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Abstract: In intelligent vehicles, it is essential to monitor the driver’s condition; however, recognizing
the driver’s emotional state is one of the most challenging and important tasks. Most previous
studies focused on facial expression recognition to monitor the driver’s emotional state. However,
while driving, many factors are preventing the drivers from revealing the emotions on their faces.
To address this problem, we propose a deep learning-based driver’s real emotion recognizer (DRER),
which is a deep learning-based algorithm to recognize the drivers’ real emotions that cannot be
completely identified based on their facial expressions. The proposed algorithm comprises of two
models: (i) facial expression recognition model, which refers to the state-of-the-art convolutional
neural network structure; and (ii) sensor fusion emotion recognition model, which fuses the recog-
nized state of facial expressions with electrodermal activity, a bio-physiological signal representing
electrical characteristics of the skin, in recognizing even the driver’s real emotional state. Hence,
we categorized the driver’s emotion and conducted human-in-the-loop experiments to acquire the
data. Experimental results show that the proposed fusing approach achieves 114% increase in accu-
racy compared to using only the facial expressions and 146% increase in accuracy compare to using
only the electrodermal activity. In conclusion, our proposed method achieves 86.8% recognition
accuracy in recognizing the driver’s induced emotion while driving situation.

Keywords: human–machine interface; emotion recognition; real emotion; driver’s emotional state;
deep learning; sensor fusion

1. Introduction

Drivers’ emotional state affects their ability to drive [1,2]. As vehicles become more
intelligent, it becomes increasingly important to recognize the driver’s emotions. Accu-
rately detecting the driver’s emotional state allows the vehicle to respond more quickly to
the driver’s emotional needs; it can provide adequate infotainment support and adjusts
vehicle dynamics for a safer and more comfortable ride. In intelligent vehicles, recognizing
the driver’s emotion is emphasized because vehicles can select the options according to
driver’s emotional state (e.g., driving mode, song to change the atmosphere and driving
by themselves).

In the human–machine interface, facial expressions are considered important because
they are useful for revealing emotions between people. These methods based on facial
expressions have been established as a research field called facial expression recognition
(FER). With the great development of deep learning-based image recognition technology,
deep learning is more utilized for FER [3–8]. However, facial expressions cannot always
reveal human’s real emotions due to various factors. Particularly, this characteristic is
even more significant in case of drivers. For instance, when a driver frowns while driving,
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it may be tempting to assume that the driver is currently in an unpleasant state if the
judgment is made purely based on the driver’s facial expressions. However, if it is simply
the reaction of the driver’s facial muscles to the stimulus of sunlight, then the driver should
not be judged to be in an unpleasant state. Therefore, it is not always the driver’s emotions
that appear on their facial expressions. Consequently, we aim to recognize the driver’s
real emotion even in situations in which the real emotion is not fully revealed via facial
expressions while driving. There is a similar research field named micro facial expressions,
in which micro changes in expressions within a very short duration are studied. Such micro
changes normally occur when the real emotions are concealed deliberately or unconsciously.
Some research focusing on facial micro expressions has realized promising methods for
detecting concealed emotions [9–12]. A micro expression can be a clue to the driver’s real
emotions, but the lack of samples per category and the imbalanced distribution of samples
are the primary obstacles associated with its usage in deep learning-based algorithms [13].
Ultimately, the driver’s real emotion that we aim for is not concealed emotion but emotion
that is not fully revealed. Furthermore, most research uses bio-physiology signals for
recognizing human emotions [14–23]. The most commonly used bio-physiology signals are
electroencephalogram (EEG), electrocardiogram (ECG), photoplethysmography (PPG) and
electrodermal activity (EDA). Moreover, some studies using both facial expressions and
bio-physiology signals achieved high accuracy in the case of emotion recognition [24,25]
and performed well in recognizing various emotion classes [26,27]. All these studies are
based on deep learning algorithms. Based on the above trends, we propose a deep learning-
based driver’s real emotion recognizer (DRER) to recognize the driver’s real emotional
state while driving based on the sensor fusion of the driver’s FER and bio-physiology data.
The proposed method is divided into two steps.

The first step is the FER—recognizing the driver’s facial expressions while driving. We
propose a FER model constructed with reference to several state-of-the-art convolutional
neural networks (CNNs), such as VGGNet [28], ResNet [29], ResNeXt [30] and SENet [31].
The proposed FER model is an end-to-end architecture; thus, the model receives a whole
image of the driver’s face and outputs its recognized facial expression state. The FER model
recognizes the driver’s facial expression state using continuous representations, valence
and arousal, which are the most popular emotional continuous representations proposed
by Russell [32]. Among several databases [33–37], we trained the FER model using the
AffectNet [33], which has more than 1M facial images and annotated valence and arousal.
The model adding SENet to ResNeXt networks obtains the same level of accuracy as the
baseline proposed by Mollahosseini et al. [33].

The second step is the sensor fusion emotion recognition (SFER)—recognizing the
driver’s real emotions by fusing the recognized state of facial expressions with the driver’s
bio-physiology signals. On the basis of the deep neural network (DNN), we propose the
SFER model to receive the driver’s recognized facial expression state (represented by the
valence and arousal) and EDA signals of the driver and output the driver’s recognized
real emotional state. The driver’s recognized real emotional state is represented among the
several discrete categories. To avoid confusion among the classified emotions, we categorize
the emotions according to the driver’s real emotion while driving: neutral, happy, excited,
fearful, angry, depressed, bored and relieved. Motivated by the training and experimental
SFER model, we need a dataset that contains the driver’s real emotions (represented by the
aforementioned emotion categories). Hence, we conducted a human-in-the-loop simulation
to obtain the dataset. Thirteen volunteers participated, in which they drove a full-scale
driving simulator with each emotion induced. We measured the driver’s facial image and
EDA during the simulation and split the measured data into training, validation and test
sets through average filtering. We trained the SFER model using the training and validation
set from the human-in-the-loop simulation.

In this study, we obtained remarkably consistent results with respect to the sensor
fusion of the driver’s facial expressions and EDA data. When the driver’s emotions are
recognized by EDA data alone, it has an accuracy of 33.1–35.8%, whereas, when it is



Sensors 2021, 21, 2166 3 of 29

recognized only by the results of FER, it has an accuracy of 37.6–41.1%. When the driver’s
emotions are recognized by combining the two aforementioned parameters, the accuracy
is 65.8–88.0%. Through an advancement of the algorithm, the proposed DRER shows the
highest accuracy of 88.8%.

Our main contributions are as follows. First, a deep learning-based intermediate
sensor fusion algorithm is proposed. There are several sensor fusion strategies: early
fusion, late fusion and intermediate fusion. Early fusion, also known as data-level fusion,
is a traditional fusion strategy that fuses data before they are analyzed. Late fusion, also
known as decision-level fusion, is a fusion strategy that fuses decisions made using each
individual sensor data, and it is simpler than early fusion when the sampling time, unit
and dimensionality of data are different. Intermediate fusion, also known as feature-level
fusion, is the most flexible strategy that fuses extracted higher level features and allows
them to be the fusion stages of model training. For our model, the FER model extracts
higher level features from facial images. Then, the SFER model fuses the extracted features
and EDA to recognize emotional states. This is the reason that our model is referred
to as an intermediate sensor fusion algorithm. The proposed algorithm recognizes the
driver’s real emotion state among the newly defined eight emotional categories suitable for
a driver by only fusing two sensors, i.e., the facial camera and EDA sensor, which can be
easily collected from a vehicle. Second, the experiment results show a higher accuracy for
recognition of the driver’s real emotion when fusing the facial camera and EDA sensor data
than when using each datum individually. The proposed algorithm was evaluated with
the data collected through a full-scale driving simulator that is similar to an actual vehicle
environment. As a result, a recognition accuracy of 86.8% was achieved, which is greater
than those obtained using only the facial camera and an EDA sensor by 114% and 146%,
respectively. Finally, when compared with other state-of-the-art algorithms, the prediction
accuracy was the highest despite having the largest number of classification classes.

The rest of this paper is organized as follows. Section 2 introduces the emotion
recognition’s related work. Section 3 discusses the proposed DRER for recognizing the
driver’s real emotion with the driver’s facial expressions and EDA data while driving.
Section 4 provides the details of the proposed model. Section 5 presents the extensive
experiments and human-in-the-loop simulation. Section 6 compares and analyzes the
experiment results. Section 7 concludes this work and describes further work.

2. Related Work

This section describes emotion recognition’s related work. We introduce the gen-
eral flow of FER, the emotion recognition using the bio-physiological signals and SFER.
To secure the data for emotion recognition, we also introduce the database and the human-
in-the-loop simulation.

