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Purpose: Portable chest radiographs are diagnostically indispensable in intensive care

units (ICU). This study aimed to determine if the proposed machine learning technique

increased in accuracy as the number of radiograph readings increased and if it was

accurate in a clinical setting.

Methods: Two independent data sets of portable chest radiographs (n = 380, a single

Japanese hospital; n = 1,720, The National Institution of Health [NIH] ChestX-ray8

dataset) were analyzed. Each data set was divided training data and study data.

Images were classified as atelectasis, pleural effusion, pneumonia, or no emergency.

DenseNet-121, as a pre-trained deep convolutional neural network was used and

ensemble learning was performed on the best-performing algorithms. Diagnostic

accuracy and processing time were compared to those of ICU physicians.

Results: In the single Japanese hospital data, the area under the curve (AUC) of

diagnostic accuracy was 0.768. The area under the curve (AUC) of diagnostic accuracy

significantly improved as the number of radiograph readings increased from 25 to

100% in the NIH data set. The AUC was higher than 0.9 for all categories toward

the end of training with a large sample size. The time to complete 53 radiographs by

machine learning was 70 times faster than the time taken by ICU physicians (9.66 s vs.

12min). The diagnostic accuracy was higher by machine learning than by ICU physicians

in most categories (atelectasis, AUC 0.744 vs. 0.555, P < 0.05; pleural effusion,

0.856 vs. 0.706, P < 0.01; pneumonia, 0.720 vs. 0.744, P = 0.88; no emergency,

0.751 vs. 0.698, P = 0.47).

Conclusions: We developed an automatic detection system for portable chest

radiographs in ICU setting; its performance was superior and quite faster than

ICU physicians.

Keywords: machine learning technique, chest radiographs, ICU, computer-aided detection, deep convolutional

neural network, adaptive ensemble learning
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INTRODUCTION

Critically ill patients often have organ dysfunction and require
frequent and intense monitoring. Portable chest radiography
is key to assessing cardiopulmonary function in the intensive
care unit (ICU), allowing clinicians to identify pathological
findings such as pneumonia, pneumothorax, pleural effusion,
and atelectasis (1–7). A review of a large number of portable
chest radiographs with high accuracy is important for the
improvement of ICU patient outcomes; however, this can be
challenging, primarily due to a lack of manpower (8, 9). Machine
learning technology is effective in analyzing a large amount of
data, including image data (10–14). Therefore, this promising
technique potentially supports interpretations of radiographs,
which may improve quality of care and patient safety by reducing
physician’s workload in ICU.

Substantial investigations have documented computer-aided
detection (CAD) systems for medical images (15–21). Advances
in machine learning enhance the potential utility of ICU care.
Among various medical images, chest radiographs have been the
most investigated; however, insufficient accuracy limits its clinical
use. In addition, investigations on chest radiographs in the ICU
have not been well elucidated.

Therefore, we developed a new algorithm using supervised
machine learning with two independent datasets. We
hypothesized that the accuracy of our supervised machine
learning technique would increase as the number of radiograph
readings increased; we also hypothesized that the technique
would accurately and quickly identify pathological findings from
portable chest radiographs in a clinical setting.

METHODS

Data Collection
We Collected Two Independent Data Set From

Institutions in Different Regions
Data set 1 (a single Japanese center intensive care unit data):
Consecutive portable chest radiographs (Sirius Starmobile tiara
Airy; HITACHI, Tokyo, Japan) of a hospital based radiographic
database for ICU patients who admitted between April 2017 and
December 2018 were retrospectively extracted and used by the
study team member from the ICU at Chiba University Hospital,
Japan. This tertiary referral hospital ICU where approximately
1,800 patients admitted in a year had 22 beds and was utilized
by patients following emergency room admission and after
elective surgery, accounting for approximately 80% of ICU beds.
Of 3,351 screened patients, we selected 380 chest radiographs,
in which a single diagnosis could be made from one of the
following categories: atelectasis, pneumonia, pleural effusion,
and no emergency. The diagnosis was made on the basis of
clinical signs, laboratory data, and other images, including
computed tomography (CT) with a radiologist report and
bedside ultrasound. Two board-certified ICU physician with the
specialty of interventional radiology reviewed all radiographs
and labeled each imaging with one of the diagnoses in a
comprehensive and coherent manner. If there was any doubt in
diagnosis, the radiograph was excluded from further analysis.

