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Abstract

We present an in silico approach to identify neoepitopes derived from intron retention events in 

tumor transcriptomes. Using mass spectrometry immunopeptidome analysis, we show that 

retained intron (RI) neoepitopes are processed and presented on MHC-I on the surface of cancer 

cell lines. RNA-derived neoepitopes should be considered for prospective personalized cancer 

vaccine development.

Personalized cancer vaccines comprising neoepitope peptides generated from somatic 

mutations have shown potential as targeted immunotherapies1–3. Other types of aberrant 

peptides, including cancer germline antigens generated from genes that are transcriptionally 

silent in adult tissues, have been shown to act as tumor neoepitopes in immune rejection4, 5. 

Dysregulation of RNA splicing through intron retention, which is common in tumor 

transcriptomes6, 7, represents another potential source of tumor neoepitopes, but has not 
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been previously explored. Intron retention is caused by splicing errors that lead to inclusion 

of an intron in the final mRNA transcript. RI transcripts are translated and degraded by the 

nonsense-mediated decay (NMD) pathway, which generates peptides for endogenous 

processing, proteolytic cleavage, and presentation on MHC-I8–10.

We developed a computational approach for detecting intron retention events from tumor 

RNA-seq data (Fig. 1A, Methods). Intron fragments likely to be translated based on their 

position downstream from a translated exon and upstream from an in-frame stop codon were 

identified. Predicted binding affinities between retained intron (RI) peptide sequences and 

sample-specific HLA class I alleles were calculated to identify candidate RI neoepitopes. We 

filtered and thresholded preliminary results to exclude artifacts. This process (Methods) 

generated a robust list of putative RI neoepitopes for each sample.

We applied this method to tumor sequencing data from two cohorts of melanoma patients 

treated with checkpoint inhibitors11, 12 to identify putative RI neoepitopes (n = 48 

melanomas; Supplementary Tables S1 and S2). Apart from one outlier, both cohorts had 

comparable levels of intron retention and predicted RI neoepitopes (Fig. 1B). Slight 

variation in RI neoepitope load between cohorts was expected given differences in RNA 

sequencing run, depth, and quality13. The total predicted neoepitope load included RI 

neoepitopes, and somatic mutation neoepitopes derived computationally using published 

methods (Supplementary Fig. S1, Supplementary Table S1, Methods). Most patients showed 

substantially augmented total neoepitope loads with the additional consideration of RI 

neoepitopes. Mean somatic neoepitope load was 2,218 and mean RI neoepitope load was 

1,515, yielding a ~0.7-fold increase in mean total neoepitope load with the addition of RI 

neoepitopes (Fig. 1C). Excluding one outlier sample with a vastly higher level of somatic 

neoepitopes than the rest, incorporation of RI neoepitopes roughly doubled the total 

neoepitope load. There was not a significant correlation between somatic neoepitope load 

and RI neoepitope load (Ordinary Linear Regression p = 0.63) (Supplementary Fig. S2).

To demonstrate that RI neoepitopes are processed and presented on MHC-I, we predicted RI 

neoepitopes from six human tumor cell lines and detected neoepitopes that were complexed 

to MHC-I by mass spectrometry (Supplementary Table S3). In melanoma cell line MeWo, 

the predicted RI neoepitopes EVYAAGKYV and YAAGKYVSF from KCNAB2 
(chr1:6142308–6145287) were experimentally discovered in complex with MHC-I via mass 

spectrometry with high confidence (Fig. 2A). We identified RI neoepitopes in another 

melanoma cell line, SK-MEL-5 (AMSDVSHPK and LAMSDVSHPK from SMARCD1), in 

B cell lymphoma cell lines CA46 (FRYVAQAGL from LRSAM1) and DOHH-2 

(TLFLLSLPL and FLLSLPLPV from CYB561A3), and in leukemia cell lines HL-60 

(SVLDDVRGW from TAF1) and THP-1 (LTSQGKSAF from ZCCHC6) (Fig. 2B, 
Supplementary Fig. S3). Applying this method to somatic mutation-derived neoepitopes, a 

comparable percentage of predicted neoepitopes were detected by mass spectrometry 