2.1. Facial Expression Recognition

Most previous studies produced remarkable results using CNN and adding other
networks, such as support vector machine (SVM) and recurrent neural network (RNN),
with preprocessed data. The 2014 Emotion Recognition in the Wild Challenge (EmotiW)
winners compared the results using several deep learning techniques, such as CNN,
deep belief net, relational autoencoder and shallow network. They added that the best
performing model was a model that could extract the probability of an emotional class
with CNN to train the SVM’s hyperparameters [3]. However, FER is different because it
depends on the emotion definition. There are two ways to define emotion: discrete and
continuous. Discrete emotions are used to classify categorical emotions, e.g., anger, disgust,
happy and neutral. For this case, 2016 EmotiW winners preprocessed the Acted Facial
Expressions in the Wild (AFEW) dataset using a face detector and face similarity transform,
and the CNN filter filtered out the faceless frame. The preprocessed data were put into the
CNN (VGG16) and 3D convolution model. CNN extracts features and uses RNN/LSTM
encoder to map inputs into fixed-length vectors to encode motion, whereas 3D convolution
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models use video shape and motion [4]. Similarly, previous studies about FER used two
parallel CNNs and merged the extracted features before recognition. Jeong et al. [38]
simultaneously used 3D and 2D convolution models with the different preprocessed data.
The resultant features of each model are merged to predict through softmax. Riaz et al. [39]
proposed an algorithm with two network routes separated by pooling is present or not.
During intermediate feature extraction, each route’s results are merged before the next
layer. Specifically for drivers, Gao et al. [5] made a model to determine whether the
driver is in a stressful situation or not. They defined anger and disgust as a stressful
situation. They trained the SVM with PCA results applied features to the additional
released data after landmark extraction using the SIFT descriptor. They divided the indoor
conditions (expression from the driver’s front) and the vehicle conditions (expression from
the instrument panel) to collect experimental data for evaluation. Similarly, studies for
driver usually trained their model with released data and evaluated with the experimental
data, and they defined emotion themselves following the goal of their studies.

The continuous definition is another way of defining emotions. Most previous studies
about continuous emotion used Russel’s V-A (valence–arousal) model. Valence is the
degree of emotional appeal, which can be negative or positive. Arousal refers to a condition
in which various nerves are physiologically active. The higher is the emotion intensity, the
higher is the arousal level. The continuous definition has been used for V-A regression
because V-A ranges from −1 to 1. One of the studies about V-A regression presented
the FATAUVA-net model, which comprises a core, attribute, action unit (AU) and V-A
layer, based on CNN (MCNN). In core and attribute layers, the face is detected through
MTCNN and facial part’s localize area (such as face and eye) to train CNN with the CelebA
dataset. The AU layer learns about AU through the facial part extracted from the attribute
layer with the Affect-in-the-wild (AFF-wild) dataset and finally estimates V-A in the V-A
layer [6]. Some studies predicted both V-A regression and categorical classification of
emotions. Kollias and Zafeiriou [7] created a dataset by annotating AUs and labeling AFF-
wild dataset to the most similar seven basic emotions. They performed semi-supervised
guidance through GAN after preprocessing with the FFLD2 face detector. They extracted
features via CNN (AFF-WildNet) and used them as input to RNN (VGGFACE-GRU) to
derive nine outputs. Two of them are the V-A estimation result, while the others predict the
seven basic emotions through softmax. Some studies used V-A as an intermediate extract to
classify categorical emotions because V-A is not intuitive in meaning. Theagarajan et al. [8]
developed an automated system to analyze facial expressions using the car driver’s V-A.
They localized the diver’s facial videos from the AFEW-VA and Motor Trends Magazine
datasets by the pre-trained YOLO V2 and then used them to extract features through
CNN (ResNet). Extracted features are inserted as input vectors of the RNN (LSTM) and
estimating V-A to predict the six emotions through SVM.

2.2. Bio-Physiological Signals

In emotion recognition studies, bio-physiological signals are frequently used as the
input data. Sensors that can acquire bio-physiological signals are diverse, and each signal
from a sensor has its own characteristics. A thorough review of sensors and methods
for human emotion recognition was provided by Dzedzickis et al. [17]. According to
their paper, EEG, which is a basic technique, is usually evaluated and analyzed in five
frequency ranges to estimate the average level of valence and arousal or to detect efficiency.
Recently, researchers have focused on developing new methods for information extraction
from EEG with deep learning techniques. In addition, researchers focus on defining and
evaluation QRS amplitudes and their duration. Emotion can be evaluated by defining P
or R peaks and other parameters from QRS. EDA allows not only emotion recognition,
but also an automatic detection decision-making process because EDA contains useful
information concerning EDA signal’s amplitude and frequency. By implementing machine
learning algorithms, it is possible to increase the precision of emotion recognition and
recognize specific emotions relating to the level of arousal. PPG signal is filtered using
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high-pass filters before defining peaks and forming heart rate variability (HRV). Sensors
are usually combined to complement each other’s drawbacks. Deng et al. [14] showed that
performance tends to improve as data types increase, regardless of the recognition methods.

There are many previous studies in the field of emotion recognition using
bio-physiological signals, which involved the above sensors. Raheel et al. [18] tried to
recognize emotion while watching tactile enhanced multimedia. Four different video clips
were selected and subjects had to rate the clips on a nine-point SAM scale about the videos.
The physiological signals (EEG, EDA and PPG) were recorded while the subjects watched
the video clips, and various features were extracted from these signals. A K-nearest neigh-
bor classifier was applied to the extracted features to classify emotions (happy, relaxed,
angry and sad). The result shows that the classification accuracy of PPG-based features
was the highest (78.77%), and they could obtain higher accuracy (79.76%) with the fusion
of EEG, EDA and PPG.

Recently, with advances in the measurement technology of EEG sensor and deep
learning, emotion recognition research using EEG has been actively conducted because it
involved brain’s response to various stimuli. Owing to the ability to evaluate the average
level of valence and arousal, Liu et al. [19] proposed a subject-independent emotion
recognition algorithm based on the dynamic empirical convolutional neural network
(DECNN) using the EEG signals. They filtered the SJTU Emotion EEG dataset (SEED)
with an empirical mode decomposition (EMD) algorithm to preserve the instantaneous
characteristics, which is the frequency band of the EEG signal. To extract the features of
the EEG signals, they used the dynamic differential entropy (DDE) algorithm. As a result,
they could represent the time–frequency feature of the emotional state. Moreover, the
time–frequency feature can be represented using a two-dimensional matrix, and the local
correlation features can be indicated as images; they constructed a CNN model to identify
the positive and negative emotions. They achieved 97.56% accuracy with these methods.

In another paper on EEG, Chao et al. [20] proposed a deep belief-conditional random
field (DBN-CRF) framework with glia chains (DBN-GC) and conditional random field to
capture the long-term dependencies, contextual information and correlation information
between different channels of EEG signals. They split the multi-channel EEG signals of
the DEAP, AMIGOS and SEED datasets into several segments by a specific time window
and extracted a raw feature vector from the signals. Each raw feature vector was fed into
the parallel DBN-GC to extract high-level representations. Then, the high-level feature
sequence containing inter-channel correlation information of EEG signal was fed into the
CRF. CRF generated the predicted emotion label sequence, and the decision merge layer
based on a K-nearest neighbor algorithm can be used to determine the emotional state.
They achieved a mean accuracy of 76.58% in terms of leave-one-out cross-validation.

However, EEG needs special equipment to obtain the signals; therefore, some studies
have considered using other sensors, which are relatively less demanding, despite the
advantages of EEG. Ooi et al. [15] processed the driver’s emotion using EDA in virtual driv-
ing simulations (three scenarios: neutral, stress and anger). These data were classified as
two-class classification with SVM. They achieved an accuracy of 85% for neutral–stress and
neutral–anger emotions, whereas stress–anger emotion was approximately 70%. It means
that large sections’ emotions can be classified, but similar sections are difficult to classify. In
another paper using EDA, Machot et al. [22] tried to recognize subject-independent human
emotion using EDA as an input feature. They proposed a CNN model to predict four
emotional states (high valence/high arousal (HVHA), high valence/low arousal (HVLA),
low valence/low arousal (LVLA) and low valence/high arousal (LVHA)). They performed
evaluation using MANHOB and DEAP datasets and obtained an accuracy of 81%. In
addition, some researchers have used ECG with EDA [23]. They proposed a model based
on CNN and LSTM to recognize the valence and arousal states. They obtained accuracy of
75% and 76% for valence and arousal, respectively.

Moreover, there is a study that used wearable sensors to make emotion recognition
more practical and flexible in a wide field. Zheng et al. [21] constructed an emotion
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recognition approach based on a multimodal wearable biosensor network to facilitate
emotion monitoring in daily life. The signals from the multimodal wearable biosensor were
collected by measuring nodes and then transmitted to the sink node. They introduced a
fuzzy rough nearest neighbors (FRNN) algorithm to classify different emotions considering
the fuzzy thresholds of EEG concentration. Their method reduced the classification range
of samples and disturbance of noisy samples, achieving 65.6% accuracy, which is high in
wearable scenarios.

2.3. Sensor Fusion Emotion Recognition

To obtain bio-physiological signals, expensive equipment and a well-controlled en-
vironment are necessary. To overcome these drawbacks, many studies tried to recognize
emotion using facial expression data and bio-physiological signals because it allows the im-
plementation of a multimodal approach and the performance of non-contact measurements.
It also produces quite reliable results with recent advances in computer vision systems,
big data analysis and deep learning techniques. However, it still exhibits low accuracy with
respect to the level of arousal. Therefore, some researchers have considered using both of
facial expressions and bio-physiological signals [17]. Zhong et al. [16] tried to predict con-
tinuous emotions (valence and arousal) using facial expression data and bio-physiological
signals. In their experiment, 20 video clips were shown to 27 participants to annotate
their emotional state by choosing 10 emotional keywords (sadness, joy, happiness, disgust,
neutral, amusement, anger, fear, surprise and anxiety). Simultaneously, they obtained
the facial expression data recorded with six video cameras and the four bio-physiological
signals (EDA, ECG, respiratory amplitude and skin temperature) were recorded. In FER,
they adopted the AFFDEX SDK to fuse facial expression data and bio-physiological signals
and proposed the temporal information preserving framework, which led to significant
improved emotion recognition performance.

