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Motor imagery (MI) electroencephalograph (EEG) signals arewidely applied in brain-computer interface (BCI).However, classified
MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity.
This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals.
In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related
signals, and then, canonical correlation analysis (CCA) combinedwith wavelet threshold denoising (WTD) is used for EOG artifact
preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating
the principle of generic learning. A new classifier combining the 𝐾-nearest neighbor (KNN) and support vector machine (SVM)
approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right
shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%.
The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples
and the overall classification performance.

1. Introduction

Brain-computer interface (BCI) provides an efficient com-
munication bridge between the human brain and external
manageable devices [1]. Among the signal-controlling BCI
sources, the P300 [2], steady-state visual-evoked potential
(SSVEP) [3], and motor imagery (MI) [4] signals are the
most commonly used. In contrast to SSVEP and P300, MI
is a self-induced brain activity, which is initiated by imaging
certain limbs or other body parts to move without the help
of outside inducing factors [5]. An MI BCI system was first
used based on this feature to assist humans with severe dis-
abilities [6]. This system is also used for humanoid controls
[7], entertainment game designs [8], and aircraft flight con-
trols [9]. However, the performance of this system is largely
dependent on the number of MI motion commands that can
be precisely classified.

The cerebral cortex of left-handers and right-handers is
anisomerous [10]. Therefore, cerebral cortex activities often
present evident differences and cannot be easily distinguished

when right-handers imagine symmetric limbmovements [11,
12]. Our study aims to analyze and recognize four anisomer-
ous MI states, namely, imaginary movements with the left
hand, right foot, and right shoulder and the resting state.

In general, MI pattern recognition systems involve raw
MI EEG signal preprocessing, feature extraction, and pat-
tern classification. However, subjects experience difficulty
in avoiding eye movements and consequently produce elec-
trooculogram (EOG) artifacts in raw MI EEG signals [13].
The obtained raw MI EEG signals are mainly affected by
the vertical EOG (VEOG) signals generated by blinking
eyes. The preprocessing algorithms for EEG signals mainly
include time domain filtering, blind source separation [14],
and time-frequency domain analysis methods. Time domain
methods, such as the low-pass filter method and band-pass
filter method [15], have been used to eliminate EOG artifacts
[16, 17]. However, time domain filtering methods cannot
effectively remove the majority of the EOG artifacts. Vergult
et al. [18] used blind source separation and canonical cor-
relation analysis (CCA) to effectively denoise EOG artifacts
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from raw MI EEG signals, but the CCA algorithm should
be able to artificially recognize the artifact components. Hsu
et al. [19] used a time-frequency domain analysis method
called discrete wavelet transform (DWT) to denoise EOG
artifacts from raw EEG signals. The multiresolving feature of
DWT enables nonstationary EEG signals to be considered.
However, a small portion of the EOG artifacts remains in
the EEG signals after the DWT denoise preprocessing is
completed. Thus, a more effective preprocessing algorithm
should be developed to denoise EOG artifacts.

Feature extraction is another critical step in MI pattern
recognition. Common EEG features include those in the
time domain, frequency domain, time-frequency domain,
and spatial domain [20]. Time domain analysis ismainly con-
ducted to extract EEG features because MI EEG signals are
recorded in the time domain. For example, Khushaba et al.
[21] extracted EEG features from the time domain to form
a set of features that was relevant to the limb position. EEG
signals also contain various frequency components. Prasad
et al. [22] used power spectral density as an EEG feature.
Time-frequency domain analysis methods can integrate the
advantages of time domain and frequency domain analysis
methods. Wang et al. [23] applied a wavelet packet transform
method to extract the time and frequency information in
EEG signals. However, univariate and integrated analysis
methods using the time domain and frequency domain are
not appropriate formultichannel EEG feature extraction [24].

After preprocessing raw MI EEG signals and extracting
the features, we aimed to develop an appropriate classifier
to precisely categorize the MI motion commands. Common
classification algorithms for EEG features include the linear
distance discriminant [25], support vector machine (SVM)
[26], clustering algorithms [27], Bayesian classifiers, and
back propagation neural network (BPNN) classifiers [28].
However, the classifiers exhibit poor performance when the
EEG features overlap with one another.

Considering previous studies, we propose a novel MI
pattern recognition system for classifyingMIEEG signals.We
use the Butterworth band-pass filter to extract EEG signals
having frequencies of 8–30Hz during the preprocessing of
raw EEG signals. We then apply a CCA algorithm that
integrates a wavelet threshold denoising (WTD) algorithm to
form a compound algorithm called the wCCA algorithm and
to process the extracted frequency band signals. We also use
a regularized common spatial pattern (R-CSP) algorithm by
incorporating the principle of generic learning [29] to extract
the EEG features in the spatial domain. This approach can
effectively extract connotative spatial information from mul-
tichannel EEG signals and reduce the data dimension based
on minority samples. We combine the 𝐾-nearest neighbor
(KNN) and SVMmethods, which we call KNN-SVM, to clas-
sify the EEG features. We compare the KNN-SVM classifier
to several classifiers to validate its classification performance.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the EEG signal acquisition. Section 3 intro-
duces the raw EEG signal preprocessing. Section 4 explains
feature extraction with the R-CSP algorithm. Section 5 dis-
cusses the KNN-SVM classifier and compares it with several
classifiers. Section 6 presents our experimental results and a
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Figure 1: The positions of the EEG electrodes.

discussion. Section 7 provides the conclusions and recom-
mends concepts for future studies.

