
Original Article

Late Effects of Low-Dose Radiation on the
Bone Marrow, Lung, and Testis Collected
From the Same Exposed BALB/cJ Mice
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Paiboon Reungpatthanaphong1,4, Montree Tungjai1,3, Louise Honikel1,
Chris R. Gordon1, and Kanokporn Noy Rithidech1

Abstract
We used 3 biological metrics highly relevant to health risks, that is, cell death, inflammation, and global DNA methylation, to
determine the late effects of low doses (0.05 or 0.1 Gy) of 137Cs g rays on the bone marrow, lung, and testis collected at 6 months
post-irradiation from the same exposed BALB/cJ mouse. This integrative approach has not been used for such a purpose. Mice
exposed to 0 or 1 Gy of radiation served as a sham or positive control group, respectively. The results could deliver information
for better health risk assessment across tissues, including better scientific basis for radiation protection and clinical application.
We found no changes in the levels of all studied biological metrics (except a significant increase in the levels of an anti-
inflammatory cytokine, ie, interleukin 10) in tissues of 0.05-Gy exposed mice, when compared to those in sham controls. In
contrast, significantly increased levels of cell death and inflammation, including a significant loss of global 5-hydroxymethylcytosine,
were found in all tissues of the same mice exposed to 0.1 or 1.0 Gy. Our data demonstrated not only no harm but also hormesis in
the 0.05-Gy exposed mice. However, the hormetic effect appears to be dependent on biological metrics and tissue.
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Introduction

There is increasing evidence showing differences between bio-

logical responses to low (as low as 0.05 Gy, the existing limit

for exposure in the workplace, up to 0.1 Gy) and higher doses

(more than 0.1 Gy) of low linear energy transfer radiation (ie,

g- and X-rays). However, the assessment of health risks from

such low doses of radiation remains challenging and has been

intensely debated. In spite of a substantial volume of publica-

tions opposing the conventional linear no-threshold (LNT)

model for radiation-induced cancers or other health issues,1-9

the LNT is still applied.10,11 It should be noted that the majority

of previous scientific reports (both in vitro and in vivo systems)

focused only on the early effects of low-dose radiation on

somatic cells (eg, bone marrow [BM] cells or and lymphocytes)

using various biological metrics, that is, metaphase chromo-

some aberration (CA), micronucleus, and DNA damage.3,12-22

There is scant information on the effects of low-dose radiation

on germinal cells (testis).23,24 This makes it necessary to further

investigate the effects of low-dose radiation on germinal cells,

since radiation-induced damage in germinal cells is likely to be

transmitted to the offspring, and hence, such damage is highly

relevant to genetic risks.

Results from previous studies on the effects of low-dose

radiation on germinal cells showed that low doses of X-rays
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(200 kV, ranging from 0.025 to 0.1 Gy, delivered at a dose rate

of 0.0125 Gy/min) induced significant increases in apoptosis in

spermatogonia and spermatocytes of male Kunming mice col-

lected at various times post-irradiation (ie, 6, 12, 18, and

24¼hours).23,24 It should be noted that a dose of 0.075 Gy of

200 kV X-rays was the most effective dose in inducing apop-

tosis in germinal cells of exposed male Kunming mice. None-

theless, in these studies, only initial or early responses (ie, 6 to

24 hours post-irradiation) were evaluated in previous studies.

Recently, it was found that there were no detrimental effects on

spermatogenesis, assessed by the terminal deoxynucleotidyl

transferase-mediated dUTP nick end-labeling assay, and sperm

morphology in wild large Japanese field mice (Apodemus spe-

ciosus) which received about 4000 Bq/kg of g-rays from 134Cs

and 137Cs in different areas near the Fukushima Daiichi acci-

dent.25 However, a report from another group of investigators

demonstrated an enhanced spermatogenesis in wild large Japa-

nese field mice (A speciosus) captured from different locations

near the Fukushima Daiichi accident where the external dose

rates of a combined 134Cs and 137Cs g rays were varied from 21,

304 to 306, or 407 to 447 mGy/d at sampling sites. Of note, the

authors did not report the total amount of radiation that the

mice received.26

Late effects of radiation exposure are highly relevant to

health effects appearing later in life, such as cancer or other

chronic diseases. In previous animal studies using the mouse as

an animal model, there is no information on the effects of low-

dose radiation across tissues (both somatic and germinal tis-

sues) of the same exposed mouse. To improve the assessment

of health risks of exposure to low-dose radiation, it is important

to evaluate the biological responses in different tissues col-

lected from the same exposed individual by means of various

biological metrics relevant to health risks. Yet, such an

approach has not been used to evaluate the effects of low-

dose radiation (at the doses �0.1 Gy).