Because the usage of bio-physiological signals and facial expressions allows for the
implementation of a multimodal approach, many studies have proposed multimodal
emotion recognition. Kortelainen et al. [40] proposed multimodal automatic emotion
recognition by combining the HRV parameters, respiration frequency and facial emotions.
They showed 48 pictures with emotional content from the International Affective Picture
System (IAPS) to 24 participants for 20 s. The participants reported their feelings about
the pictures orally according to the self-assessment manikin on the V-A scale. In addition,
they analyzed RR-intervals with PSD and classified facial expressions with SVM and Cohn–
Kanade dataset. They achieved 38.0% and 54.5% in valence and arousal as a function of k,
respectively.

Moreover, Huang et al. [41] proposed multi-modal emotion recognition based on
facial expressions and EEG signals from a single modal to predict valence and arousal.
Facial expressions were used as an external channel that involved a probability of nine
facial expressions. EEG was used as an internal channel supplementing facial expressions.
These two channels were fused on feature and decision levels for multi-modal emotion
recognition. Owing to the lack of fusion between EEG and facial expressions, they applied
a transfer learning approach for multi-task CNN architectures in a later study [42]. In EEG
detection, two learning targets (valence and arousal) were detected using different support
vector machine (SVM) classifiers, separately. Two decision-level fusion methods based
on the enumerate weight rule or an adaptive boosting technique were used to combine
facial expressions and EEG. They evaluated their method with the DEAP and MAHNOB–
human–computer interface (MAHNOB-HCI) datasets and achieved 69.75% and 70.00%
accuracy for the valence and arousal, respectively, and the accuracy of arousal increased
by 6% after fusing them (before fusion: 69.28% and 64.00%, respectively). Similarly, other
studies have predicted valence and arousal with EEG and facial expressions [24,25,43].
Rayatdoost et al. [24] predicted valence and arousal using EEG and facial expressions as
the input features. They achieved accuracy of 75% and 74% for valence and arousal, re-
spectively. Siddharth et al. [25] used EEG and facial expressions to predict valence, arousal,



Sensors 2021, 21, 2166 7 of 29

liking and four emotional states. They achieved accuracy of 54%. Soleymani et al. [43]
focused on valence and arousal recognition. They extracted power spectral features from
EEG signals and the facial fiducial points used as features to detect valence levels for each
frame continuously.

Unlike using only bio-physiological signals, facial expressions can be applied to more
diverse situations. Owing to the benefits of flexibility and practicality, studies are actively
conducted in areas that require real-time emotion recognition in various situations. Val-
Calvo et al. [26] proposed self-designed methodologies to estimate users’ emotional state in
real time. They used EDA, blood volume pressure (BVP) and EEG to analyze the statistical
correlation between experienced emotions and the properties of the set of features. Facial
expressions were fed into a deep convolutional ensemble and trained on the FER-2013
database to obtain emotion classification. After filtering all meaningful features, they
were classified by a set of eight standard classifiers into seven emotional states (neutral,
disgust, happy, surprise, angry, fear and sad), achieving almost 80% accuracy. Similarly,
Comas et al. [27] predicted valence, arousal, liking and seven emotional states (neutral,
disgust, joy, surprise, anger, fear and sadness) using EDA, facial expressions and ECG as
the input features. They trained the model with the AMIGOS and Medical Therapy datasets
to predict the emotion of patients who have undergone anxiety treatment. They achieved
accuracy of 64%.

2.4. Existing Databases

There are databases for emotion recognition, a which contain facial images [33–35],
bio-physiological data [44,45] or both [36,37].

AffectNet [33] contains more than 1M facial images from the Internet using 1250
emotion-related keywords in six different languages. The collected images were annotated
for seven discrete facial expression data and the intensity of valence and arousal. CK+
(extended version of the Cohn–Kanade database) [34] contains 593 sequences and has
a total of seven emotion labels (i.e., angry, disgust, fear, happy, sadness, surprise and
contempt). EMOTIC [35] consists of images and 26 discrete categories, which are labeled as
the contiguous dimensions valence, arousal and dominance. EMOTIC has 23,571 images,
and some images have been collected from the Google search engine.

Dreamer database [44] includes EEG and ECG signals recorded during elicited by
audio-visual stimuli. In total, 23 participants self-assessed their affective state after each
stimulus in terms of valence, arousal and dominance. This database could recognize
emotions using SVMs. CASE dataset [45] includes eight physiological signals from the
30 participants. The participants watched various videos to elicit four affect states: amusing,
boring, relaxing and scary. They were required to annotate their continuously varying
emotion with a joystick. Some databases include facial images and bio-physiological signals
to recognize emotion.

ASCERTAIN database [36] collected facial images and bio-physiological signals while
subjects watched movie clips. After watching each clip, the subjects were required to
self-report their emotional state in the form of effective rankings within 30 s. For each
image, the user’s effective impression is reflected in the valence (V) and arousal (A) rate.
Their bio-physiological data (i.e., ECG, EDA, frontal EEG and EMO) were also collected.
This database can be used to recognize emotions. MAHNOB-HCI database [37] recorded
in response to the affective stimuli. It includes face videos, audio signals, eye-gaze data
and physiological signals (i.e., EDA, ECG, respiration pattern and skin temperature).
They obtained the arousal, valence, dominance, predictability and emotional keywords
self-reported while experimenting through two experiments.

Among the emotion recognition databases, some databases include facial image
data [46–48] or bio-physiological signals [49] collected in driving conditions. The UTDrive
DB Classic [46] collected in the context of the level of stress while 77 participants were
driving in real-world urban areas highway conditions. The data contain audio, video, front
car distance and driver behavior (such as CAN data and GPS). They collected UTDrive DB



Sensors 2021, 21, 2166 8 of 29

Portable data [46] only using smartphones without needing special equipment. The data
include video, audio, GPS location and car access. The database by Ma et al. [47] classified
the drivers’ emotional states into four categories (i.e., happy, bothered, concentrated and
confused) and collected data while 10 drivers were driving around 24 km each. External
annotators provided the emotional annotation, and the data were focused on the face video.
The CIAIR database [48] collected more than 60 min of real-world driving data from over
500 drivers. Emotional annotations were not provided. The data include multi-channel
video from three cameras, multi-channel audio, GPS and control signals (such as speed,
engine RPM, accelerator/brake-pedal pressure and steering-wheel motion). DriveDB
database [49] collected bio-physiological signals (i.e., ECG, EDA, EMG and RESP) in the
context of stress level. The signals were collected while driving for 50–90 min.

2.5. Human-in-the-Loop Simulation

Emotion-related research has been conducted for over 100 years and has a long and
extensive history. The above section introduces the previous studies centered on the
emotion detection algorithm. This section introduces some of the previous studies focused
on the research related to emotions considering the driving context and the emotion
induction method.

Ekman [50] classified emotion into six basic emotions: anger, happiness, surprise,
disgust, sadness and fear. The valence–arousal model presented by Russell [32] is a
representative example of the emotion’s dimensional model. He made the x-axis as
pleasure–misery and the y-axis as arousal–sleepiness and then placed various emotions on
a two-dimensional plane. Jeon and Walker [51] considered that emotion needs tuning in
consideration of the domain context and investigated the emotions felt by the participants
in the experiment considering various driving scenarios. Accordingly, they presented nine
emotions (i.e., fearful, happy, angry, depressed, curious, embarrassed, urgent, bored and
relieved) considering the driving context. For research trends related to various emotions
in the driving context, refer to the work by Jeon [52].

Participants must be in their emotional state to study their emotions. There are various
methods to induce the desired emotion. Fakhrhosseini and Jeon [53] introduced the follow-
ing methods: imagination, film, sound, music, images, reading passages, writing passages,
embodiment, virtual reality, feedback, self-referent statement, social interaction, physio-
logical manipulations, motivated performance tasks and combined techniques. They also
described the details and examples of each induction method. These various induction
methods have different effects. Whichever method is used, it should be considered that
the desired emotion is induced and multiple emotions may be induced. It should also be
considered whether the induced emotion and real emotion are the same.

3. Proposed Work

We propose deep learning-based algorithms to monitor the driver’s emotional state
even when emotions are not fully revealed by facial expressions while driving. Our emotion
recognition system that monitors the driver’s real emotions is called DRER. We propose
the two main steps to recognize the driver’s real emotion: recognizing the driver’s facial
expression state and fusing bio-physiological signals with the recognized facial expression
state. Figure 1 shows the proposed steps. Table 1 summarizes the terminologies used in
this paper. The following subsections describe the detailed task of the individual steps.
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Figure 1. Overview of the proposed work with two major steps: FER and SFER.

Table 1. Terminologies and definitions of the variable used in this paper.