2. EEG Signal Acquisition

We selected 14 Ag/AgCl electrodes that were relevant to the
MI brain region based on the Brodmann brain function
partition and international 10/20 electrode lead system [30,
31]. Among the 14 electrodes, two (FZ, CZ) were placed in
the central brain region, six (T7, P3, P7, CP3, FC3, and C3)
were in the left brain region, and six (T8, P4, P8, CP4, FC4,
and C4) were located in the right brain region. The elec-
trodes in the left and right brain regions are symmetric
(Figure 1). Bipolar lead modes with two electrodes were used
to record vertical EOG (VEOG) signals: one electrode was
placed above the left eyebrow, and the other electrode was
placed on the lower edge of the left eye socket. Monopolar
derivations were used throughout the recordings. In this
process, the left mastoid and forehead served as the reference
and ground, respectively.The signals were sampled at 256Hz,
and an additional 50Hz notch filter was enabled to suppress
the power line interference by using a g.tec device (g.tecmedi-
cal engineering GmbH, Schiedlberg, Austria).

A subject sat on a relaxing chair, and the subject’s arms
were placed in a relaxed position on his legs. The paradigm
consisted of four different tasks, namely, imaginary move-
ments with the left hand (LH), right foot (RF), right shoulder
(RS), and the resting state (R). At the beginning of a trial (𝑡
= 0 s), a fixation cross “+” was displayed on a black screen.
In addition, a short acoustic warning tone was presented.
After two seconds (𝑡 = 2 s), a text prompt for the left
hand (LH), right foot (RF), right shoulder (RS), or resting
state (R) was displayed in the center of the screen and
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Figure 2: Timing scheme of the EEG signal recording.

remained on the screen for 2 s. This prompted the subject
to perform the desired MI task. The subject was asked to
continue performing the MI task until the fixation cross “+”
disappeared from the screen at 𝑡 = 7 s. A short break followed,
with a blank screen lasting for two seconds. The paradigm is
illustrated in Figure 2.

Five healthy subjects, namely, three men (Subjects A, B,
and D) who were 30, 25, and 23 years of age, respectively,
and two women (Subjects C and E) who were 21 and 23
years of age, respectively, participated in the experiment and
performed the four MI tasks. Subject A was left-handed, and
the other subjects were right-handed. Each MI motion state
was recorded for one session, and altogether four sessions
were recorded for each subject. Each session consisted of 60
trials separated by short breaks (lasting a couple of minutes)
breaks. For each state, 50 trials were selected for training and
the remaining 10 trials were used for testing. In total, 240 trials
were performed per subject.

3. Raw EEG Signal Preprocessing

For raw EEG signals, the Butterworth band-pass filter was
used to extract the 8–30Hz frequencies of the signals. The
brain is a good conductor of electricity. As such, EOG signals
spread from the forehead to the back of the head and thus
traverse the entire head. We considered the different spatial
distribution characteristics of the EEG and EOG signals. For
twelve symmetrical electrodes (T7, T8, P3, P4, P7, P8, CP3,
CP4, FC3, FC4, C3, and C4), we used the wCCA algorithm
to examine the mixed signals in a new form. X represents
the EEG signals collected from six electrodes in the left brain
region, and Y denotes the six other electrodes in the right
brain region. The VEOG signal was added to X and Y. The
first pair of components was calculated throughCCAdecom-
position and exhibited the highest correlation. The compo-
nents can be regarded as the most communal ingredient
between the left and right brain regions, which are composed
of the EOG artifacts and a small number of high-frequency
EEG components. Then, wavelet threshold denoising was
performed to remove the EOG artifacts and maintain a small
amount of high-frequency EEG components. Finally, pure
EEG signals of twelve symmetric electrodes were obtained
through wCCA algorithm processing. For two central brain
region electrodes (FZ, CZ), the wavelet basis “db4” was
used to conduct five-layer wavelet decomposition for the
EEG signals of FZ and CZ. Then, the wavelet soft threshold
denoising function “wdencmp” was used to process the
decomposed signal components. Next, the denoised signal

components were used to reconstruct the pure EEG signals
with the wavelet basis “db4.” The structure of the EEG signal
preprocessing is shown in Figure 3.