For these reasons, in this study, we evaluated the late effects

of low-dose radiation (�0.1 Gy of radiation) on the BM, lung,

and testis collected from the same exposed individual BALBc/J

mouse at 6 months after exposure to 0, 0.05, 0.1, or 1.0 Gy of
137Cs g-rays (delivered at 0.75 Gy/min). These tissues were

collected from mice included in our previous study investigat-

ing the effects of low-dose radiation on acute and late-

occurring chromosome aberrations (Cas) in BM cells.22 Of

note, in our previous low-dose study,22 there were 4 harvest

times, that is, 1 hour, 4 hours, 1 month, and 6 months, post-

irradiation. However, in this study, we selected only tissues

from the 6 months post-irradiation, since the late-occurring

damage was the focus of this study. This harvest time point

is particularly important for our focus on the effects of low-

dose radiation to the primitive-type Asingle spermatogonial stem

cell (SSCs). It is known that the duration of mouse spermato-

genesis from the primitive type Asingle SSCs to mature sperms

(spermatozoa) is about 52 days, but 35 days from differentiated

spermatogonia to mature sperms.27 Hence, the testis collected

at 6 months post-irradiation are the most appropriate samples

for studying the effects of radiation on the primitive type Asingle

SSCs. It is known that high doses of X- or g-rays induce DNA

double-strand breaks, CAs, and mutagenesis in spermatogo-

nia.28-36 However, very little is known about the effects of

low-dose radiation on the primitive type Asingle SSCs.23,24

We focused on BM cells because these cells are highly

sensitive to radiation-induced acute and long-term injuries

(normally known as genomic instability)37-42 and are at risk

of radiation-induced myeloid leukemia.43-45 Further, we previ-

ously demonstrated that low doses of 137Cs g-rays (as low as

0.05 Gy) are incapable of inducing genomic instability, known

to be one of the important steps in carcinogenesis,46 assessed

by late-occurring CAs, while a single dose of 1.0 Gy of
137Cs g-rays (a high dose) is capable of inducing genomic

instability in BM cells collected from BALB/cJ mice used in

this report.22 Likewise, our focus was also on the lung because

it is one of the tissues known to be highly sensitive to radiation-

induced acute and chronic inflammation and cell death.47-50

Further, an elevated incidence of lung cancer has been docu-

mented in atomic bomb survivors who were exposed to g-rays

and neutrons51 as well as in the Mayak workers of a nuclear

facility in the Russian Federation who were exposed to both

g-rays and a particles from inhaling plutonium (239Pu).52

In this study, we used 3 biological metrics closely linked to

cell/tissue damage and cancer induction53-60 to determine the

effects of low-dose radiation in the BM, lung, and testis col-

lected from the same individual mouse: (1) cell death by mea-

suring the levels of cleaved poly (ADP-ribose) polymerase

(cleaved PARP), a marker of cell death associated with

caspase activation; (2) inflammatory responses, that is, nuclear

factor-kB (NF-kB, a redox-sensitive transcription factor),

including pro- and anti-inflammatory cytokines; and (3) DNA

methylation, that is, global 5-methylcytosine (5mC) and

5-hydroxymethylcytosine (5hmC), that is, epigenetic altera-

tions. We routinely use these biological metrics to investigate

the biological responses across tissues after exposure of mice to

radiation with different qualities.49,50,61,62

Materials and Methods

Animals and Radiation Exposure

Details of mice and g-irradiation have been presented else-

where.22 In brief, all male BALB/cJ mice (8-10 weeks old)

were purchased from the Jackson Laboratory (Bar Harbor,

Maine) and acclimatized for 2 weeks prior to g-irradiation. It

should be noted that the BALB/cJ mouse strain is known to be a

radiosensitive strain.63 Mice were housed and cared for in a

facility accredited by the American Association for Accredita-

tion of Laboratory Animal Care. All animal handling proce-

dures were performed under the approved guidelines by the

Institutional Animal Care and Use Committee of Stony Brook

University (SBU). Four groups of mice (5 in each) were

exposed whole body to 0, 0.05, 0.1, or 1.0 Gy of 137Cs g rays

(at the dose rate of 0.75 Gy/min) using the GammaCell 40

(Atomic Energy of Canada, Ltd, Ontario, Canada) located in

the Division of the Laboratory Animal Resources of SBU.
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Mice exposed to 0 or 1.0 Gy of 137Cs g rays served as a sham or

positive control, respectively. Figure 1 shows the experimental

approach of this study.