Expression Definition

ID The variable to distinguish the individual driver
It Driver’s face image at time t while driving

V̂t Driver’s recognized valence level by facial expressions at time t
Ât Driver’s recognized arousal level by facial expressions at time t
Et Driver’s measured EDA response while driving at time t
k Number of defined emotional state categories for driver
C List of defined emotional state categories for driver, CT = [C1, C2, . . . , Ck]
Ŷt Driver’s recognized real emotion while driving at time t among the C

3.1. Facial Expression Recognition

The most common way to express emotions is facial expressions. Therefore, the first
step for the proposed work is recognizing the driver’s facial expressions. While driving,
the driver’s face is recorded by a camera, and the face video becomes the input of the
FER model. The FER model consists of CNN and outputs the recognized state of facial
expressions in continuous represented values called valence and arousal. These represen-
tation methods can emphasize that the state of facial expressions appears continuously
and includes intensity. Moreover, these mathematical representations are easy to fuse with
various measured signals. Through these fusion approaches, even the emotions beyond
the face can be captured.

3.2. Sensor Fusion Emotion Recognition

Our second step is the fusion with driver’s bio-physiological signals. As mentioned in
Section 1, even if the driver’s facial expressions are detected through the FER model, they
cannot be always regarded as the correct driver’s emotional states. Hence, we propose
the SFER model, which consists of DNN, to recognize even the real emotions beyond the
driver’s facial expressions by fusing the bio-physiological signals related to the body regu-
lation and affected by the emotions with the output values of the FER model. The driver’s
recognized emotional states are represented among several discrete categories. Section 4
describes the detailed fusion algorithms’ methodology to recognize even the driver’s real
emotional states through the facial and bio-physiological information.

4. Methods

This section describes the detailed methodology of our algorithm for each model.
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4.1. Facial Expression Recognition

On the basis of the deep learning algorithm, we applied end-to-end architectures to
receive images (I), including the driver’s face, and output the continuous two-dimensional
index, called valence (V̂) and arousal (Â). This FER model is based on the hypothesis
that the images (I), including the driver’s face, are continuously provided. To meet this
hypothesis, we thoughtfully set the camera for recording the driver’s face. The details are
discussed in Section 5.2.

Several preprocessing steps (e.g., resizing, normalization, detecting ROI and detecting
points or movements) are required to recognize facial expressions from images [54]. How-
ever, we only have two preprocessing steps, resizing and normalizing. They are relatively
simple preprocessing processes because the deep learning algorithm that we use automati-
cally finds the region of interest and extracts features. Thus, we refer to our FER model as
an end-to-end architecture. Resizing is an operation to equalize the input image’s width,
height and depth with input shape (w, h, d) of the proposed deep learning algorithm. Each
image pixels need to be scaled in the range from 0 to 1. This process is called normalization,
which is a common technique for preprocessing for deep learning. It involves changing the
values of numeric pixels in an image to a common scale without distorting the differences
in the ranges of values. The equation of normalization is as follows:

x′ =
x− Xmin

Xmax − Xmin
(1)

where x is the pixel value of an image, x′ is the normalized value of the image, Xmax
is the maximum pixel value of the image and Xmin is the minimum pixel value of the
image. Usually, each pixel can be simply divided by 255 because most images consist of
0–255 values.

To build the FER model based on deep learning network, we benchmarked the state-of-
the-art CNN models from ImageNet large-scale visual recognition challenge (ILSVRC) [55].
ILSVRC is an annual object detection and image classification competition that uses subsets
from the ImageNet (a large-scale hierarchical image database) [56].

The first model to be introduced is VGGNet [28], the 2014 ILSVRC runner-up. Al-
though VGGNet is the runner-up, the gap between the winner is insignificant, and the
structure is relatively easier to understand than the winner. Hence, we started exploring
VGGNet as the underlying network. VGGNet uses multiple CNN layers to find the image’s
features while reducing the width and height and deepening the input image’s depth.
Figure 2a illustrates VGGNet’s structure, including the multiple CNN layers as blue boxes.
In the figure, each time it passes through the green box, the max-pooling layer, it decreases
width and height and increases the depth.

We also benchmarked ResNet [29], the 2015 ILSVRC winner, to build deep learning
models that are deeper than VGGNet. ResNet can construct a deeper model without wor-
rying about vanishing gradient problem by applying a shortcut connection that connects
the input value to the output value for every of the two CNN layers. Its overall structure
is almost similar to that of VGGNet, as shown in Figure 2b. The shortcut connections are
illustrated as black arrows and the values before and after the CNN layers are summed
at the orange box. The values before the CNN layers are continuously summed; thus, the
amount of information to be trained is reduced. Hence ResNet can be designed deeper
than VGGNet.

ResNet is a structure to make the neural network deeper, and we refer to ResNeXt [30]
to search for a wider model. ResNeXt [30], the 2016 ILSVRC runner-up, adds splitting
operation between the shortcut connection by applying a new dimension called a car-
dinality based on ResNet. ResNeXt’s splitting operation is illustrated in Figure 2c. Its
overall structure is similar to that of ResNet, but every second CNN layer between shortcut
connections is divided into as many boxes as the number of the cardinality based on the
depth direction.
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We applied the SE block proposed by Roy et al. [57]. The SE block inserted in the
middle of the model corrects the weights between the feature map’s channels that is the
intermediate result. In Figure 3, the feature maps entered as the SE blocks are converted
into values representing each channel through global average pooling. These representative
values are recalibrated as it passes through the bottleneck structure formed by the reduction
ratio r. The recalibrated values are applied to the existing feature map element-wise. SENet,
which applies the SE block to the existing model, is the 2017 ILSVRC winner. We applied
the SE block to the right before the summation layers of ResNet and ResNeXt. The model
with the SE block applied to ResNet is illustrated in Figure 2d, and the SE blocks are shown
as yellow boxes before the orange boxes.

(a) VGGNet (b) ResNet

(c) ResNeXt (d) SE-ResNet

Figure 2. (a) VGGNet with vanilla CNN (blue) and max-pooling (green). (b) ResNet with vanilla
CNN (blue), max-pooling (green), and shortcut connection (orange). (c) ResNeXt with vanilla CNN
(blue), max-pooling (green) and shortcut connection (orange). (d) SE-ResNet with vanilla CNN (blue),
max-pooling (green), shortcut connection (orange) and SE block (yellow).

Figure 3. Illustration of the SE block; different colors represent each different channel.

Every backbone network introduced above has 1000 units of final fully connected
hidden layers to classify the 1000 different object categories; in our FER model, we modified
the final hidden layer to have two units of a fully connected layer to output the recognized
state of facial expressions in two continuous represented values, valence and arousal. Then,
the tanh function transforms a vector of two output values of the fully connected layer into
recognized valence and arousal values. The tanh turns them into values between −1 and
1. The absolute value of the transformed valence represents the degree, where a positive
value represents the degree of attractiveness and a negative value represents the degree of
aversiveness. The numerical size of the transformed arousal value represents the perceived
intensity. For instance, the negative arousal values have lower perceived strength than the
positive arousal values. The reason that the output of the FER model is represented in the
continuous values is discussed in Section 4.2. Algorithm 1 summarizes detailed procedures
of FER.
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Algorithm 1 Our Facial Expression Recognition (FER) Algorithm.

Require: The face image of driver at time t: It
Ensure: The recognized valence and arousal level of driver by facial expressions at time t:
(V̂t, Ât)
Initialize:

Let the facial expression recognition model be FER_Model
Let FER_Model be one of VGGNet, ResNet, ResNeXt, SE-ResNet, and
SE-ResNeXt
Let final hidden layer of FER_Model be fully connected layer which
have 2 units and tanh function as activation function

while Driving do
# Resizing
Resize It ∈ Zw×h×d

# Normalization
It =

It−min(It)
max(It)−min(It)

(V̂t, Ât) =FER_Model(It)
end while

4.2. Sensor Fusion Emotion Recognition

To classify the driver’s real emotions (Ŷ) that are not fully revealed on the face, we ap-
plied a DNN-based supervised learning architecture that fused our output values of the
FER model and bio-physiological signals to output the most confident emotion among sev-
eral discrete categories. Although these discrete representations allowed simplification and
easy understanding of the recognized emotion, confirmatory biases and priming effects de-
pend on the individual’s experience [58,59]. Hence, it is important to define the appropriate
driver’s emotion category (C) for simplified emotion that gives accurate intuition.

Here, we used the arousal–valence model proposed by Russell as the basic frame.
By considering the nine emotions that considered the driving context [51] and the emotions
extracted from the AffectNet results, we investigated the following eight emotions: neutral,
happy, excited, fearful, angry, depressed, bored and relieved. Arousal and valence are
both 0 for neutral and both positive for happy and excited. Arousal is positive but valence
is negative for fearful and angry. Arousal and valence are both negative for depressed
and bored. Valence is positive and arousal is negative for relieved. Figure 4 shows
the correlations between the valence and arousal of all eight emotions. Through the
aforementioned process, we set the number of emotion categories (k) to eight and defined
the emotional state categories for the driver (C), as shown in Equation (2).