(Supplementary Table S4). The discovery of peptides in complex with MHC-I in cell lines 

using mass spectrometry with RI neoepitope sequences predicted computationally with our 

pipeline provides direct evidence of the processing and presentation of RI neoepitopes 

through the MHC-I pathway.
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Given that somatic neoepitope burden is a known correlate of checkpoint inhibitor response 

in melanoma14, we next examined whether RI neoepitope load might be similarly associated 

with response. However, there was no association between RI neoepitope load and clinical 

benefit from checkpoint inhibitor therapy, nor was there correlation with expression of 

canonical markers of immune cytolytic activity, CD8A, GZMA, PRF115, or clinical 

covariates (Pearson correlation p > 0.05 for all, and Supplementary Fig. S4-S6). Rather, 

there was a non-significant trend of association between high RI neoepitope load and lack of 

benefit (Two-sided Mann-Whitney U p = 0.29 Snyder cohort, 0.61 Hugo cohort). High RI 

neoepitope load tumors and checkpoint inhibitor nonresponder tumors, with only 38% 

overlap, shared common transcriptional programs consistent with cell cycle and DNA 

damage repair activity (Supplementary Fig. S7 and Supplementary Table S5).

Here, we demonstrate that tumor-specific RI neoepitopes can be identified computationally 

in both patient- and cell line-derived samples and a subset can be validated as presented in 

complex with MHC-I. These data support the hypothesis that aberrant splicing results in 

intron retention, which generates abnormal transcripts that are translated into immunogenic 

peptides, loaded on MHC-I and presented to the immune system, underscoring their 

relevance in patients receiving immunotherapy. Further studies will be necessary to 

clinically validate the immunogenicity of specific RI neoepitopes in patients, including 

identification of T cells specific to predicted RI neoepitopes.

Furthermore, we found that RI neoepitope load is not associated with checkpoint inhibitor 

response and discovered that patients with high RI neoepitope load are transcriptionally 

similar to immunotherapy nonresponders; both patient groups have enrichment of cell cycle 

and DNA damage repair-related gene sets. Intron retention has been shown to regulate the 

cell cycle in both non-malignant16 and malignant cells17. These findings warrant further 

investigation and experimental validation, given the emerging synergistic relationship 

between cell cycle inhibition and immune checkpoint blockade therapies18–20.

Identification of a wider array of tumor neoepitopes, including those derived from somatic 

mutation, aberrant gene expression, and splicing dysregulation, will contribute to a more 

complete understanding of the tumor immune landscape. Additional work dissecting the 

relationship between the prediction, processing and presentation, and ultimate 

immunogenicity of neoepitopes derived from different sources will be required to ensure 

clinical relevance of this approach. It has been shown that melanoma in particular may 

feature certain shared epitopes across patients that are derived from incomplete splicing 

processes, which may render these cancers more susceptible to RI-derived neoepitopes21, 22. 

Similar approaches across different tissues will provide further clarity on the role of RI 

neoepitopes in tumor immunity across cancer contexts. Currently, our findings are limited by 

the availability of clinically annotated cohorts with high quality RNA sequencing and 

matched normal tissue. Incorporation of matched normal tissue will improve exclusion of 

retained introns that represent normal gene expression and may help increase precision of 

our filtering approach. Prediction of patient-specific RI-neoepitopes has the potential to 

contribute to the development of personalized cancer vaccines.
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Online Methods

Clinical cohorts

Analysis was conducted on published cohorts of melanoma patients treated with immune 

checkpoint inhibitors. The Hugo et al. cohort included samples from 27 melanoma patients 

(26 pretreatment, 1 on-treatment) treated with the PD-1 inhibitor pembrolizumab11. Patient 

outcomes were classified as responding to therapy (R) (n=14) or not responding to therapy 

(NR) (n=13), as described in the original publication. These samples were sequenced from 

fresh frozen tissue using a standard, poly(A) selected protocol. The Snyder cohort included 

post-treatment samples for 21 melanoma patients treated with ipilimumab (anti-CTLA-4 

therapy)12, 23. Outcomes were classified as receiving long-term clinical benefit (LB) (n=8) 

or not receiving clinical benefit (NB) (n=13), as described in the original publication. RNA 

sequencing of the Snyder cohort was performed on fresh frozen tissue using a standard, 

poly(A) selected protocol.