Collection of BM Cells, Lung, and Testis

In each mouse, the methods for the collection and storage of

BM cells from femurs and tibia,22 the lung,49,62 and the testis49

routinely used in our laboratory were followed. Prior to protein

or DNA isolation, the total lung or testicular lysate was

obtained by homogenization of the lung or the testis using a

Bullet Blender Homogenizer (Next Advance Inc, Averill Park,

New York). The protocols for homogenization of the lung or

testis suggested by the manufacturer was followed, that is, the

stainless steel beads (0.9-2.0 mm, part #SSB14B) for the lung

and the zirconium oxide bead (multiple sizes of beads, part

#ZSB05) for the testis. Then, the lung and testis lysates, includ-

ing BM cells, of each individual mouse were divided into 2

portions, that is, 0.9-A and B. The portion A of each lysate was

used to extract proteins from nuclear and cytosolic fractions

using commercially available protein extraction kits (Active

Motif Inc, Carlsbad, California).49,61,62 Protein contents in the

cytosolic and the nuclear fractions of each lysate were

measured by the Bradford assay using a BioPhotometer

(Eppendorf, Inc, Westbury, New York). Subsequently, the total

protein obtained from the nuclear fraction of each lysate was

used for the quantitation of activated NF-kB, while the total

protein obtained from the cytosolic fraction was used for the

measurements of NF-kB-regulated pro- and anti-inflammatory

cytokines, that is, tumor necrosis factor a (TNF-a), interleukin

(IL)-1b, IL-6, and IL-10, including the levels of cleaved PARP.

The portion B of each lysate of the same individual mouse was

used to isolate DNA for the measurements of global 5mC and

global 5hmC levels.

Measurements of Cleaved PARP

Similar to our previous studies,50,62 a commercially available

enzyme-linked immunosorbent assay (ELISA) kit specific for

cleaved PARP (Asp214) purchased from Cell Signaling Tech-

nology Inc (Beverly, Massachusetts) was used to measure the

level of cleaved PARP. The data readouts were the levels of

absorbance at 450 nm (using 50 mg protein per well as sug-

gested by the manufacturer). The measurement of cleaved

PARP was performed in duplicate wells for each lysate sample

from each mouse. Then, the median, mean, and standard error

(SE) values for each mouse in each treatment group were

obtained. Subsequently, to simplify the comparison of the

Figure 1. Diagram of the experimental approach.

Jangiam et al 3



levels of cleaved PARP with other biological metrics used in

this study, we presented the final data as the levels of absor-

bance at 450 nm in 100 mg protein.

Measurement of Activated NF-kB (NF-kB/p65)

We routinely used the specific NF-kB/p65 (referred to as NF-

kB throughout the article) ELISA kits available from Active

Motif North America, Inc (Carlsbad, California) to measure

the levels of activated NF-kB in the nuclear fractions obtained

from the BM, lung, and testis lysates collected from the same

individual mouse.49,61,62 The procedure suggested by the

manufacturer was followed. The level of absorbance at 450

nm was measured in 1 mg of protein per well. The assay was

performed in duplicate wells for each tissue of each mouse.

The data obtained from microplate spectrophotometer read-

ings at 450 nm are the corrected values for the rate of tetra-

methyl benzidine conversion, (expressed as optical density or

OD/min) in actual samples after subtraction of the substrate

conversion rates in reagent blank samples. The median, mean,

and SE values of activated NF-kB levels of each tissue of each

mouse were obtained. As with cleaved PARP, the final data

are presented as the levels of absorbance at 450 nm in 100 mg

protein.

Measurement of the Selected NF-kB-Regulated Pro- and
Anti-Inflammatory Cytokines

We measured the expression, at the protein level, of selected

cytokines known to be regulated by NF-kB activation: (1)

proinflammatory cytokines, that is, TNF-a, IL-1b, and IL-6,

and (2) an anti-inflammatory cytokine, that is, IL-10. We

applied the methods suggested by the manufacturer (Biosource;

Invitrogen, Carlsbad, California) that are routinely used in our

laboratory for measuring the expression levels of these selected

cytokines, at the protein level, in the cytosolic fraction of the

BM, lung, and testis using the specific ELISA kits for TNF-a,

IL-1b, IL-6, and IL10 from Biosource (Invitrogen).49,62

Briefly, serial dilutions of known concentrations of each cyto-

kine were used to create a standard curve for each of the cyto-

kines included in the study. The levels of each cytokine in the

lysate of each tissue from the same mouse were measured using

a microplate spectrophotometer (Molecular Devices, Sunny-

vale, California) at 450 nm. The concentrations of the cyto-

kines in each lysate sample (100 mL per well) were calculated

from their respective standard curves. Ultimately, for each

cytokine, the data are reported as picogram in 100 mg of pro-

tein. Similar to the measurements of activated NF-kB and

cleaved PARP, the assay for each cytokine was performed in

duplicate. The median, mean, and SE of each cytokine for each

treatment group were obtained.