C =



C1
C2
C3
C4
C5
C6
C7
C8


=



Neutral
Happy
Excited
Fearful
Angry

Depressed
Bored

Relieved


(2)

As mentioned in Sections 2.2 and 2.3, there are various bio-physiological signals to
recognize human emotion, but we select some representative signals in consideration
of the vehicle environment and industrial demand. Although an EEG is widely used,
expensive medical equipment is required for its measurement. Some of the popular signals
are cardiac signals (e.g., ECG or PPG). However, because noise caused by the movement
of a subject is easily generated during the measurement of the cardiac signals [17], they
are not suitable considering the driving environment. Therefore, among the many bio-
physiological signals affected by the emotional experience, we selected EDA considering
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two aspects. The first aspect is how much it relates to emotions. According to several
related studies, EDA contains the most emotional information [54]. Healey and Picard [49]
and Deng et al. [14] showed that EDA is the most representative signal for combination to
capture the stress of drivers. The second aspect is the comfort to measure while driving.
Cardiac signals are usually measured with electrodes attached to the chest. A driver cannot
drive with electrodes on his chest all the time. Although EDA signals are also measured
with electrodes, they can be measured on the hand palm. Moreover, recently, they can
be measured in dry conditions on a location that has less interference while driving (e.g.,
wrist) [60]. Hence, we proposed the EDA signal (E) and the outputs of the FER (V̂, Â) as
the input features (X) to detect and classify the driver’s real emotion during driving.

Figure 4. The correlations between the valence and arousal of defined eight emotions.

Before feeding input features into the deep learning architecture, the SFER model
also needs preprocessing to input features (X). Cohn et al. [61] presented that individ-
ual differences in facial expressions were moderately strong. Naveteus and Baque [62]
presented individual differences in EDA. These individual differences are overcome by
personalization work through mean subtraction. Personalization needs to be performed
individually. Each individual’s mean value is subtracted from each feature to capture the
neutral valence’s baseline, arousal and EDA. Then, every input feature is set to 0–1 through
normalization because the personalized input features have different scales. Each feature
must be performed by subtracting each sample’s minimum value and dividing it with the
range between maximum and minimum values, as shown in Equation (1). Personalization
and normalization are possible because input feature (X), especially valence and arousal
values (V̂, Â) which are from the FER, rely on continuous representation.

We built a DNN, the most fundamental deep learning model, with multiple layers
between input and output. Even though there are many advanced deep learning networks
for solving difficult tasks, we already secured the FER feature vector (V̂, Â), extracted from
the state-of-the-art deep learning model and the EDA feature vector (E) selected on the
basis of the related studies. Hence, if there are high-quality data for supervised learning,
it is possible to classify the driver’s emotional state with only the DNN model through
the deep learning training process. The DNN model consists of N and maximum M units
of hidden layers. We set the number of final layer units to k and outputs a vector of size
k to represent one of the k defined emotions. The output vector pass for the activation
function called softmax to represent the confidence probability for each emotion. The DNN
model was trained and tested on simulated data, as described in Section 5.2. Algorithm 2
summarizes the detailed procedures in recognizing the driver’s emotional state from the
valence (V̂), arousal (Â) and EDA (E) values.

5. Experiments

This section presents the experimental evaluations of the proposed algorithms. We per-
formed our experiments on a machine with Intel Core i9-9980XE CPU at 3.00 GHz, 125 GB
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Algorithm 2 Our Sensor Fusion Emotion Recognition (SFER) Algorithm.

Require: Variable for driver distinguish(Driver ID): ID
List of defined emotional state categories for driver: C
The recognized valence and arousal level of driver by facial expressions at time t: (V̂t, Ât)
The measured EDA response of driver at time t: Et

Ensure: The recognized real emotion of driver at time t: Ŷt
Initialize:

Let the sensor fusion emotion recognition model be SFER_Model
Let SFER_Model be the DNN
Let final hidden layer of SFER_Model be fully connected layer which n
units and softmax function as activation function
V̂ID = [], ÂID = [], EID = []

if Accumulated data for the driver with ID exists then
Load V̂ID, ÂID, EID

end if
while Driving do

# Accumulate data per each individual for personalization
V̂ID.insert(V̂t), ÂID.insert(Ât), EID.insert(Et)
# Mean subtraction
(V̂t, Ât, Et)− = (mean(V̂ID), mean(ÂID), mean(EID))
# Normalization
XT

t = ( V̂t−min(V̂ID)

max(V̂ID)−min(V̂ID)
, Ât−min(ÂID)

max(ÂID)−min(ÂID)
, Et−min(EID)

max(EID)−min(EID)
)

Ŷ1t =SFER_Model(Xt)
Ŷt = C[argmax(Ŷ1t )]

end while

RAM and Nvidia Titan RTX GPU. We applied the state-of-the-art CNN models from
ILSVRC to our FER models and we used AffectNet [33] database to train and evaluate our
FER models. The details are described in Section 5.1. Section 5.2 describes the experimental
design of the human-in-the-loop simulation for collecting datasets. These datasets contain
driver’s facial images, EDA measurements and induced emotions as the ground truth
emotion labels. We used these data to train and evaluate the SFER models. More details
are presented in Section 5.2.

5.1. Facial Expression Recognition

As discussed above, we used AffectNet [33], one of the largest databases for facial
expressions, to train and evaluate our FER models. It contains approximately 1M facial
images collected in the wild and annotation information for the FER. AffectNet contains
a significant number of emotions on faces of people of different races, ages and gender.
Figure 5 shows sample images in the AffectNet. Moreover, the biggest reason we used
AffectNet is that it contains manually annotated intensity of valence and arousal. We only
used manually annotated images containing 320,739 training samples and 4500 validation
samples, excluding uncertain images. Unfortunately, AffectNet has not yet released the
test samples. Hence, we compare the validation set results between their baseline methods
in Section 6.1.
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Figure 5. Sample images in the AffectNet, including faces of people of different races, ages and gen-
der.

We proposed various FER models for a comparative experiment. Every proposed FER
model, evaluated in this study, consists of input shape (224, 224, 3), several CNN layers
and one fully connected layer as the trainable layers. Because we used RGB images, we set
the depth of the input image to 3; however, the depth of the input image can be changed to
1 when using the binary images from the NIR camera to secure more robustness against
changes in illuminance, as proposed by Gao et al. [5]. In the following, we distinguished
the models by their base architectures and number of trainable layers. To validate the
effectiveness according to the model’s depth, we designed the models with different depths
using VGGNet [28] and ResNet [29]. To validate the performance of the parallelization and
the channel-wise attention of CNN layers, we applied ResNeXt [30] and SE block [31] to our
FER models. All of our FER models are described as follows, and detailed configurations
of each structure are outlined in Table 2, one per column.

• VGG14 is based on VGGNet architectures and consisted of 13 CNN layers. The last
three fully connected layers are replaced with one fully connected layer with only
two units, to represent valence and arousal, respectively. The model has 14 trainable
layers, thus it is called VGG14.

• VGG17 is based on VGGNet, and three more CNN layers are added to VGG14.
It consists of 16 CNN layers and 1 fully connected layer.

• ResNet18 is based on ResNet and has 18 trainable layers (17 CNN layers and 1 fully
connected layer). Compared with VGG17, there is only one more CNN layer; however,
ResNet18 has the shortcut connection for every two CNN layers, except the first CNN
layer. The layers between shortcut connections are represented as curly brackets in
Table 2.

• ResNet34 is based on ResNet and has 34 trainable layers (33 CNN layers and 1 fully
connected layer). It also has shortcut connections for every two CNN layers, except
the first CNN layer. The layers between shortcut connections are represented as curly
brackets in Table 2.

• ResNet50 is based on ResNet and has 50 trainable layers (49 CNN layers and 1 fully
connected layer). It has a shortcut connection for every three CNN layers, except the
first CNN layer. The layers between shortcut connections are represented as curly
brackets in Table 2.

• ResNet101 is based on ResNet and has 101 trainable layers (100 CNN layers and 1
fully connected layer). It also has a shortcut connection for every three CNN layers,
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except the first CNN layer. The layers between shortcut connections are represented
as curly brackets in Table 2.

• ResNeXt34 is based on ResNeXt, and it is composed of 34 trainable layers (33 CNN
layers and 1 fully connected layer). The cardinality is set to 32. The last CNN layers
between shortcut connections are propagated by splitting them into 32 on a channel
basis. In Table 2, the shortcut connections are represented as curly brackets, and the
splitting operation is represented as every last layer in curly brackets.

• SE-ResNet34 applies the SE block to ResNet34. The SE blocks are positioned between
the last CNN layers of shortcut connections and the merge points of the shortcut
connections, as shown in Table 2. The detailed structure is shown in Figure 3, and the
reduction ratio r is set to 4.

• SE-ResNeXt34 applies the SE block to ResNeXt34. The SE blocks are positioned
between the last CNN layers of shortcut connections and the merge points of the
shortcut connections, as shown in Table 2. The structure is the same as the SE block of
SE-ResNet34, and the reduction ratio r is also set to 4.

Table 2. The configurations of trainable layers for the proposed FER model.