RI neoepitope pipeline

Raw RNA-Seq FASTQ files were pseudoaligned to an augmented hg19 (GENCODE 

Release 19, GRCh37.p13)24 transcriptome index containing both exonic and intronic 

transcript sequences, and transcript expression was quantified via kallisto25. The KMA 

algorithm26, implemented as a suite of Python scripts within an R package, was used to 

identify the genomic loci of expressed intron retention events with limited false positives. 

Using these RI loci, the UCSC Table Browser27 database was queried via public MySQL 

server to obtain the nucleotide sequences corresponding to the intronic regions and 

fragments of the previous exonic sequences, as well as the open reading frame orientation at 

the start of the intron. RI peptide sequences of 9–10 amino acids, with at least one intronic 

amino acid, were generated by translating open reading frames into intronic sequences until 

hitting an in-frame stop codon. These peptides, along with sample HLA Class I alleles 

identified via the POLYSOLVER algorithm28, were assessed for putative peptide-MHC I 

binding affinity via NetMHCpan v3.129. A threshold of rank < 0.5% was used to identify 

putative RI neoepitopes.

Several filters were applied at various steps throughout the pipeline to eliminate likely false 

positive RIs and RI neoepitopes. After expression quantification, RIs expressed at a level ≤ 1 

transcript per million, likely artifactual, were eliminated from the analysis. Additional 

expression-based filters were applied within the KMA algorithm: RIs that did not reach a 

level of at least five unique counts in at least 25% of samples in a cohort and whose 

neighboring exons did not reach a level of at least one transcript per million in at least 25% 

of samples in a cohort were eliminated as false positives26. Due to the absence of matched 

normal RNA-Seq data for our melanoma clinical cohorts, a ‘panel of normals’ approach was 

taken in an attempt to filter out introns commonly retained in normal skin tissue, which 

would not produce immunogenic peptides due to likely host immune tolerance. RIs were 

identified in six normal skin samples (three individuals, two samples per individual: 

Individual ERS326932 with samples ERR315339 and ERR315376, Individual ERS326943 

with samples ERR315372 and ERR315460, and Individual ERS327007 with samples 

ERR315401 and ERR315464) from the Human Protein Atlas. RNA-Seq paired-end FASTQ 
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files for each sample were downloaded from the following open-access link: https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/samples/. All normal sample 

retention profiles were highly concordant, both within and across individuals 

(Supplementary Fig. S8A). The final filter set of 7,050 normal RIs was obtained by 

intersecting the sets of RIs shared by each unique combination of one sample per individual

—eight groups total (Supplementary Fig. S8B, Supplementary Table S6). These RIs were 

eliminated from downstream tumor sample analyses. In addition, RI peptides with amino 

acid sequences present in the normal proteome, derived from the UniProt human reference 

proteome version 2017_03, downloaded on 07/05/2017, were filtered due to likely host 

immune tolerance30. Finally, a set of RIs that were flagged due to abnormally high 

expression values and discovered upon manual review via Integrative Genomics Viewer31 to 

be erroneously-annotated in either the reference transcriptome or the Table Browser database 

were eliminated from the analysis (Supplementary Fig. S9A-D, Supplementary Table S6).

Pipeline code is publicly accessible on GitHub at https://github.com/vanallenlab/retained-

intron-neoepitope-pipeline.

Clinical cohort somatic neoepitope analysis

Putative somatic neoepitopes were identified in silico for each sample as described in Van 

Allen et al. 201514. Briefly, BAM files from each cohort underwent sequencing quality 

control to ensure concordance between tumor and matched normal sequences and adequate 

depth of sequencing coverage. Single nucleotide variants were called using MuTect32 and 

insertions and deletions were called using Strelka33. Annotation of identified variants was 

done using Oncotator (http://www.broadinstitute.org/cancer/cga/oncotator). Sequences of 9–

10 amino acid peptides with at least one mutant amino acid were generated. These peptides, 

along with HLA Class I alleles called with POLYSOLVER were analyzed using 

NetMHCpan v3.0 to identify HLA-peptide binding interactions28, 29. For each patient, all 

peptides with predicted binding rank ≤ 2.0% for at least one patient HLA Class I allele were 

called somatic neoepitopes.