Measurement of 5mC and 5hmC

The methods for DNA isolation from the mouse BM cells

and tissue lysates, using the DNeasy kit (Qiagen,

ValenciaCalifornia), have been previously presented.40,49 Prior

to using for the measurements of levels of global 5mC and

5hmC, DNA concentrations and purities were measured using

the BioPhotometer (Eppendorf Co). Subsequently, we used

commercially available ELISA kits for the detection of global

5mC and 5hmC (Zymo Research, Inc, Irvine, California) to

measure the percentage of global 5mC and 5hmC in the DNA

samples isolated from the BM cells and the lung/testis lysates

of these mice. The methods suggested by the manufacturer

were followed. In brief, the levels of global 5mC and 5hmC

were measured using a microplate spectrophotometer (Mole-

cular Devices) at 405 nm. Thereafter, the % 5mC and % 5hmC

were calculated from a standard curve obtained using the con-

trol DNA set provided by the manufacturer. The measurements

of 5mC and 5hmC in the DNA sample from each tissue of each

mouse were also done in duplicate (using 200 ng of DNA per

well). Finally, the median, mean, and SE values of global 5mC

and global 5hmC were obtained for each treatment group.

Statistical Analyses

We presented the levels of each biological metric as mean +
standard error of the mean. For each tissue, the mean value for

each assay of each mouse was used as a single datum point for

statistical analyses. The Student t test was used to evaluate

statistical differences in the mean values of each exposed group

and the corresponding sham control group. A P value of �.05

was considered as statistically significant.

Results

Supplemental Table 1 presents the raw data and descriptive

statistics (median, mean, and SE) of each biological metric

used to investigate the effects of low doses of radiation (0.05

or 0.1Gy), including a high dose (1.0 Gy) of radiation, on the

BM, lung, and testis collected from the same individual mouse.

There were 5 mice in each group. Our data indicated that the

majority of the median values of each group are very similar to

the mean value. More importantly, the values of these 2 para-

meters are the same in many cases. These findings suggest the

normal distribution of the data. Further, the data obtained in

this study are similar to those in our previously published work

regarding the levels of cleaved PARP,50,62 activated NF-kB,

TNF-a, IL-1b, IL-6, 5mC, and 5hmC.40,49,50,61,62 Hence, we

applied a similar statistical approach, that is, Student t test, to

determine the differences in each biological metric between

exposed and corresponding sham control groups. Figures 2 to

7 show the levels of cleaved PARP, activated NF-kB, TNF-a,

IL-1b, IL-6, Il-10, 5mC, and 5hmC, respectively, in the BM,

lung, and testis collected from the same individual mouse at

6 months after irradiation. P values (Student t test) shown in

each figure indicate statistical differences between exposed and

the corresponding sham control groups. Details of our results

for each biological metric are shown as follows.
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Levels of Cleaved PARP

Figure 2 shows the levels of cleaved PARP in the BM, lung,

and testis from the same mouse of each exposed group col-

lected at 6 months post-exposure to various doses of 137Cs g
rays. Our results indicate that the levels of cleaved PARP in the

BM, lung, and testis collected from mice exposed to 0.05 Gy of
137Cs g-rays did not differ from those in the corresponding

tissues collected from the sham control groups (P values ¼
.1, .25, and .24 for BM, lung, and testis, respectively). Notably,

the levels of cleaved PARP in the BM and the lung from the

0.05 Gy exposed groups were lower than those in the sham

controls. Nonetheless, such decreases were not statistically dif-

ferent. For the 0.1 Gy exposed group, a significant level of

cleaved PARP was detected in the lung tissue (P ¼ .04) only.

However, there were significant increases in the levels of

cleaved PARP in all tissues of mice exposed to a high dose

of 137Cs g-rays used in this study (ie, 1.0 Gy), when compared

to those in the corresponding sham controls (P values ¼ .005,

.002, and .01 for BM, lung, and testis, respectively).

In summary, our data clearly demonstrated there were no

tissues injuries (determined by the levels of cleaved PARP in

the BM, lung, and testis) in mice exposed to a single dose of

0.05 Gy of 137Cs g-rays. In contrast, the effectiveness of a

single dose of 0.1 or 1.0 Gy of 137Cs g-rays in inducing tissue

injuries was evident.

Levels of Activated NF-kB

Figure 3 presents our data on the levels of activated NF-kB in

the BM, lung, and testis collected from the same exposed

mouse (5 mice in each group) at 6 months post-irradiation.

Similar to the levels of cleaved PARP, our data demonstrated

that there was no statistical difference in the levels of activated

NF-kB in the BM, lung, and testis from the same mouse, when

compared to such levels in the corresponding tissue from the

sham controls (P values ¼ .12, .28, and .09 for the BM, lung,

and testis, respectively). However, a reduction (but not

statistically significant) was found in the levels of activated

NF-kB in the lung and testis (not the BM) from mice exposed

to 0.05 Gy of 137Cs g-rays in relation to the sham control levels.