VGG14 VGG17 ResNet18 ResNet34 ResNet50 ResNet101 ResNeXt34 SE-ResNet34 SE-ResNeXt34

3× 3, 64 ×1 3× 3, 64 ×2 7× 7, 64 ×1 7× 7, 64 ×1 7× 7, 64 ×1 7× 7, 64 ×1 7× 7, 64 ×1 7× 7, 64 ×1 7× 7, 64 ×1

3× 3, 238 ×2 3× 3, 128 ×2 3× 3, 64
3× 3, 64

}
×2 3× 3, 64

3× 3, 64

}
×3

1× 1, 64
3× 3, 64
1× 1, 256

 ×3
1× 1, 64
3× 3, 64

1× 1, 256

 ×3 3× 3, 64
3× 3, 2× 32

}
×3

3× 3, 64
3× 3, 64
SE block

 ×3
3× 3, 64

3× 3, 2× 32
SE block

 ×3

3× 3, 256 ×3 3× 3, 256 ×4 3× 3, 128
3× 3, 128

}
×2 3× 3, 128

3× 3, 128

}
×4

1× 1, 128
3× 3, 128
1× 1, 512

 ×4
1× 1, 128
3× 3, 128
1× 1, 512

 ×4 3× 3, 128
3× 3, 4× 32

}
×4

3× 3, 128
3× 3, 128
SE block

 ×4
3× 3, 128

3× 3, 4× 32
SE block

 ×4

3× 3, 512 ×3 3× 3, 512 ×4 3× 3, 256
3× 3, 256

}
×2 3× 3, 256

3× 3, 256

}
×6

1× 1, 256
3× 3, 256

1× 1, 1024

 ×6
1× 1, 256
3× 3, 256

1× 1, 1024

 ×23 3× 3, 256
3× 3, 8× 32

}
×6

3× 3, 256
3× 3, 256
SE block

 ×6
3× 3, 256

3× 3, 8× 32
SE block

 ×6

3× 3, 512 ×3 3× 3, 512 ×4 3×3, 512
3×3, 512

}
×2 3×3, 512

3×3, 512

}
×3

1×1, 512
3×3, 512

1×1, 2048

 ×3
1×1, 512
3×3, 512

1×1, 2048

 ×3 3× 3, 512
3× 3, 16× 32

}
×3

3× 3, 512
3× 3, 512
SE block

 ×3
3× 3, 512

3× 3, 16× 32
SE block

 ×3

Fully connected with 2 units, tanh

Note: Two columns describe the information of each model: the left column shows the CNN filter and depth information and the right column shows
the number of repetitions. The last row means the output layer that all have in common.

We trained our FER models to minimize the distance between the predicted (V̂i, Âi)
and true (Vi, Ai) values of the valence and arousal using AffectNet [33]. L2 loss function
measures the distance and is shown as follows:

L(V̂, Â, V, A) =
1

2n

n

∑
i=1

((V̂i −Vi)
2 + (Âi −Ai)

2) (3)

where n is the number of training samples, V̂i is the predicted valence value of ith training
sample, Vi is the true valence value of ith training sample, Âi is the predicted arousal value
of ith training sample , and Ai is the true arousal value of ith training sample. We used
the Adam algorithm [63], a popular optimizer, to optimize the model parameters. We set
the learning rate to 0.001 and the first and second moments to 0.9 and 0.999, respectively.
We tried to train over 10 epochs (over 3,207,390 iterations), and the training was terminated
when the loss value on the validation set was stable. To compare our models, we used root
mean squared error (RMSE) on the validation set:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)2 (4)

where m is the number of validation samples, ŷi is the predicted value of ith validation
sample and yi is the true value of ith validation sample. The RMSE values of valence and
arousal are compared separately.



Sensors 2021, 21, 2166 17 of 29

5.2. Sensor Fusion Emotion Recognition

Thirteen volunteers (six men and seven women) participated in this study, five times
per participant. The experiment had to be conducted by inducing eight emotions for all
participants; hence, it was impossible to conduct all experiments in a single day. We experi-
mented by grouping two similar emotions (2 emotions/session × 4 session = 8 emotions).
One session was conducted as a pretest. All experiments were conducted after obtaining
approval from Kookmin University’s IRB (KMU-202005-HR-235).

To study the eight emotions defined in Section 4.2, we needed to induce the partic-
ipants into each emotion situation or state. We applied a technique that combines film
watching and writing passages, as shown in Figure 6. After watching a 4–6 min video to
induce the desired emotion, the researchers asked 70 people who are not familiar with our
study to watch the video online and gathered their opinion about emotional state after
viewing. After confirming that the emotion was induced as intended, the video was used
in this experiment. To increase the emotions’ duration and reinforce the emotions induced
through the video, we asked the participants to freely describe for 13 min their own experi-
ences related to the emotions induced. The video viewing and self-experience description
are two of the most valid emotion induction and reinforcement techniques [53]. During
video viewing and self-experience description, we recorded the driver’s facial image and
measured his/her EDA. After that, the participants’ self-reported emotions were asked
through a survey. Then, the driving was carried out for 5 min in the driving simulator. We
recorded the driver’s face image and measured his/her EDA. After finishing the driving,
the experimenters debriefed the purpose of the study. In other words, by neutralizing the
participants’ emotions, we made sure that the participants’ moods are close to the baseline
level when they are leaving the laboratory.

(a) The video viewing (b) The self-experience description writing

Figure 6. (a) The participants’ emotions are induced through video viewing. (b) The participants
describe their own experiences related to the emotions induced.

In the experiment, we used a full-scale driving simulator with six DOF motion base
equipped with AV Simulation’s SCANeR Studio 1.7 (AVSimulation, Boulogne-Billancourt,
France, https://www.avsimulation.com/, accessed on 18 March 2021). The LF Sonata,
a Hyundai midsize sedan, was utilized as a cabin. Three-channel projectors and three
2080 mm × 1600 mm screens were connected horizontally to visualize the driving scene.
The participants’ physiological signals of EDA was collected using a BioPac bioinstrument
(BIOPAC Systems, Inc., Goleta, CA, USA, https://www.biopac.com/, accessed on 18 March
2021). The bioinstrument guarantees excess 70 dB of signal to noise ratio (SNR). To acquire a
reliable EDA signal, we removed the dead skin cells on the hand to prevent the interruption
of signal collection and applied an isotonic electrode paste to the electrode for increasing
accuracy. In addition, before starting all experiments, we observed the EDA waveform to
confirm that there is no visible noise throughout the signal. For the driver’s face image,
we used BRIO 4K (Logitech, Lausanne, Switzerland, https://www.logitech.com/, accessed
on 18 March 2021) with 720 × 720 pixel and 30 fps for video viewing, self-experience

https://www.avsimulation.com/
https://www.biopac.com/
https://www.logitech.com/
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description and in the driving simulator. Figure 7a shows the full-scale driving simulator.
Figure 7b shows the installation of the BioPac bioinstrument and the camera in the driving
simulator while the driver is driving. The camera was installed between the windshield and
the headliner in front of the sun visor to avoid that driver’s face being partially occluded
by the steering wheel or hand.

(a) The full-scale driving simulator (b) The installation of the collecting devices in
driving simulator

Figure 7. (a) Three-channel projectors and screens and the cabin of the full-scale driving simulator.
(b) The camera is installed between the windshield and the headliner (red) and the biomedical
instrument is set on the driver’s wrist for EDA (green).

Among the data collected through simulation, the video and EDA data collected while
driving were used for training and evaluating the SFER model and the rest of the data
were used for reference. The driving data were acquired while each volunteer was driving
for about 5 min per each emotion. The driver’s facial expressions images were acquired
with a 30 Hz sampling rate, and the EDA data were acquired when considering a 100 Hz
sampling rate. The acquired driving data cannot be used for training of the FER models.
To train the FER models, the true valence and arousal values are required for each facial
image, but the driving data involve the induced emotion as the ground truth label.

To validate the effectiveness of input features and model structure, we proposed
various SFER models. Each proposed SFER model, evaluated in this study, consists of
fully connected layers as the input layer, output layer and multiple hidden layers. Every
output vector from the hidden layers passes through the ReLU activation function, and the
output vector from the output layer passes through the softmax activation function. In the
proposed SFER model, we set the number of output layer units to 8 because the number
of emotional state categories for driver (k) is defined in eight categories, as described in
Section 4.2. The models are distinguished by their input features, several hidden layers (L)
and several maximum units (U) of hidden layers. In the following, the front part of the
model name means the kind of input features. If the front part of the model name is VA or E,
the model uses only the output value of the FER model (V̂, Â) or the EDA (E) value as an
input. If the model name starts with VAE, both of the output value of the FER model (V̂, Â)
and EDA (E) value are used as input values. The number in parentheses of the model
name means the number of hidden layers and maximum units as (L, U). All the proposed
SFER models are described as follows. Table 3 presents their detailed configurations.

• E(3, 64): This only uses EDA (E) value measured as the input value. The number of
input layer units is 1, and this SFER model recognizes the driver’s emotional state
with only bio-physiological information. The number of hidden layers is 3 and the
number of maximum units is 64.

• E(8, 512): This only uses EDA (E) value measured equal to E(3, 64). However, the
number of layers and maximum units of the model are made deeper and wider than
E(3, 64). The number of hidden layers is 8 and the number of maximum units is 512.
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• VA(3, 64): This only uses valence (V̂) and arousal (Â) values from the FER model as
input values. The number of input layer units is 2, and this SFER model recognizes
the driver’s emotional state with only the FER information. The number of hidden
layers is 3 and the number of maximum units is 64.

• VA(8, 512): This only uses valence (V̂) and arousal (Â) values equal to VA(3, 64).
However, the number of layers and maximum units of the model are made deeper and
wider than VA(3, 64). The number of hidden layers is 8 and the number of maximum
units is 512.

• VAE(3, 64): This uses valence (V̂), arousal (Â) and EDA (E) values as input values.
The number of input layer units is 3, and this SFER model recognizes the driver’s
emotional state with both FER and bio-physiological information. The number of
hidden layers is 3 and the number of maximum units is 64.