Data set 2 (National Institute of Health [NIH] repository, US
multi centers data): ChestX-ray8 dataset provided by the NIH
clinical center, which contains 8,508 weak supervised multi-label
methods to classify and locate the text-mined 14 common thorax
diseases, mined from the text radiological reports via natural
language processing techniques were used (Figure 1). Because
the accuracy of this dataset is estimated to be>90%, we identified
erroneous labels and cleaned up the images according to previous
reports (22); we excluded images with magnification or those
deemed to be of poor quality by three experts including two
board-certified radiology physicians.

All clinical datasets were provided with DICOM format. The
resolution of the original images in the single center ICU datasets
sizes 2,430 pixels height and 1,994 pixels width and that of
original images in the NIH datasets sizes 1,024 pixels height and
1,024 pixels width. To align them, all images in the single center
ICU datasets are cropped and resized into 1,024 pixels height and
1,024 pixels width.

This study was approved by the Institutional Review
Board of Chiba University Graduate School of Medicine (No.
2972; Feb, 2018) and was performed in accordance with the
committee’s guidelines.

Two-Stage Classification Model
We used two different deep convolutional neural network
architectures. Dense convolutional network 121 (DenseNet 121),
which connects each layer to every other layer in a feed-forward
fashion named DenseBlock. DenseNet121 has several compelling
advantages and details are found in the supplemental digital
content [see Appendix (Supplemental Digital content)].

The area under the curve (AUC) for atelectasis and
pneumonia was particularly low at 0.574 and 0.499, respectively,
in the four-class simultaneous classification of atelectasis,
pneumonia, pleural effusion, and no abnormalities in DenseNets
121 conducted in a preliminary experiment. Therefore, we
developed a two-stage classification method in which the
combination of atelectasis and pleural effusion, and pneumonia
and pleural effusion were once classified as the same class, and
then separated them into each class in the second stage. The
proposed network model of this study runs on Keras 2.1.5 with
Python 3.4 on Ubuntu 16.04.4 LTS.

Adaptive Ensemble Learning
In adaptive ensemble learning, an arbitrary number of models
are selected from 10 models generated by iterative learning,
and the average of the certainty output values of each model
is calculated. For model selection, the optimum number and
optimum combination were determined from 10 models. We
found that it was optimal to select 4 out of 10 models in the
proposed two-stage classification method. Using this adaptive
ensemble learning, the average AUC improved to 0.672.

Diagnostic Performance by Physicians vs.
Machine Learning
To compare the accuracy and efficiency of the machine learning
algorithm, five board-certified critical care physicians and three
senior emergency residents voluntarily annotated images from
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FIGURE 1 | NIH repository test image sample.

TABLE 1 | Accuracy comparison of four algorithms.

Comparison of AUC Atelectasis Pneumonia Effusion Not emergency Four classes

average

Four-class simultaneous

classification

0.574 0.499 0.700 0.625 0.600

Two-stage classification 1 0.605 0.551 0.599 0.518 0.568

Two-stage classification 2 0.672 0.686 0.676 0.561 0.649

Two-stage classification 2

and adaptive ensemble learning

0.711 0.698 0.718 0.634 0.690

AUC, area under the curve.

the clinical samples which were dedicated data and part of
the Chiba university hospital collected. To test physician’s
diagnostic accuracy, we developed a web-based software which
was developed originally in our laboratory based on Java Script
and can show a portable chest radiograph to a physician
and the physician can input the diagnosis adjusting the dial
of for categories (Not emergency, Pleural effusion, atelectasis,
pneumonia) according to the physician’s confidence from 0
to 100. We chose 53 chest radiographs which were randomly
selected from Dataset 1. In a test, one physician successively
reviewed 53 chest radiographs one by one using the developed
software which automatically record the duration to diagnose
a single portable chest radiograph (Supplementary Figure 1,
Supplementary Material). The diagnostic accuracy calculated
by AUC of receiver operator characteristic (ROC) analysis and
the time for completing the images were compared with those
obtained using the machine algorithm.