Our data also revealed that a single dose of 0.1 or 1.0 Gy of
137Cs g-rays induced highly significant increases in the levels

of activated NF-kB in all tissues from the same individual

mouse collected at 6 months post-irradiation, when compared

to the levels in corresponding tissues (P values ranging from

.003 to 1.5 � 10�7). It should be noted that a single dose of 0.1

or 1.0 Gy of 137Cs g-rays induced a higher level of activated

NF-kB in the BM than in the lung or testis.

Undoubtedly, our data demonstrated that a single dose of

0.05 Gy of 137Cs g rays did not increase the levels of activated

NF-kB. Further, our data showed a reduction (but not signifi-

cant) in the levels of activated NF-kB in the lung and testis

collected from the same exposed mice exposed to this low dose

of radiation. Such findings suggest the trend of beneficial

effects, normally known as “hormesis,” of this low dose level

(0.05 Gy) of radiation in the lung and testis of the same exposed

mouse (evaluated by the levels of activated NF-kB). This phe-

nomenon was not detected in tissues of mice exposed to 0.1 or

1.0 Gy of 137Cs g-rays.

Levels of Selected Pro-inflammatory Cytokines, That is,
TNF-a, IL-1b, and IL-6

Figure 4 shows that there were no statistical differences in

levels of all 3 selected NF-kB-regulated proinflammatory cyto-

kines (ie, TNF-a, IL-1b, and IL-6) in the BM, lung, and testis

from the same mice collected at 6 months after exposure to a

single dose of 0.05 Gy of 137Cs g-rays, in relation to the levels

in the corresponding tissues collected from sham controls.

However, a single dose of 0.1 or 1.0 Gy of 137Cs g-rays induced

highly significant increases in the levels of these 3 pro-

inflammatory cytokines in all tissues from the same mouse

collected at 6 months post-irradiation in relation to the levels

in the corresponding tissues from the same mouse. Our data

Figure 2. Levels of cleaved poly (ADP-ribose) polymerase (PARP) in the bone marrow (BM), lung, and testis collected at 6 months from the
same BALB/cJ mouse after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed to 0 or 1.0 Gy of 137Cs g rays were used as a
sham or a positive control group, respectively. The data reflect the absorbance at 450 nm of 100 mg protein. There were 5 mice in each group. P
values (Student t test) indicate statistical differences (at the significant level of P value <.05) in the levels of cleaved PARP between exposed and
corresponding tissues from the sham control group.
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also showed that the control levels of TNF-a, IL-1b, and IL-6

differ among tissues of the BALB/cJ mouse, with the highest

control level in the BM.

Our results unambiguously indicated no increases in the

expression levels of all pro-inflammatory cytokines included

in the studies in all types of tissues collected from the same

mouse exposed to a single dose of 0.05 Gy of 137Cs g rays.

Overall, our results showed that there was no increased risk of

chronic inflammation (harmful effects) from exposure to this

low dose level, evaluated as a lack of increased expression of

pro-inflammatory cytokines. In contrast, our data clearly

showed significant increases in the expression levels of pro-

inflammatory cytokines (indicative of chronic inflammation) in

all tissues selected for analyses that were collected from the

same individual mice exposed to a single dose of 0.1 or 1.0 Gy

of 137Cs g rays.

Levels of a Selected Anti-Inflammatory Cytokine,
That is, IL-10

Figure 5 demonstrates significant increases in the levels of

IL-10 in the BM, lung, and testis collected at 6 months from

the same mouse exposed to 0.05 Gy of 137Cs g-rays, in relation

to the levels in the corresponding tissues (P values ¼ .01,

.0001, and .009 for the BM, lung, and testis, respectively).

However, the levels of IL-10 in the BM, lung, and testis col-

lected from the same individual mouse after exposure of a

single dose of 0.1 or 1.0 Gy of 137Cs g-rays are similar to those

detected in the corresponding tissues from the sham control

group (P values are .18 and .49 for the BM; .39 and .26 for

the lung; and .14 and .25 for the testis). Similar to the control

levels of pro-inflammatory cytokines, our data showed that the

control levels of the anti-inflammatory cytokine IL-10 differ

among tissues of the BALB/cJ mouse. The highest control level

of IL-10 was found in the testis.

Our results clearly showed that a single dose of 0.05 Gy of
137Cs g-rays induced highly significant expression of an anti-

inflammatory cytokine IL-10 in all tissues collected from the

same exposed mouse. Hence, our results suggest that this low-

dose radiation protects exposed individuals from cell/tissue

injuries by stimulating the immunity, enabling cells/tissues to

maintain homeostasis and integrity. Such a phenomenon was

not observed in any tissue of mice exposed to 0.1 or 1.0 Gy of
137Cs g-rays.