• VAE(8, 512): This uses valence (V̂), arousal (Â) and EDA (E) values equal to VAE(3, 64).
However, the number of layers and maximum units of the model are made deeper and
wider than VAE(3, 64). The number of hidden layers is 8 and the number of maximum
units is 512.

• VAE(9, 1024): This uses valence (V̂), arousal (Â), and EDA(E) values as input values.
The number of hidden layers is 9 and the number of maximum units is 1024.

• VAE(9, 2048): This uses valence (V̂), arousal (Â) and EDA (E) values as input values.
The number of hidden layers is 9 and the number of maximum units is 2048.

• VAE(10, 1024): This uses valence (V̂), arousal (Â) and EDA (E) values as input values.
The number of hidden layers is 11 and the number of maximum units is 1024.

Table 3. Configurations of the proposed SFER models.

E(3, 64) E(8, 512) VA(3, 64) VA(8, 512) VAE(3, 64) VAE(8, 512) VAE(9, 1024) VAE(9, 2048) VAE(10, 1024)

32, ReLU 32, ReLU 32, ReLU 32, ReLU 32, ReLU 32, ReLU 32, ReLU 32, ReLU 32, ReLU
64, ReLU 64, ReLU 64, ReLU 64, ReLU 64, ReLU 64, ReLU 64, ReLU 128, ReLU 64, ReLU
32, ReLU 128, ReLU 32, ReLU 128, ReLU 32, ReLU 128, ReLU 128, ReLU 512, ReLU 128, ReLU

256, ReLU 256, ReLU 256, ReLU 256, ReLU 1024, ReLU 512, ReLU
512, ReLU 512, ReLU 512, ReLU 512, ReLU 2048, ReLU 512, ReLU
256, ReLU 256, ReLU 256, ReLU 1024, ReLU 2048, ReLU 1024, ReLU
64, ReLU 64, ReLU 64, ReLU 256, ReLU 256, ReLU 1024, ReLU
32, ReLU 32, ReLU 32, ReLU 64, ReLU 128, ReLU 256, ReLU

32, ReLU 32, ReLU 64, ReLU
32, ReLU

8, softmax.
Note: A column describe the information of each model and shows the number of units and activation function; the last row means the output layer
that all have in common.

The minimum vehicle control cycle required by the industry is 10 Hz. To satisfy this
requirement, all the proposed SFER models have a 10 Hz recognition frequency. The time
window of input data was set to 0.1 s because the driver’s emotions can change in the same
period according to the vehicle control state that changes at least 10 Hz in a period. Hence,
to train and evaluate these proposed SFER models, filtering was required for each input
datum, V̂, Â and E. The output value of the FER model (V̂, Â), which has valence and
arousal value per input image, has a sampling rate of 30 Hz. Therefore, the filtering value
was calculated as the average value of three valence and arousal values for the previous
0.1 s in every 10 Hz. Because when the EDA data were acquired a 100 Hz sampling rate
was considered, the filtering value of the EDA value (E) was calculated as the average
value of ten EDA values for the previous 0.1 s in every 10 Hz. The average filtering reduces
the fine residual noise remaining in the EDA waveform, as shown in Figure 8.
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Figure 8. Part of raw and average filtering data of measuring EDA electrical conductance while one
of simulation driving.

Through the average filtering with a time window of 0.1 s, the total number of input
data (V̂, Â, E) in which one valence, one arousal and one EDA value set is observed is
310,389. The data were divided into training and test sets at an 8:2 ratio; 20% of the training
set was used for validation to prevent overfitting. Hence, we trained the SFER model with
a training and validation set containing 198,610 and 49,653 data, respectively. We evaluated
the trained SFER model with a test set involving 62,066 data.

The proposed SFER models require all input and output to be numeric because they
operate by a series of numerical operations from input to output. This means that the
driver’s defined emotional state categories (C) must be converted to a numerical form, and
the SFER models’ output value (Ŷ1) is needed to be converted back into the categories (C).
One-hot encoding, which is the most widespread approach for this conversion, creates a
separate binary column for each possible category and inserts 1 into the corresponding
column. The converted categories (C1) is shown as follows:

C1

1
T
= [1, 0, 0, 0, 0, 0, 0, 0]

C1
2

T
= [0, 1, 0, 0, 0, 0, 0, 0]

C1
3

T
= [0, 0, 1, 0, 0, 0, 0, 0]

...

C1
8

T
= [0, 0, 0, 0, 0, 0, 0, 1]

(5)

where k = 8, as defined in Section 4.2. Then, induced emotion to the driver (Y) composed
of C is also converted into Y1, comprised of C1. Hence, we can find the numerical cross-
entropy loss between the induced emotion (Y1) and predicted emotion (Ŷ1):

L(Ŷ1, Y1) = − 1
n

n

∑
i=1

(Y1i
T × log(Ŷ1i )) (6)

where n is the number of training samples, Ŷ1i is the one-hot encoded predicted emotion of
the ith training sample and Y1i is the one-hot encoded induced emotion of the ith training
sample. The sum of all elements of Ŷ1i is 1 because the output vector passed through
softmax activation function to predict. We used the Adam algorithm [63], the same as
the FER model training, to optimize the parameter of our proposed SFER models. We set
the learning rate to 0.001 and the first and second moments to 0.9 and 0.999, respectively.
We tried to train over 30 epochs (over 5,958,300 iterations), and the accuracy evaluation
of each model was performed when the loss value on the validation set reached stable
point. In order for trained model to output the recognized emotional state, we obtained
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the index with the largest value of Ŷ1 and converted it to the emotional category of the
corresponding index among the C. Through this conversion, Ŷ1 was converted back into
the recognized real emotional state (Ŷ), comprised of C. We compared the SFER models’
accuracy through the correctly recognized ratio with Ŷ and Y.

6. Results

In this section, we present the experiment results of the proposed algorithms. In
Section 6.1, the results of training and comparison of the proposed FER models are de-
scribed. The results of training and comparison of the proposed SFER models are described
in Section 6.2. After analyzing the results, the DRER algorithm that we finally proposed
is constructed by combining the FER model and SFER model with the best performance.
The performance of DRER algorithm when compared with the state-of-the-art algorithms
is also presented in Section 6.2.

6.1. Facial Expression Recognition

Figure 9 shows the value of validation loss over the 3M iterations for all our proposed
FER models. Some of the training was stopped early if the validation loss had plateaued.

Figure 9. L2 loss function on the validation set of the proposed FER model training.

To validate the effectiveness of the network depth, we compared the RMSE values of
valence and arousal on the validation set between models based on VGG and ResNet, as
shown in Table 4. If we compared VGG14 and VGG17 results, we expected that VGG17
obtains lower RMSE values because it is a deeper network than VGG14. However, in
Table 4, VGG17 has larger RMSE values of both valence and arousal than those of VGG14.
This degradation has already been reported in several studies. The RMSE values will
degrade on the model based on ResNet because ResNet is the architecture that overcomes
this limitation. As expected, ResNet34’s RMSE values of valence and arousal are 0.418
and 0.378, respectively, which are much lower than those of VGG14. However, looking
at the results of ResNet50 and -101, which have deeper networks than ResNet34, the
degradation problem is not completely resolved. Even though the models are based on
ResNet, the RMSE values increase when the number of trainable layers is deeper than
34. To validate the parallelization performance, we compared ResNeXt34 with ResNet34,
which showed the best performance among the proposed models with different depths.

Table 4 shows that ResNeXt’s RMSE values of valence and arousal are 0.146 and 0.372,
respectively. Increasing the number of layers did not lower the RMSE values; however,
better recognition performance was obtained by splitting some of the CNN layers to make
them parallel. To validate the channel-wise attention performance, we also compared
ResNet with SE-ResNet and ResNeXt with SE-ResNeXt. The results of these models of
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valence and arousal are 0.419 and 0.377, respectively, as shown in Table 4. The SE-ResNet34
result shows that the RMSE value of arousal decreased compared with that of ResNet34,
but, as the RMSE value of arousal decreased, the RMSE value of valence increased. From
the SE-ResNet34 result alone, we cannot say that SENet is effective. However, the SE-
ResNeXt34 result shows a decrease of RMSE value of valence from ResNeXt34 with a
minute change of arousal’s RMSE value. Hence, SENet can be considered to be effective
for the FER. SE-ResNeXt34 shows the best performance (0.408 and 0.373 of valence and
arousal, respectively) in recognizing the facial expressions as valence and arousal states
among all of the proposed models. It is an equivalent result compared with the baseline
method proposed by Mollahosseini et al. [33], in which the RMSE values of valence and
arousal are 0.37 and 0.41, respectively. Although the performance for valence and arousal
tend to be opposite between each method, they are on the same level overall. The baseline
method has two separate models that output the valence and arousal states. While the
input face image needs to be cropped, our proposed models output the valence and arousal
states at once without cropping. Thus, the proposed SE-ResNeXt34 is a better FER model
than the baseline method.

Table 4. RMSE values of valence and arousal on the validation set of the proposed FER.

Model RMSE

Base Layer Valence Arousal

VGG 14 0.562 0.456
VGG 17 0.570 0.461
ResNet 34 0.418 0.378
ResNet 50 0.422 0.384
ResNet 101 0.420 0.389
ResNeXt 34 0.416 0.372
SE-ResNet 34 0.419 0.377
SE-ResNeXt 34 0.408 0.373

6.2. Sensor Fusion Emotion Recognition

Figure 10 shows the value of validation loss over the 30 epochs for all our proposed
SFER models. We found the performance of fusing with bio-physiology signals through
the comparison with VA(3, 64), E(3, 64) and VAE(3, 64). The validation loss of VAE(3, 64)
is lower than those of VA(3, 64) and E(3, 64) on every epoch.