Outcome Measures and Statistical Analysis
The sensitivity and specificity for the ability of the CNN to classify
atelectasis, pneumonia, pleural effusion, and no emergency were
calculated. The ROCs were plotted by varying the operating
threshold. For the ROC curves, standard error, 95% confidence
intervals, and comparisons between AUCs were made using
a non-parametric approach. The adjusted Wald method was
used to determine 95% confidence intervals for sensitivity and

specificity. P-values < 0.05 were considered to be statistically
significant. All statistical analyses were performed using R R©

(ROCR, version 3.2.4) and PRISM R© version 7 (GraphPad
Software, Inc., La Jolla, CA, USA).

RESULTS

Table 1 depicts the process of our algorithm development using
Data set 1(a single Japanese center intensive care unit data). As
shown in the table, our two-stage classification model improved
its performance as compared to that of a four-class simultaneous
classification model.

We next tested Data set 2 (NIH repository data, US multi
center data, which is a larger and independent data set from
different region, includes 1,120 for training, 120 for validation
and 480 for test). In atelectasis, the AUC increased as the number
of training data points increased, with a significant difference
between 25 (280 images) and 100% (1,120 images) of the samples
(P < 0.05) (Figure 2A). In pleural effusion, the AUC increased
with an increase in the amount of data from 25 to 50% (P < 0.01)
and from 75 to 100% of the samples (P < 0.01) (Figure 2B). In
pneumonia, the AUC increased from 25 to 50% (P < 0.05) and
75% (P < 0.01) of the samples with an increase in the number
of data points, respectively (Figure 2C). For no emergency, the
AUC showed an increase in the number of data points from 25
to 50% (P < 0.05) and 25 to 100% of the samples (P < 0.05)
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FIGURE 2 | ROC curve. ROC analysis was performed at a sample size of 25,

50, 75, and 100%. (A) ROC analysis for atelectasis. (B) for pleural effusion. (C)

for pneumonia. (D) for no emergency.

(Figure 2D), with an increase in the number of data points.
Figures 3A–D depicts the trend of AUC improvement with the
increase in sample numbers.

The average time for ICU physicians to complete a review
of 53 chest radiographs was 12min (median, interquartile
range 9–14). The algorithm finished the same dataset within
9.66 s. The diagnostic accuracy represented by AUC was higher
by machine learning compared to those physicians in all
categories: atelectasis, AUC 0.744 (95%CI 0.583–0.904) vs. 0.557
(95%CI 0.507–0.636), P = 0.030; pleural effusion, AUC 0.856
(95%CI 0.754–0.958) vs. 0.706 (95%CI 0.657–0.752), P = 0.007;
pneumonia, AUC 0.702 (95%CI 0.571–0.869) vs. 0.744 (95%CI
0.643–0.829), P = 0.881; no emergency, AUC 0.751 (95%CI
0.597–0.906) vs. 0.698 (95%CI 0.615–0.792), P = 0.476).

DISCUSSION

In the present study, we developed a novel automatic detection
system to aid ICU physicians in identifying pathological findings
from portable chest radiographs. In the case of atelectasis and
pleural effusion, the system performed extremely well compared
to board-certified ICUphysicians. Another advantage that should
be highlighted is that the supervisedmachine learning technology
had an extremely fast diagnostic time. The system could interpret
one image per 0.18 s. Since the proposed model can run on the
general deep learning framework, it can be adapted to widely
other environments.

FIGURE 3 | AUC values as a function of the sample size. The AUC of ROC

analysis was shown at a sample size of 25, 50, 75, and 100%. (A) for

atelectasis. (B) for pleural effusion. (C) for pneumonia. (D) for no emergency.

In this study, we validated that the diagnostic accuracy
improved as the sample size increased with a large sample
size (NIH repository data). The accuracy of this dataset is
considered to be >90%, and so it would be sufficient to test
our hypothesis. However, because of the uncertainty of the
diagnosis randomly lurk under a cloak of the provided chest
radiographs, we used our own in-hospital dataset to develop
the machine learning algorithm, which is key to improving
the accuracy of our system. We developed a novel two-stage
classification method from this dataset. Incorporating machine
learning into diagnostic imaging could lead to rapid therapeutic
interventions by determining image results quickly with fewer
errors. As for the cost, it is unknown since the business has not yet
been developed.