Levels of Global 5mC

Figure 6 shows the effects of 137Cs g-rays (at the doses of 0,

0.05, 0.1 or 1.0 Gy) on the levels of global 5mC in the BM,

lung, and testis from the same mouse collected at 6 months

after irradiation. There was a trend of increased levels of global

5mC in all examined tissues of exposed mice, regardless of

radiation dose, in relation to those of the corresponding sham

controls. However, such increases were not statistically differ-

ent (P values ranging from .13 to .48). The control level of

global 5mC was highest in the lung of BALB/cJ mice, while

those in the BM and testis were relatively similar.

At the global level, our data showed no differences in the

levels of global 5mC in all tissues included in the analyses that

were collected from the same exposed mice, regardless of

radiation dose.

Levels of 5hmC

Figure 7 shows that there were no differences in the levels of

global 5hmC in the BM, lung, and testis in mice exposed to

0.05 Gy of 137Cs g-rays compared to the corresponding tissues

collected from the sham control group (P values ¼ .22, 0.29,

and .32 for the BM, lung, and testis, respectively). In contrast,

the levels of global 5hmC were significantly reduced in all

tissues collected from mice exposed to either 0.1 or 1.0 Gy

of 137Cs g rays when compared to the levels in the correspond-

ing tissues from the sham control group. Of note, the lung of

sham control mice possesses the highest levels of global 5hmC

Figure 3. Levels of activated nuclear factor kB (NF-kB) in the bone marrow (BM), lung, and testis collected at 6 months from the same BALB/cJ
mouse after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed to 0 or 1.0 Gy of 137Cs g rays were used as a sham or a
positive control group, respectively. The data reflect the absorbance at 450 nm of 100 mg protein. There were 5 mice in each group. P values
(Student t test) indicate statistical differences (at the significant level of P value <.05) in the levels of activated NF-kB between exposed and
corresponding tissues from the sham control group.
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in relation to those in the BM or testis from the same individual

mouse. Further, the control level of global 5hmC is lowest in

BM cells.

Our data unequivocally demonstrated that there were no

epigenetic alterations (determined by the levels of global

5hmC) in all studied tissues collected from the same mice

exposed to a single dose of 0.05 Gy of 137Cs g-rays. However,

our results clearly showed that a single dose of 0.1 or 1.0 Gy of
137Cs g rays induced a significant loss of global 5hmC (a phe-

nomenon normally observed in cancer cells).60

Discussion

Our study is the first to use 3 different biological metrics

closely linked to cell/tissue damage and cancer induction to

evaluate the late effects of low-dose radiation (0.05 or 0.1 Gy

of 137Cs g-rays) in both somatic (ie, the BM and lung) and

germinal (ie, the testis) tissues collected from the same indi-

vidual BALB/cJ mouse at 6 months after irradiation. The

results from our integrative approach could deliver information

for better assessment of health risks across tissues of the same

Figure 4. Levels (picograms in 100 mg of protein) of tumor necrosis factor a (TNF-a), interleukin (IL) 1b, and IL-6 in the bone marrow (BM),
lung, and testis collected at 6 months from the same BALB/cJ mouse after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed
to 0 or 1.0 Gy of 137Cs g rays were used as a sham or positive control, respectively. There were 5 mice in each group. P values (Student t test)
indicate statistical differences (at the significant level of P value <.05) in the levels of TNF-a, IL-1b, and IL-6 between exposed and corresponding
tissues from the sham control group.
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Figure 5. Levels (picograms in 100 mg of protein) of interleukin 10 (IL-10) in the bone marrow (BM), lung, and testis collected at 6 months from
the same BALB/cJ mouse after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed to 0 or 1.0 Gy of 137Cs g rays were used as
a sham or positive control, respectively. There were 5 mice in each group. P values (Student t test) indicate statistical differences (at the
significant level of P value <.05) in the levels of IL-10 between exposed and corresponding tissues from the sham control group.

Figure 6. Levels of global 5-methylcytosine (5mC) in the bone marrow (BM), lung, and testis collected at 6 months from the same BALB/cJ
mouse after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed to 0 or 1.0 Gy of 137Cs g rays were used as a sham or positive
control, respectively. There were 5 mice in each group. P values (Student t test) indicate statistical differences (at the significant level of P value
<.05) in the levels of global 5mC between exposed and corresponding tissues from the sham control group.