3.1. wCCA Algorithm. Next, the derivation process of the
wCCA algorithm was described in detail. Suppose that X =[x𝑇1 , . . . , x𝑇6 , z𝑇]𝑇 and Y = [y𝑇1 , . . . , y𝑇6 , z𝑇]𝑇 represent EEG
signals that were collected from the left brain region and
right brain region, respectively. Among them, x𝑇1 , . . . , x𝑇6 and
y𝑇1 , . . . , y𝑇6 are two sets of 12 raw symmetric electrode EEG
signals and z𝑇 is the VEOG signal. After the centralization of
X andY, the new variables X̂ and Ŷ are obtained, respectively.
We then find a linear combination of the points throughCCA
to obtain the new variablesU andV, which exhibit the highest
correlation.

u𝑖 = 𝑎𝑖,1x̂1 + 𝑎𝑖,2x̂2 + ⋅ ⋅ ⋅ + 𝑎𝑖,6x̂6 + 𝑎𝑖,7ẑ = a𝑇𝑖 X̂,
k𝑖 = 𝑏𝑖,1ŷ1 + 𝑏𝑖,2ŷ2 + ⋅ ⋅ ⋅ + 𝑏𝑖,6ŷ6 + 𝑏𝑖,7ẑ = b𝑇𝑖 Ŷ. (1)

The obtained canonical correlation variables are the
estimations of seven raw independent signals u𝑖 and k𝑖, 𝑖 =1, . . . , 7, respectively. The vectors a𝑖 and b𝑖, 𝑖 = 1, . . . , 7
are obtained by calculating the maximum simple correlation
coefficient. C𝑥𝑥 = 𝐸[X̂X̂𝑇] and C𝑦𝑦 = 𝐸[ŶŶ𝑇] are the auto-
covariance matrices. C𝑥𝑦 = 𝐸[X̂Ŷ𝑇] and C𝑦𝑦 = 𝐸[ŶX̂𝑇] are
the cross-variance matrices.

max
a𝑖 ,b𝑖

𝜌 (u𝑖, k𝑖) = max
a𝑖 ,b𝑖

cov (u𝑖, k𝑖)
var (u𝑖) var (k𝑖)

= max
a𝑖 ,b𝑖

a𝑇𝑖 C𝑥𝑦b𝑖
√(a𝑇𝑖 C𝑥𝑥a𝑖) (b𝑇𝑖 C𝑦𝑦b𝑖) ,

𝑖 = 1, . . . , 7,
(2)

where the constraints are
a𝑇𝑖 C𝑥𝑥a𝑖 = 1,
b𝑇𝑖 C𝑦𝑦b𝑖 = 1. (3)

The Lagrangian function is constructed to calculate the
values of a𝑖 and b𝑖 under the premise that 𝜌(u𝑖, k𝑖) achieves
the maximum value:

𝐿 (a𝑖, b𝑖) = a𝑇𝑖 C𝑥𝑦b𝑖 − 𝜆12 (a𝑇𝑖 C𝑥𝑥a𝑖 − 1)
− 𝜆22 (b𝑇𝑖 C𝑦𝑦b𝑖 − 1) .

(4)
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Figure 3: Structure of the EEG signal preprocessing. (a) Denoising of the twelve symmetrical electrodes using wCCA. (b) Denoising of the
two central brain region electrodes using WTD.

According to (1), U and V have the following forms:

U = A𝑇X̂,
V = B𝑇Ŷ. (5)

The obtained canonical correlation variables U and V
included seven independent components, U = [u𝑇1 , . . . , u𝑇7 ]𝑇
and V = [k𝑇1 , . . . , k𝑇7 ]𝑇. The vectors a𝑖 and b𝑖, 𝑖 = 1, . . . , 7 are
the 𝑖th columns of matrices A and B, respectively.

Next, A, B, 𝜆1, and 𝜆2 can be calculated based on (2) to
(4). The first independent components U and V are called u1
and k1. Each component is composed of EOG artifacts and
several valuable EEG signals. Then, we used a wavelet hard
threshold noise reduction method. We first used the wavelet
basis “db4” for five-layer signal wavelet decomposition for
u1 and k1. Thus, we obtained five wavelet coefficients and
one scale coefficient. Then, we set any coefficient that was
higher that the threshold to zero, whereas we retained the
value of any coefficient that was lower that the threshold. In
1994, Donoho proposed the VisuShrink method (the unified
threshold denoising method). The threshold 𝑘𝑗 for each
coefficient is defined as follows:

𝑘𝑗 = √2 ln (𝑁𝑗)𝑑𝑗, 𝑗 = 1, . . . , 5, (6)

where 𝑘𝑗 is the threshold for the 𝑗th coefficient and 𝑁𝑗 is
the number of elements for the 𝑗th coefficient. Donoho and
Johnstone [32] proposed an estimation formula for the noise
standard deviation in the wavelet domain 𝛿𝑛 = MAD/0.6745,
where MAD is the median value of the subband wavelet
coefficient. Thus, the standard deviation of the noise in
wavelet domain 𝑑𝑗 is defined as follows:

𝑑𝑗 = median (𝐷𝑗)0.6745 , (7)

where𝐷𝑗 is the 𝑗th coefficient.
After the wavelet hard threshold noise reduction pro-

cessing, the six processed coefficients were used for wavelet
transform reconstruction with the wavelet basis “db4,” and
we obtained the denoised independent component signals
u1new and k1new which are the wavelet threshold denoised
signal of u1 and k1, respectively. These signals and the
other six independent components comprise Unew and
Vnew.