It is important to aim for higher sensitivity to rule out
acute pathology. Sensitivity is referred to as recall in the
machine learning field. The sensitivity of our system for acute
pathology was 0.846 for atelectasis, 0.846 for pneumonia, and
1.00 for pleural effusion. On the basis of our findings, the
clinical application of this system is wide; the technology allows
for reducing the risk of misdiagnosis and saving physician’s
efforts. The system requires true diagnosis; correct labels of
radiographs need to be provided by clinicians. However, our
data indicate that, after a period of training, once the system has
taken a sufficient sample size, an end-user will experience high
satisfaction in the diagnoses; the diagnoses would be consistent
with their own at high accuracy (AUC >0.9) and at an extremely
fast processing time.
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While detecting pneumonia, machine learning had a poorer
performance compared to the other abnormal findings. Poor
performance in machine learning is either due to overfitting or
underfitting of the data. Overfitting occurs when the trained
model does not generalize well to unseen cases but fits the
training data well. Assessment of the training curves can be used
to evaluate the possibility of overfitting. In our study setting, it
was apparent that the data loss on the validation data was much
greater than that on the training datasets, which suggested the
possibility of overfitting. The trend becomes more prominent
when the training sample size is small. This is one of the main
limitations of this study.

Since the present study developed algorithms with high
predictive value, the future direction of research would
be clinical application. The COVID-19 pandemic would
require the speedy X-ray diagnosis system with high
processing capability which detect the severe pneumonia in
the shortage of the specialist physician (23–26). This system
may be helpful for the screening of these patients with
pulmonary opacity.

The study had other limitations that should be addressed.
First, the number of learning images needed to be reduced by
removing duplicate labels from the dataset. For example,
for pneumonia, the ChestX-ray14 database had 1,107
pneumonia images; however, those included other labels
such as pneumonia/atelectasis, pneumonia/pleural effusion/,
and pneumonia/mass. We chose 300 images that were solely
labeled as pneumonia to avoid the double count of diagnosis. It
is plausible that the system performance decreased because the
number of learning images was limited in pneumonia. Second,
the resolution of image samples was lower than that of normal
X-ray images. In our hospital, physicians usually use images
with a resolution higher than 2,000 pixels; however, the images
needed to be resized to 1,024 pixels in the training and validation
datasets. Further studies are warranted to test the effect of image
resolutions on diagnostic accuracy by comparing physicians
and machine learning techniques. Third, this study lacked the
topographic diagnoses within the chest X-rays (pathology by
lobes, or by segments), and other pathologies or information
that can be read in the radiographs, such as positioning of

devices. However, this would not be a problem except for the

increase in the amount of information that would have to be
contributed to the learning system or for the addition of other
layers of neurons to the model. Furthermore, this study did

not have the data of the baseline demographic and clinical
characteristics of participants including patients age, sex, BMI,
diagnosis, and SOFA score. However, the machine learning

without patient’s characteristics would be versatile and increase
the ability of accuracy form the images with limited information.
Finally, this study has several limitations including sources of
potential bias, statistical uncertainty, the limited number of
cases, the number of investigators from the same geographical
area, and generalizability in another environment (different
types of patients, races, pathologies). Statistical uncertainty is

important since the sample size calculation was not performed
in this study. Since we developed new prediction algorithms
using machine learning approaches and could not speculate
a proper sample size, we did perform sample size estimation
and analyzed available data. However, the strength of this
study is comparison of the software performance with human
chest x-ray readers. Expansive study, which is statistically built
using this study results and add new images, in particular from
different geographical regions to improve performances and
generalizability of the model with multicenter even international
collaborations, would be desirable.

CONCLUSIONS

We developed an automatic detection system for portable
chest radiographs of ICU patients using two-stage classification
method which performed superior to board-certified ICU
physicians in the case of atelectasis and pleural effusion. The
diagnostic accuracy improved as the sample size increased. The
diagnostic time of the machine learning system was significantly
shorter than that of physicians.
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