Figure 7. Levels of global and 5-hydroxymethylcytosine (5hmC) in the BM, lung, and testis collected at 6 months from the same BALB/cJ mouse
after exposure to low doses (0.05 or 0.1 Gy) of 137Cs g rays. Mice exposed to 0 or 1.0 Gy of 137Cs g rays were used as a sham or positive
control, respectively. There were 5 mice in each group. P values (Student t test) indicate statistical differences (at the significant level of P value
<.05) in the levels of global 5mhC between exposed and corresponding tissues from the sham control group.
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exposed individual and could provide the better scientific basis

for radiation protection and clinical application.

We observed a reduction in the levels of cleaved PARP in

the BM collected from mice exposed to 0.05 Gy of 137Cs g rays

(Figure 2) and in the levels of activated NF-kB in the lung and

testis (not in the BM) from the same individual mouse exposed

to a single dose of 0.05 Gy of 137Cs g-rays (Figure 3). Although

such reduction is not statistically significant (in relation to

those observed in the sham control group), our data showed

not only no harmful late effects but also a trend of hormetic

effects in tissues of exposed male BALB/cJ mice. Of note, our

data demonstrated that such beneficial effects are dependent on

the tissue and the biological metric used for analyses, that is,

cleaved PARP in the BM and activated NF-kB in the lung and

testis. Overall, the hormesis beneficial effect of low-dose radia-

tion does not always occur. Similar findings have been reported

in both in vitro and in vivo systems.21,64,65 At higher doses of

radiation (ie, 0.1 or 1.0 Gy of 137Cs g rays), we detected highly

significant increases in the levels of cleaved PARP (Figure 2)

and activated NF-kB in all tissues included in the analyses

(Figure 3).

In this study, we detected no statistical differences in the

levels of the NF-kB-regulated proinflammatory cytokines

included in our study (ie,TNF-a, IL-1b, and IL-6) in all tissues

collected from the same individual mouse exposed to 0.05 Gy

of 137Cs g-rays, in relation to those in the corresponding tissues

from the sham control group (Figure 4). Importantly, our data

show that a single dose of 0.05 Gy of 137Cs g-rays induced

significant increases in the levels of an anti-inflammatory cyto-

kine IL-10 in all tissues collected from the same individual

mouse (Figure 5). Hence, the findings of increased levels of

an anti-inflammatory cytokine IL-10, combined with no induc-

tion of proinflammatory cytokines, suggests that there are no

harmful effects to the immune system in the BM, lung, and

testis after exposure of male BALB/cJ mice to a single dose of

0.05 Gy of 137Cs g rays. Taken together, it is possible that this

low-dose radiation protects exposed individuals from cell/tis-

sue injuries by stimulating the immunity that, in turn, enables

cells/tissues to maintain homeostasis and integrity.

It should be noted that although our data suggest beneficial

effects of low-dose radiation, the investigation of only one

signaling pathway (ie, NF-kB activation) and a small number

of cytokines limits the clinical value of our data. Therefore, to

properly assess the benefits/risks of exposure to low-dose

radiation, other transduction signaling pathways66 should be

included in future analyses. Examples of such pathways are

the activation of nuclear factor erythroid 2-related factor 2

transcription factor, activator protein-1, signal transducer and

activator of transcription 3, tumor suppressor p53, and

mitogen-activated protein kinases. Many other cytokines/che-

mokines involved in various functional responses (eg, innate

immunity, adaptive immunity, growth factor, and chemokines)

should also be measured in different tissues, including plasma,

collected from the same individual mouse after exposure. The

available information on both plasma (circulating) and tissue

cytokines of the same mouse would help to determine the

strength or limitation of plasma cytokines in clinical applica-

tions for radiation exposure. Further, the levels of cytoprotec-

tive antioxidant enzymes, for example NAD(P)H quinone

dehydrogenase 1, superoxide dismutase, and heme

oxygenase-1, should be investigated in different tissues col-

lected from the same mouse. Additionally, histopathological

evaluations in these tissues of the same mouse are needed. Such

an approach would deliver the most reliable information on the

potential health benefits/risks of low-dose radiation (<0.1 Gy).

In contrast, we detected statistically significant increases in

the levels of all of the pro-inflammatory cytokines selected for

analyses (ie, TNF-a, IL-1b, and Il-6) in all tissues from the

same mouse exposed to 0.1 or 1.0 Gy of 137Cs g-rays (Figure

4). Taken together, our data also suggest that a single dose of

0.1 or 1.0 Gy of 137Cs g rays induced impairment of the

immune system (the manifestation of chronic inflammation)

at 6 months post-irradiation that may trigger genomic instabil-

ity and/or other downstream signaling pathways associated

with health risks.