According to (5), after calculating Unew and Vnew, we
reconstructed the new variables X̂new and Ŷnew, which are the



Computational Intelligence and Neuroscience 5

Rest Right foot Le� hand Right shoulder ×10−6

−2.5
−2
−1.5
−1
−0.5
0
0.5

(a)

Time (s)

Time (s)

Time (s)

Time (s)

Rest

Right foot

Right shoulder

Le� hand

FC3 C3 T7 CP3 Fz P3 P7 FC4 C4 T8 CP4 Cz P4 P8

FC3 C3 T7 CP3 Fz P3 P7 FC4 C4 T8 CP4 Cz P4 P8

FC3 C3 T7 CP3 Fz P3 P7 FC4 C4 T8 CP4 Cz P4 P8

FC3 C3 T7 CP3 Fz P3 P7 FC4 C4 T8 CP4 Cz P4 P8

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z)

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z)

8
20
30

8
20
30

8
20
30

8
20
30 ×10−6

2

4

6

8

10

12

14

16

4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s

4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s

4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s

4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s4 s

(b)

Figure 4: Brain topographic map and 14-channel spectrum map from Subject A. (a) Brain topographic map. (b) 14-channel spectrum map.

estimates of the pure EEG signals from the left brain region
and right brain region, respectively.

X̂new = (A𝑇)−1Unew,
Ŷnew = (B𝑇)−1 Vnew. (8)

Twelve pure electrodes with symmetric EEG signals were
obtained. X̂new represents the six EEG electrode signals from
the left brain region, and Ŷnew represents the six EEG channel
electrodes signals from the right brain region.

3.2. EEG Signal Denoising. We constructed brain topo-
graphic maps of the four MI states to examine the topology
of significant EEG features. Figure 4(a) shows the brain topo-
graphic map of Subject A. The red color and blue color both
indicated higher values within the corresponding state. Evi-
dent differences were observed among the four brain topog-
raphy maps. Therefore, we can obtain good classification
effectiveness. Furthermore, we constructed time-frequency
maps to concretely obtain the activity degree of the 14

electrodes in each MI state. Figure 4(b) shows the 8–30Hz
frequency spectrum chart for the 14 electrode EEG signals
of each MI state from Subject A. Taking the resting state as
an example, electrode FZ exhibits the lowest activity degree,
whereas electrode C3 exhibits the highest activity degree.

The 14-channel raw EEG signals are mixed with EOG
signals; in particular, electrodes close to the eyes are partic-
ularly influenced by the EOG signals. Figure 5(a) shows the
time domain graph of the resting state from Subject A. In
Figure 5(a), the EEG electrode signals of FC3, FZ, and FC4
fluctuate significantly, whereas the other electrode signals are
less affected by the EOG signals because these electrodes are
far from the eyes. We obtained the pure EEG signals after
the EEG signal preprocessing is completed (Figure 5(b)).The
denoised 14-channel EEG signals fluctuate only slightly.

4. Feature Extraction Using R-CSP

After the preprocessing of the raw EEG signals, we must
extract the EEG features (Figure 6).The common spacemodel
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Figure 5: Raw and denoised signals. (a) Raw signals. (b) Denoised signals.
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Figure 6: Structure of the feature extraction using R-CSP.

(CSP) is more effective than the traditional time-frequency
domain feature extraction method for extracting the dif-
ferences in the spatial features of the two types of signals.
However, the CSP algorithm is based on a large number of
signal samples based on covariance estimation. Therefore,
the feature extraction is affected by the number of samples
available for training. In recent years, regularized discrim-
inant analysis (RDA) has been used to solve small sample
problems for linear and secondary discriminant analyses.The
small-training-sample approach leads to biased estimates of
the eigenvalues, and such problems can lead to instability in
the feature extraction. Thus, two regularization parameters
are used to address these undesirable features.

In this paper, we adopt the improved regularized com-
mon spatial pattern (R-CSP) algorithm by incorporating the
principle of generic learning to extract the EEG features
in the spatial domain. In R-CSP, we used the principle of
generic learning to address one training sample problem.The
training set of R-CSP uses a generic database that contains
subjects that are different from those to be identified. The
classifier is trained to extract the discriminant information
from the subjects other than those that will be called on
to perform recognition when in operation. The principle
behind generic learning is that the discriminant information
pertinent to the specific subjects (those to be identified)
can be learned from other subjects because the EEG signals
exhibit similar intrasubject variations. The R-CSP algorithm

is an improvedCSP algorithm. It can provide a good approach
to overcoming outlier (such as noise) sensitivity and poor
robustness, which are shortcomings of having a small number
of samples.There are two parameters in the R-CSP algorithm,𝛽 and 𝛾. The first regularization parameter controls the
shrinkage of a subject-specific covariance matrix toward
a “generic” covariance matrix to improve the estimation
stability based on the principle of generic learning. The
second regularization parameter controls the shrinkage of the
sample-based covariance matrix estimation toward a scaled
identity matrix to account for the bias due to the limited
number of samples.

4.1. R-CSP Algorithm. We assume that there are 𝐿 subjects
who participated in the experiment. Assume that G1 and
G2 are two kinds of MI tasks in the space multimodal
evoked response signal matrix from the multichannel MI
EEG signals.Their dimensions are𝑁×𝑇, where𝑁 is the num-
ber of EEG channels and𝑇 is the number of samples collected
for each channel. E is a trial of 𝑁 × 𝑇 dimensions MI EEG
signals fromMI task G1 or G2.

