= +Specificity TN/(TN FP) (4)

= +PPV TP/(TP FP) (5)

= +NPV TN/(TN FN) (6)

The extent of segregation (ES), an additional feature that quantifies the differentiating capability of various 
metrics evaluated in the present study was computed using the following equation.

=
δ δ
δ δ

×Extent of Segregation (ES) min[ (maxD , minD ), (maxD , minD )]
max[ (maxD , minD ), (maxD , minD )]

100
(7)

TD PTD PTD TD

TD PTD PTD TD

Wherein,
DTD→ set of values calculated for a given diversity/inequality metric for all samples corresponding to term 

delivery outcomes.
DPTD→ set of values calculated for a given diversity/inequality metric for all samples corresponding to preterm 

delivery outcomes.
δ (max DTD, min DPTD) → absolute difference between the maximum value of the set DTD and the minimum 

value of the set DPTD.
δ (max DPTD, min DTD) → absolute difference between the maximum value of the set DPTD and the minimum 

value of the set DTD.
A higher ES value indicates a better separation between the two groups of microbiome samples. Figure 3 dia-

grammatically depicts an example of calculation of extent of segregation (ES), and indicates how ES captures the 
discriminating ability of an ecological-diversity or an economic-inequality metric.
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