It is known that DNA methylation is one of the key epige-

netic events associated with cancer induction. A high level of

global 5mC (hypermethylation) in specific loci has been linked

to suppression of gene activation,67,68 while a reduction in

levels of global 5hmC has been linked to cancer induc-

tion.57,58,60 In this study, we found no changes in the levels

of global 5hmC in the BM, lung, and testis from mice exposed

to 0.05 Gy of 137Cs g-rays only (Figure 6). In contrast, a sig-

nificant reduction in the levels of global 5hmC was detected in

all tissues from mice exposed to 0.1 or 1.0 Gy of 137Cs g-rays.

Such observations were similar to those detected in the lung

and testis collected from CBA/Ca mice exposed to various

doses (0.1, 0.25, or 0.5 Gy) of heavy titanium ions (48Ti ions,

one type of radiation found in the space environment).49 Con-

sequently, our data suggest that the loss of global 5hmC is an

important biological response to radiation exposure (at the dose

range of �0.1 Gy), regardless of radiation quality and tissue.

Since a loss of global 5hmC and chronic inflammation (high

levels of activated NF-kB and proinflammatory cytokines)

were detected in the same tissue of the same mouse exposed

to 0.1 or 1.0 Gy of 137Cs g-rays, it is plausible to postulate that

there is a link between chronic inflammation and a loss of

global 5hmC. However, it remains unclear whether chronic

inflammation enhances the loss of global 5hmC or the loss of

global 5hmC heightens chronic inflammation.

With respect to the levels of global 5mC in the BM, lung,

and testis from the same mouse, our data showed no significant

change in the levels of global 5mC for all doses of 137Cs g-rays

radiation (Figure 6). Similar observations were reported in our

previous studies with space radiation (heavy ions).40,49,61 Thus,

based on our data from this study, in combination with our data

previously published, a loss of global 5hmC may be a more

appropriate biomarker of radiation exposure than the changes

in the levels of global 5mC. In the future, the identification of

genes affected by methylation/hydroxymethylation should be

performed to enhance our understanding of epigenetic events

induced by low or high doses of radiation. Such studies may
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help to discover genes/proteins that serve as the molecular shift

of responses from low doses (less than 0.1 Gy) to high doses of

radiation (equal to or more than 0.1 Gy).

Our investigation of the late effects of low-dose radiation on

the primitive Asingle SSCs is important because the SSCs are

capable of self-renewal and differentiation into spermatocytes

and mature sperm. Thus, any damage to the SSC compartment,

if no repair, will be transmitted to the next generation and will

have adverse effects on self-renewal, proliferation, and differ-

entiation, leading to genetic risk. The damage in the SSCs has

also been linked to long-term effects of radiation on ferti-

lity.31,6970, On the other hand, the induced damage occurring

in other stages of male germ cell development (eg, spermato-

cytes) will have an impact on the progeny that are conceived

shortly after irradiation.

In summary, our data showed no alterations in the levels of

cell death (tissue injuries), inflammation, and epigenetics at the

global levels (global 5mC and 5hmC) in tissues of 0.05 Gy

exposed mice, when compared to those in sham controls.

Further, we found a significant increase in the levels of an

anti-inflammatory cytokine, that is, IL10, suggesting the stimu-

latory effects on the immunity, in tissues of 0.05 Gy exposed

mice. Additionally, our data suggested the hormetic effect of a

single dose of 0.05 Gy of 137Cs g-rays. However, such hormesis

beneficial effect is not robust and appears to be dependent on

the tissue and biological metric used for the analyses. At the

dose level of 0.1 or 1.0 Gy of 137Cs g-rays, however, significant

levels of induced damage were detected. Figure 8 is a diagram

summarizing the biological responses to low-dose (�0.1 Gy)

and high-dose (1.0 Gy) radiation. Together with our data on

late-occurring CAs (genomic instability) previously pub-

lished,22 we conclude that exposure to a single dose of

0.05 Gy of 137Cs g-rays (the existing limit for exposure in the

workplace) does not pose health risks in the BM, lung, and

testis of exposed individuals. Our inference is based on the

findings that this low-dose radiation fails to induce the biolo-

gical events known to be linked to chronic diseases such as

cancer (ie, genomic instability,58 chronic inflammation,57,58

and loss of global 5hmC60), as well as cell/tissue injuries (ie,

cleaved PARP as the cellular marker for cell death) in all tissue

types included in the analyses.
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Figure 8. Differences in response to low and high doses of radiation at 6 months after exposure of male BALB/cJ mice. Deleterious effects were
not detected in the bone marrow (BM), lung, and testis collected from the same mouse exposed to a single dose of 0.05 Gy of 137Cs g rays when
compared to the corresponding tissues collected from the sham control group. In contrast, deleterious effects were detected in all tissues
collected from mice exposed to either 0.1 or 1.0 Gy of 137Cs g rays.
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