The normalized sample covariance matrix S of a trial E is
obtained as follows:

S = EE𝑇

trace (EE𝑇) . (9)
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The twoMI tasks of EEG signals are indexed by 𝑐 = {1, 2}.
For simplicity, we assume that there are𝑀 trials in each class
that are available for training for a subject of interest, which
are indexed by𝑚 as in E(𝑐,𝑚), where𝑚 = 1, . . . ,𝑀.Thus, each
trial has a corresponding covariance matrix S(𝑐, 𝑚).

The average spatial covariance matrix for each class is
then calculated as follows:

S𝑐 = 1𝑀
𝑀∑
𝑚=1

S (𝑐, 𝑚) , 𝑐 = {1, 2} . (10)

Next, the regularization technique is introduced into the
equation. The regularized average spatial covariance matrix
for each class is calculated as

Σ̂𝑐 (𝛽, 𝛾) = (1 − 𝛾) Σ̂𝑐 (𝛽) + 𝛾𝑁 tr [Σ̂𝑐 (𝛽)] ⋅ I, (11)

where 𝛽 (0 ≤ 𝛽 ≤ 1) and 𝛾 (0 ≤ 𝛾 ≤ 1) are two regularization
parameters, I is an identity matrix of size𝑁×𝑇, and Σ̂𝑐(𝛽) is
defined as follows:

Σ̂𝑐 (𝛽) = (1 − 𝛽) ⋅ S𝑐 + 𝛽 ⋅ Ŝ𝑐(1 − 𝛽) ⋅ 𝑀 + 𝛽 ⋅ �̂� . (12)

In (12), S𝑐 is the sum of the sample covariance matrices
for all𝑀 training trials in class 𝑐 (𝑐 = 1, 2), and Ŝ𝑐 is the sum
of the sample covariance matrices for a set of �̂�{𝑀× (𝐿− 1)}
generic training trials from the other (𝐿 − 1) subjects in class𝑐.

S𝑐 = 𝑀∑
𝑚=1

S (𝑐, 𝑚) ,

Ŝ𝑐 = �̂�∑̂
𝑚=1

S (𝑐, �̂�) .
(13)

Next, the composite spatial covariance is formed and
factorized as

Σ̂𝑐 (𝛽, 𝛾) = Σ̂1 (𝛽, 𝛾) + Σ̂2 (𝛽, 𝛾) = ÛΛ̂Û𝑇, (14)

where Û is the matrix of eigenvectors and Λ̂ is the diagonal
matrix of corresponding eigenvalues. In this paper, we adopt
the convention that the eigenvalues are sorted in descending
order.

Next, thewhitening transformation is obtained as follows:

P̂ = Λ̂−1/2Û𝑇. (15)

Σ̂1(𝛽, 𝛾) and Σ̂2(𝛽, 𝛾) are whitened as follows:

Σ̃1 (𝛽, 𝛾) = P̂Σ̂1 (𝛽, 𝛾) P̂𝑇
Σ̃2 (𝛽, 𝛾) = P̂Σ̂2 (𝛽, 𝛾) P̂𝑇. (16)

Σ̃1(𝛽, 𝛾) can then be factorized as follows:

Σ̃1 (𝛽, 𝛾) = B̂Λ̂1B̂
𝑇. (17)

The full projectionmatrix of Σ̃1(𝛽, 𝛾) is formed as follows:

Ŵ0 = B̂𝑇P̂. (18)

For the most discriminative patterns, only the first and
last 𝛼 (we set 𝛼 = 2) columns of Ŵ0 are retained to form
Ŵ, which is of size 𝑁 × 𝑄, where 𝑄 = 2𝛼. For the feature
extraction, a trial E is first projected as follows:

Ẑ = Ŵ𝑇E. (19)

Then, a 𝑄-dimensional feature vector 𝑦 is formed from
the variance of the rows of Ẑ as follows:

𝑦𝑞 = log( var (�̂�𝑞)∑𝑄𝑞=1 var (�̂�𝑞)) , (20)

where 𝑦𝑞 is the 𝑞th component of 𝑦, �̂�𝑞 is the 𝑞th row of Ẑ,
and var(�̂�𝑞) is the variance of vector �̂�𝑞.

However, in this study, we analyzed four MI states,
assuming that the four states are A, B, C, and D. We con-
verted the four-classification tasks (A&B&C&D) into six two-
classification-tasks: (A&B), (A&C), (A&D), (B&C), (B&D),
and (C&D). Thus, six spatial filters are generated: Ŵ1, Ŵ2,
Ŵ3, Ŵ4, Ŵ5, and Ŵ6. Finally, the four state signals are
sequentially passed through the six spatial filters, and the
feature vectors are obtained.