Figure 10. Cross-entropy loss on validation set of the proposed SFER model training.



Sensors 2021, 21, 2166 23 of 29

Table 5 presents the accuracy on test set. In the table, the accuracy of VAE(3, 64) is 75%
higher than that of VA(3, 64) and 99% higher than that of E(3, 64). The same experiment
was compared with deeper and wider models: the accuracy of VAE(8, 512) is 114% higher
than that of VA(8, 512) and 146% higher than that of E(8, 512). A more interesting point
is the rate of increase in accuracy for the model with fused inputs as the model structure
gets more complex. As the model structure using only bio-physiology information has
become deeper and wider, from E(3, 64) to E(8, 512), the accuracy has increased by 8%. The
accuracy of VA(8, 512) using only facial information has increased by 9% from VA(3, 64).
The accuracy of VAE(8, 512) fusing facial and bio-physiology information has increased by
34% from VAE(3, 64). On the basis of these results, we proved the effectiveness of fusing
the recognized facial expressions and the driver’s measured EDA information to recognize
the driver’s real emotion.

To find the model with the best accuracy while fusing both information, we compared
the result for various structures of VAE models, as shown in Table 5. As the number of
layers increased to 9 and the maximum number of units increased to 1024, the accuracy
improved continuously. Then, the accuracy of VAE(9, 1024) is 0.886. However, after
VAE(9, 1024), the accuracy of VAE(9, 2048), which has the maximum number of units two
times that of VAE(9, 1024), is 0.865. Similarly, the accuracy of VAE(10, 1024), which has
one more layer than VAE(9, 1024), is 0.871. Both models have lower accuracy than the
that of VAE(9, 1024). Hence, the accuracy does not continue to increase as the model gets
deeper and wider. The proposed SFER model showed the highest accuracy of 0.886 with
VAE(9, 1024).

Table 5. The accuracy of the SFER model on test set.

Model Accuracy

E(3, 64) 0.331
E(8, 512) 0.358
VA(3, 64) 0.376
VA(8, 512) 0.411
VAE(3, 64) 0.658
VAE(8, 512) 0.880
VAE(9, 1024) 0.886
VAE(9, 2048) 0.865
VAE(10, 1024) 0.871

Table 6 is the confusion matrix of the evaluation result of VAE(9, 1024), which achieves
the best accuracy among the proposed SFER models. It shows the recognition rate for each
induced emotions. The highest recognition rate is 0.930 for the “happy” emotion, and the
lowest recognition rate is 0.861 for the “depressed” emotion. Every recognition rate is
between 0.861 and 0.930. Thus, the proposed SFER model can recognize evenly without
bias to any emotion.

The receiver operating characteristic (ROC) curve is a plot with a true positive rate
(TPR) on the y-axis against a false positive rate (FPR) on the x-axis. Figure 11 presents
the ROC curve using one-versus-rest method for each emotion on the test set. It involves
eight graphs, including VAE(9, 1024), VAE(8, 512), VA(8, 512) and E(8, 512) ROC curves to
compare the accuracy depending on the input features. There was little difference between
VAE(9, 1024) and VAE(8, 512) on the ROC curve, which is located above VA(8, 512) and
E(8, 512). Although VA(8, 512) was higher on the ROC curve than E(8, 512) in the case
of most emotions, with respect to relieved and fearful, there was little difference between
VA(8, 512) and E(8, 512).
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Table 6. Confusion matrix of the evaluate result of VAE(9, 1024).

Y
Neutral Happy Excited Fearful Angry Depressed Bored Relieved

Ŷ

Neutral 0.877 0.006 0.013 0.011 0.016 0.017 0.015 0.031
Happy 0.026 0.930 0.036 0.013 0.017 0.024 0.017 0.005
Excited 0.011 0.012 0.873 0.019 0.017 0.026 0.013 0.003
Fearful 0.015 0.007 0.016 0.883 0.031 0.025 0.013 0.020
Angry 0.026 0.009 0.015 0.034 0.888 0.024 0.022 0.026

Depressed 0.014 0.019 0.011 0.012 0.006 0.861 0.015 0.008
Bored 0.013 0.012 0.025 0.013 0.013 0.017 0.883 0.014

Relieved 0.018 0.004 0.012 0.015 0.012 0.006 0.022 0.892
Note: Y is the induced emotion categories to driver and Ŷ is the recognized real emotion categories.

Figure 11. ROC curve for each defined emotion.

Table 7 shows the values of area under the curve (AUC) of the ROC curves in Figure 11
according to the emotions considering in each model. The AUC of classification models
with good performance is close to 1, which means it has a good measure of separability. As
shown in Table 7, the average AUCs of VAE(9, 1024) and VAE(8, 512) were 0.994, which
was 20% and 30% higher than those of VA(8, 512) and E(8, 512), respectively. VAE(9, 1024)
and E(8, 512) had high AUC for all emotions, whereas VA(8, 512) had the lowest AUC at
0.790 for neutral and the highest AUC at 0.848 for depressed. E(8, 512) had the lowest AUC
of 0.705 at depressed and the highest AUC of 0.826 at relieved.

Table 7. AUC result of the proposed SFER models.

VAE(9, 1024) VAE(8, 512) VA(8, 512) E(8, 512)

Neutral 0.993 0.991 0.794 0.754
Happy 0.995 0.994 0.826 0.758
Excited 0.993 0.993 0.829 0.770
Fearful 0.992 0.992 0.813 0.818
Angry 0.991 0.990 0.845 0.756
Depressed 0.994 0.994 0.850 0.703
Bored 0.993 0.992 0.807 0.723
Relieved 0.995 0.994 0.817 0.822

Average AUC 0.993 0.993 0.823 0.764

Based on the above experiment results, we realized the best FER model, SE-ResNeXt,
and the best SFER model, VAE(9, 1024). Therefore, we proposed the DRER algorithm
that recognizes the driver’s real emotion while driving by combining SE-ResNeXt and
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VAE(9, 1024). The performance of the DRER algorithm in comparison with other state-of-
the-art algorithms is shown in Table 8. A good emotion recognition model should have
the following qualities: high accuracy and various emotional states. Although Machot
et al. achieved high accuracy using only bio-physiological signal, they only classified
four emotional states [22]. Comas et al. classified seven emotional states by fusing the
facial expressions and bio-physiological signals, but the accuracy was 64% [27]. On the
other hand, the DRER algorithm achieved a high emotion recognition accuracy of 0.89 for
eight different emotional states using facial expressions and EDA as the input features.
The DRER algorithm we proposed shows the highest accuracy while classifying the most
emotional states.

Table 8. State-of-the-art algorithms for emotion recognition.

Reference Signals Number of
Categories

Method Accuracy

Machot et al. [22] EDA 4 (Emotions) CNN 0.81

Santamaria et al. [23] ECG, EDA 2 (Valence) DCNN 0.75
2 (Arousal) 0.76

Rayatdoost et al. [24] EEG, Faces 2 (Valence) MGIF 0.75
2 (Arousal) 0.74

Siddharth et al. [25] EEG, Faces 4 (Emotions) VGG-16, LSTM 0.54

Comas et al. [27] EDA, Faces, ECG 7 (Emotions) BMMN-BAE-2 0.64

Our study EDA, Faces 8 (Emotions) DRER 0.89

7. Conclusions and Future Work

In this paper, we propose the DRER algorithm based on deep learning algorithm
to recognize the driver’s emotional state that does not always appear clearly on their
face while driving. On the basis of CNN, we propose the FER model, an end-to-end
architecture, to recognize the driver’s facial expression state through the driver’s face
image photographed without any additional work. Then, on the basis of DNN, we propose
the SFER model to recognize the driver’s real emotional state, which is not fully revealed
on the face, by fusing the recognized facial expression state and the driver’s EDA signals.
We define the appropriated driver’s emotion categories, and the output of our proposed
SFER model is represented to the categories defined. We trained and evaluated our SFER
model using the data collected from a human-in-the-loop simulation with a full-scale
driving simulator. We proposed the DRER model by combining the best performing FER
model model and SFER model in our experiments. As a result, our proposed DRER model
achieved 88.6% accuracy using only the face image and EDA signal for the driver’s induced
emotion while driving situation. Therefore, our DRER model is expected to be more
reliable than the existing FER models and will be useful for services based on the driver’s
emotional state.

There are multiple directions along which our proposed models could be robust in
future work. The first is considering emotional continuity. Our DRER model recognized
emotional state with only a short moment’s information, but the emotions have a continu-
ous nature. Thus, if our proposed model considered the sequential aspect, its recognition
performance would likely significantly improve to recognize driver’s emotion. Second,
based on experiments using real vehicle, the robustness of the algorithm can be consid-
erably improved with respect to the external environment. Even though the full-scale
driving simulator that we used is very similar to the real vehicle environment, the external
environment is completely controlled. It is likely that a future model trained with many
data collected from the real vehicle can show high accuracy in uncontrolled actual driving
situations. Third, in this study, we did not consider real-time recognition. Optimizing the
frequency and time window through run time analysis would likely make it possible to
build a real-time system for monitoring the real emotions of drivers.
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