Cell line analyses

Raw RNA-Seq data from the following published34 cell lines: CA46, DOHH-2, HL-60, 

THP-1, MeWo, SK-MEL-5 were obtained from the Cancer Cell Line Encyclopedia35 via the 

NCI Genomic Data Commons and run through our computational pipeline as previously 

described, with minor adaptations as described henceforth. HLA Class I alleles were used 

for each cell line as enumerated in publication. A threshold of predicted binding rank ≤ 2.0% 

for at least one HLA Class I allele was used to distinguish cell line RI neoepitopes. All 

pipeline filters applied to patient data described above were implemented on the cell line 

data except RI neoepitopes expected to be retained in normal tissue were not filtered due to 

the fact that these experiments were focused on presentation of RI neoepitopes rather than 

immune system stimulation once presented.

Mass spectrometric data from Ritz et al.34, as well as previously unpublished data for cell 

lines MeWo, DOHH-2, and SK-MEL-5, was searched against a database consisting of 

93,250 sequences of the human reference proteome downloaded from UniProt on July 7, 
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2017 concatenated with putative retained intron sequences (TPM > 1), or concatenated with 

133,811 intron sequences with TPM < 1 (not retained) as negative control. Fragment mass 

spectra were searched with SEQUEST and filtered to a 1% false discovery rate with 

percolator to identify high confidence events.

Gene set enrichment analysis

Gene expression was quantified in patient samples using kallisto25. Gene set enrichment 

analysis (GSEA) was run to compare both top quartile vs. bottom quartile RI load patients 

and immunotherapy responders vs. nonresponders. Initially, 50 Hallmark gene sets were 

tested36. GSEA analyses of the Founders gene sets underlying the Hallmark gene sets that 

were significantly enriched in both top quartile vs. bottom quartile RI load patients and 

immunotherapy responders vs. nonresponders were subsequently performed. All statistical 

values reported are Benjamini-Hochberg FDR q values corrected for multiple hypothesis 

testing.

Statistical analyses

Assessment of difference in means or medians for a continuous variable between two 

clinical response groups (i.e., clinical benefit vs. no clinical benefit) was performed using the 

two-sided nonparametric Mann-Whitney U test for non-normally-distributed variables (e.g., 

RI neoepitope burden). All statistical analyses were conducted in the R statistical software 

environment (v.3.3.1).

Life Sciences Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A, In silico pipeline detects intron retention events from transcriptome sequencing, 

determines open reading frames extending into introns, and identifies putative HLA-specific 

neoepitopes. B, Distribution of total RI load, neoepitope-yielding RI load, and RI neoepitope 

load in patient cohorts (n = 27 Hugo samples, n = 21 Snyder samples). Boxplots show the 

median, first, and third quartiles, whiskers extend to 1.5 x the interquartile range, and 

outlying points are plotted individually. C, Somatic and RI neoepitope load by patient. 
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Within each cohort, patients are sorted by total neoepitope load. Neoepitope counts (y-axis 

values) are represented in natural log format.
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Figure 2. 
A, Two RI neoepitopes identified in the MeWo cell line originating from gene KCNAB2 
were both predicted in silico and found by mass spectrometry in the MeWo 

immunopeptidome. Integrative Genomics Viewer (IGV) sashimi plot indicating RNA-Seq 

read depth (RI expression in TPM=5.13, percent-spliced-in [PSI] value=1.07%) and mass 

spectra. Experiments were repeated five times with independent measurements for cell line 

MeWo. Neoepitopes shown had one peptide-to-spectrum match (PSM) and were identified 

in one replicate within 1% false discovery rate (FDR). B, Predicted RI neoepitopes were 

found to have mass spectrometric evidence supporting their presentation in complex with 
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MHC I using the same methodology in additional tumor cell lines: SK-MEL-5, CA46, 

DOHH-2, HL-60, and THP-1.

Smart et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2019 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Online Methods
	Clinical cohorts
	RI neoepitope pipeline
	Clinical cohort somatic neoepitope analysis
	Cell line analyses
	Gene set enrichment analysis
	Statistical analyses
	Life Sciences Reporting Summary

	References
	Figure 1.
	Figure 2.