4.2. Feature Selection. We constructed a six-spatial-filter
group using the R-CSP algorithm. After the EEG signals
of four MI states were extracted by the six-spatial-filter
group, the diversity-maximized feature vectors of 24 (6 ×𝑄) were obtained. To optimize the performance of the R-
CSP algorithm, we explored the effect of classification with
different combinations of 𝛽 and 𝛾. R-CSP with 𝛽 = 𝛾 = 0 is
equivalent to the classical CSP.We calculated 121 classification
results by the outer product of 𝛽 = [0 : 0.1 : 1] and 𝛾 =
[0 : 0.1 : 1]. Figure 7 shows the 121 classification results with
different combinations of 𝛽 and 𝛾 from Subject A. Then, we
determined 𝛽 and 𝛾 values that corresponded to the maxi-
mum classification accuracy using the KNN-SVM algorithm.
Five subjects participated in the experiment and performed
the four MI motions. There were 240 trials for each subject,
that is, 200 trials for training and 40 trials for testing. Incor-
porating the principle of generic learning, for each subject,
the training set is 1,000 training trials, which is composed of
the subject’s own 200 training trials and 800 training trials
from the other four subjects.

To verify the classification effectiveness of the feature
extraction,we first usedCSP andR-CSP to extract the features
separately.Then, we used KNN-SVM to classify the extracted
features. Table 1 shows the different classification results using
CSP and R-CSP. The classification accuracy rates (AC) of
subjects A, B, and D, separately, were improved by 5, 7.5, and
10 percentage points, respectively. The classification accuracy
rate of Subject E remained at the same level as CSP.The classi-
fication accuracy rate of Subject C is reduced by 5 percentage
points. Overall, the feature extraction performance of R-CSP
is better than that of CSP.
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Figure 7: Classification results with different combinations of 𝛽 and 𝛾 using R-CSP from Subject A.

Table 1: Classification results using CSP and R-CSP.

Subject A B C D E
CSP AC (%) 80 85 85 82.5 85
Training set 200 200 200 200 200
Test set 40 40 40 40 40
R-CSP AC (%) 85 92.5 80 92.5 85𝛽 0.9 0.2 0.2 0.3 0.1𝛾 0.5 0.9 0.4 0 0.3
Training set 1000 1000 1000 1000 1000
Test set 40 40 40 40 40

5. Classification Using KNN-SVM

The sample feature points of the four MI states indicate that
the tested EEG signals can cross or overlap.TheKNNmethod
is a mature classification algorithm. The concept of this
method is that, for a sample of interest, if the 𝐾 most similar
samples in the feature space belong to a particular category,
then the sample of interest also belongs to this category.
Because the KNN method mainly depends on the samples
that are adjacent, it is limited compared with the method of
discriminant domain for determining the category. Thus, the
KNN method is more suitable than the other methods for
crossed or overlapping samples. However, the KNN method
classifier uses local information for prediction. Thus, KNN
lacks good generalization ability under small sample condi-
tions, and the classification results are easily affected by noise.

The SVM is a machine learning algorithm that is based
on statistical learning theory. Specifically, the SVM is based
on the principle of structural risk minimization, which effec-
tively avoids the problems that exist in traditional learning
methods, such as learning, dimension disaster, and localmin-
ima, and it still has good generalization ability under the con-
dition of having a small sample size. In particular, the SVM is
superior to other classification methods in solving two types
of classification problems. However, the classification effect is
not suitable for crossed or overlapping samples.The use of the
SVM for multiclass classification remains limited.

Therefore, the KNN algorithm is used to establish the
classification framework based on the KNN algorithm such
that the KNN algorithm outputs the two most likely classi-
fication categories as the rough classification result, which is
then input into the SVMfor the second classification to obtain
the final classification result.This new composite algorithm is
called the KNN-SVMmethod.The new composite algorithm
KNN-SVM can handle crossed or overlapping sample sets
and still maintain good generalization ability under small
sample conditions. Figure 8 shows the accuracy results of
KNN-SVM from five subjects. The classification accuracy
rate varies from 80% to 92.5%. Subjects B and D have the
best classification effects, with accuracies of up to 92.5%.The
KNN-SVMalgorithm shows good classification effectiveness.
The steps of the KNN-SVM algorithm are as follows (see
Figure 9).

Step 1. Calculate the cosine angle distance between the
sample and the training set for each sample and obtain the
first 𝐾 training samples.

Step 2. Calculate the weight of each category of the selected𝐾 training samples.

Step 3. The two classes of 𝐶𝑖 and 𝐶𝑗 with the largest weights
are selected as a result of the rough classification. If the
classification result of the KNN algorithm is only one𝐶𝑖, then
the instance is directly classified as 𝐶𝑖; otherwise, 𝐶𝑖 and 𝐶𝑗
are two types of results using the one-against-one SVM for
the final classification results of the two classifications.

6. Experimental Results and Discussion

In this study, the following three steps are involved in the
MI pattern recognition system: (1) preprocessing of raw EEG
signals; (2) extraction of the features of each state of the
EEG signal; and (3) building a pattern recognition classifier.
Five healthy subjects participated in the experiments. Each
subject had to execute the four proposed MI states in the
same experimental environment. The 240 trials of EEG
signals obtained from each subject were divided into two sets,
namely, the training trials and testing trials.
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Figure 8: Accuracy results for the KNN-SVM from five subjects.
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Figure 9: Structure of the KNN-SVM algorithm for feature classifi-
cation.

During the preprocessing of the raw EEG signals, we first
used a notch filter to suppress the 50Hz power frequency
interference and the Butterworth band-pass filter to extract
the 8–30Hz frequencies of the EEG signals. Then, we used
the wCCA andWTD algorithm to separate the EOG artifacts
from the raw EEG signals (Figure 3). To demonstrate the

Table 2: Classification results of KNN-SVM.

Subject R RF LH RS
A 100 80 60 100
B 90 90 90 100
C 90 90 70 70
D 100 100 70 100
E 80 100 80 80
AC (%) 92 92 74 90

effects of the EEG signal preprocessing, we consider the
three electrode signals closest to the eyes before and after the
preprocessing in Figure 10. The three raw electrode signals
are mixed EOG signals and fluctuate significantly. After
the preprocessing, the obtained three pure electrode signals
fluctuate only slightly.

For the EEG feature extraction process, we used R-CSP
to extract the EEG features in the spatial domain. Figure 11
shows the scattering of the feature points for the 40 test
samples of Subject A.The sample feature points of the LH are
crossed or overlapping with feature points of the RS and RF.
The classification accuracies of the five subjects for the four
MI states aremaximumwith the best combination of 𝛽 and 𝛾,
as shown in Table 1. Comparedwith the CSP, the classification
accuracy of three subjects (A, B, and D) is higher using R-
CSP, and only one subject (C) exhibited a slight decrease in
the classification accuracy.

After training the classifier with the training set data, we
used the test data as the input of the KNN-SVM to verify
the classification accuracy rate. Figure 8 shows the accuracy
results of KNN-SVM for the five subjects. In addition, the
classification results of KNN-SVM for the four MI states are
provided in Table 2. For the five subjects, the accuracy rates
of the resting (R) state and right foot (RF) state vary from
80% to 100%, and thus, KNN-SVMproduces the best average
classification accuracy of 92%. The accuracy rate of the right
shoulder (RS) from Subject C has a low accuracy (70%),
and thus, the accuracy rate of the RS has the second highest
accuracy rate. For the left hand (LH), three subjects (A, C, and
D) have low accuracy, and therefore, the average accuracy rate
of the LH is the lowest (74%).

The confusion matrix is used to verify the actual dis-
crimination success of the proposed method. If an MI state
is often misconstrued as another state, then special pattern
recognition efforts should be applied to address the complex
problems related to the MI states. Figure 12 shows the confu-
sion matrix for the MI state categorizations by KNN-SVM.
Using this matrix, the discrimination among the various
MI states of all of the subjects can be evaluated in depth.
Three MI states (R, RF, and RS) have good classification
effectiveness, and only the LH has a low accuracy rate (74%).
The misidentification of the LH state is mainly concentrated
on the RF and RS. The confusion matrix illustrates that the
KNN-SVM classifier is highly precise.

After EEG feature extraction using R-CSP, a suitable
pattern recognition classifier is required. To confirm the good
classification performance of the KNN-SVM classifier, we
compare it with five commonly used classifiers (Table 3). We
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Figure 10: Raw and denoised signals of the three electrodes closest to the eyes. (a) FC3. (b) Fz. (c) FC4.
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Figure 11: Sample feature points of four states using R-CSP from
Subject A.

used those classifiers to classify the four MI states using the
same sample data. Table 3 shows the classification results
of six different classifiers. The KNN-SVM classifier has the

highest average classification accuracy rate (87%), and the
naive Bayes classifier has the lowest accuracy rate (69.5%).
Among the six classifiers, the accuracy rates of KNN-SVM
from the five subjects are all above 80%. In contrast, the
accuracy rate of the Naive Bayes classifier is above 80% for
only one subject (D). In addition, the standard deviation
of KNN-SVM is the smallest, and thus, the KNN-SVM
classifier is highly reliable. The performance of KNN-SVM
is also significantly more efficient than those of the other five
commonly used classifiers.

In this study, we adopted 16 EEG sensors to classify
four MI states. Furthermore, we compared the results with
those in previous studies to verify the contribution of our
proposed EEG pattern recognition system [17, 32–34], as
shown in Table 4. Additional EEG sensors can contribute
to the quantity and quality of the MI state classification.
However, increasing the number of sensors increases the
complexity of the classification algorithms and deteriorates
the stability performance of the EEG pattern recognition
system. Furthermore, more sensors cause discomfort for the
subjects. In Table 4, a minimum of 22 electrodes is required
to recognize four MI states, but we utilized 16 sensors. In
addition, the proposed method provides more effective
classifications than the other methods.
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Table 3: Classification results from different classifiers.

Classifier LDA Random forest Naive Bayes KNN SVM KNN-SVM
Subject A 77.5 80 72.5 80 82.5 85
Subject B 80 85 65 82.5 82.5 92.5
Subject C 72.5 60 55 67.5 65 80
Subject D 87.5 85 85 92.5 87.5 92.5
Subject E 75 72.5 70 72.5 70 85
Average AC (%) 78.5 76.5 69.5 79 77.5 87
Standard deviation 5.7554 10.5475 10.9545 9.6177 9.5197 5.4199

Table 4: Comparison between the proposed method and previous studies for MI recognition.

Author Electrode number State number Analysis method AC (%)
Brunner [17] 22 4 CSP, LDAs 65.1
Lu [33] 64 3 SCS-NMF, SVM 68.9
Garćıa-Laencina [34] 4 2 BP/HJ/AAR, LFDA 77.3
Yi [4] 64 7 CAR, CSP, SVM 70
This study 16 4 wCCA, R-CSP, KNN-SVM 87
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Figure 12: Confusion matrix for the recognition of MI states by
KNN-SVM.

7. Conclusions

We proposed a novel MI pattern recognition system for
classifying four anisomerous MI states using 16 EEG sensors.
First, we combined the Butterworth band-pass filter, wavelet
transform, and CCA to preprocess the raw EEG signals. We
then used the R-CSP algorithm to extract feature vectors in
the spatial domain. We subsequently utilized the KNN-SVM
algorithm for classification. For comparison, fivemainstream
classifiers were used to classify the same sample data. The
results indicate that the KNN-SVM classifier is more suitable
for the recognition of the four MI states than the five
mainstream classifiers. KNN-SVM also exhibits compara-
tively excellent results. In particular, the average classification
accuracy rate is 87%, and the maximum accuracy rate is

92.5%. Based on these findings, we will assign the subjects
to receive systematic MI training in the next stage. Thus, the
proposed MI pattern recognition system reaches its maxi-
mum performance and satisfies the actual needs.

Conflicts of Interest

The authors declare no competing financial interests.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (no. 61203339) and the Tianjin
Research Program of Application Foundation and Advanced
Technology (no. 14JCYBJC18300).

References

[1] M. Hamedi, S.-H. Salleh, and A. M. Noor, “Electroencephalo-
graphic motor imagery brain connectivity analysis for BCI: a
review,” Neural Computation, vol. 28, no. 6, pp. 999–1041, 2016.

[2] L. da Silva-Sauer, L. Valero-Aguayo, A. de la Torre-Luque, R.
Ron-Angevin, and S. Varona-Moya, “Concentration on perfor-
mance with P300-based BCI systems: A matter of interface
features,” Applied Ergonomics, vol. 52, article no. 2090, pp. 325–
332, 2016.

[3] K.-K. Shyu, Y.-J. Chiu, P.-L. Lee et al., “Total design of an FPGA-
based brain-computer interface control hospital bed nursing
system,” IEEE Transactions on Industrial Electronics, vol. 60, no.
7, pp. 2731–2739, 2013.

[4] W. Yi, S. Qiu, H. Qi, L. Zhang, B. Wan, and D. Ming, “EEG
feature comparison and classification of simple and compound
limb motor imagery,” Journal of NeuroEngineering and Rehabil-
itation, vol. 10, no. 1, article no. 106, 2013.

[5] L. F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez,
and R. Hornero, “Adaptive semi-supervised classification to
reduce intersession non-stationarity in multiclass motor im-
agery-based brain-computer interfaces,” Neurocomputing, vol.
159, no. 1, pp. 186–196, 2015.



12 Computational Intelligence and Neuroscience

[6] G. Onose, C. Grozea, A. Anghelescu et al., “On the feasibility of
using motor imagery EEG-based brain-computer interface in
chronic tetraplegics for assistive robotic arm control: A clinical
test and long-termpost-trial follow-up,” Spinal Cord, vol. 50, no.
8, pp. 599–608, 2012.

[7] Y. Chae, J. Jeong, and S. Jo, “Toward brain-actuated humanoid
robots: asynchronous direct control using an EEG-Based BCI,”
IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1131–1144, 2012.

[8] S. Invitto, C. Faggiano, S. Sammarco, V. de Luca, and L. T.
de Paolis, “Haptic, virtual interaction and motor imagery:
Entertainment tools and psychophysiological testing,” Sensors
(Switzerland), vol. 16, no. 3, article no. 394, 2016.

[9] T. Shi, H. Wang, and C. Zhang, “Brain Computer Interface sys-
tem based on indoor semi-autonomous navigation and motor
imagery for Unmanned Aerial Vehicle control,” Expert Systems
with Applications, vol. 42, no. 9, pp. 4196–4206, 2015.

[10] C. H. Kasess, C. Windischberger, R. Cunnington, R. Lanzen-
berger, L. Pezawas, and E. Moser, “The suppressive influence of
SMA on M1 in motor imagery revealed by fMRI and dynamic
causal modeling,”NeuroImage, vol. 40, no. 2, pp. 828–837, 2008.

[11] A. Solodkin, P. Hlustik, E. E. Chen, and S. L. Small, “Finemodu-
lation in network activation during motor execution andmotor
imagery,” Cerebral Cortex, vol. 14, no. 11, pp. 1246–1255, 2004.

[12] C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding
of statistical maps in functional neuroimaging using the false
discovery rate,” NeuroImage, vol. 15, no. 4, pp. 870–878, 2002.

[13] C. Burger andD. J. VanDenHeever, “Removal of EOG artefacts
by combining wavelet neural network and independent compo-
nent analysis,” Biomedical Signal Processing and Control, vol. 15,
pp. 67–79, 2015.
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