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Abstract
Allogeneic platelets collected for transfusion treated with pathogen
reduction technology (PRT), which has been available in some countries for
more than a decade, are now increasingly available in the United States
(US). The implementation of PRT-treated platelets, also known as
pathogen-reduced platelets (PRPs), has been spurred by the need to
further decrease the risk of sepsis associated with bacterial contamination
coupled with the potential of this technology to reduce the risk of infections
due to already recognized, new, and emerging infectious agents. This
article will review available PRP products, examine their benefits, highlight
unresolved questions surrounding this technology, and summarize pivotal
research studies that have compared transfusion outcomes (largely in adult
patients) for PRPs with non-PRT-treated conventional platelets (CPs). In
addition, studies describing the use of PRPs in pediatric patients and work
done on the association between PRPs and HLA alloimmunization are
discussed. As new data emerge, it is critical to re-evaluate the risks and
benefits of existing PRPs and newer technologies and reassess the
financial implications of adopting PRPs to guide our decision-making
process for the implementation of transfusing PRPs.

Keywords
pathogen reduction technology, PRT-treated platelets, pathogen-reduced
platelets, transfusion-transmitted infections, septic transfusion reactions,
HLA alloimmunization

1 2

1

2

   Reviewer Status

  Invited Reviewers

 version 1
23 Jan 2020

 1 2

, Johns Hopkins University,Eric Gehrie

Baltimore, USA
1

, University of California, SanAshok Nambiar

Francisco, USA
2

 23 Jan 2020,  (F1000 Faculty Rev):40 (First published: 9
)https://doi.org/10.12688/f1000research.20816.1

 23 Jan 2020,  (F1000 Faculty Rev):40 (Latest published: 9
)https://doi.org/10.12688/f1000research.20816.1

v1

Page 1 of 8

F1000Research 2020, 9(F1000 Faculty Rev):40 Last updated: 23 JAN 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/9-40/v1
https://f1000research.com/articles/9-40/v1
https://orcid.org/0000-0003-2292-3167
https://f1000research.com/articles/9-40/v1
https://doi.org/10.12688/f1000research.20816.1
https://doi.org/10.12688/f1000research.20816.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.20816.1&domain=pdf&date_stamp=2020-01-23


 

 Wen Lu ( )Corresponding author: LUW@ccf.org
  : Conceptualization, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing;  :Author roles: Lu W Fung M

Conceptualization, Supervision, Writing – Review & Editing
 Mark Fung receives financial compensation from Cerus Corporation as a data safety monitoring board member for a redCompeting interests:

blood cell pathogen inactivation clinical trial, and works in a blood bank that currently uses rapid testing for detection of bacterial contamination
prior to release of platelet products. His institution currently does not use pathogen-reduced platelets.

 The author(s) declared that no grants were involved in supporting this work.Grant information:
 © 2020 Lu W and Fung M. This is an open access article distributed under the terms of the  ,Copyright: Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Lu W and Fung M. How to cite this article: Platelets treated with pathogen reduction technology: current status and future direction

 F1000Research 2020,  (F1000 Faculty Rev):40 ( )[version 1; peer review: 2 approved] 9 https://doi.org/10.12688/f1000research.20816.1
 23 Jan 2020,  (F1000 Faculty Rev):40 ( ) First published: 9 https://doi.org/10.12688/f1000research.20816.1

Page 2 of 8

F1000Research 2020, 9(F1000 Faculty Rev):40 Last updated: 23 JAN 2020

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.20816.1
https://doi.org/10.12688/f1000research.20816.1


Background
Therapeutic and prophylactic platelet transfusions are lifesaving 
therapies. Similar to other medical interventions, the transfu-
sion of platelets is not without risk. In contrast to other blood  
products, stored refrigerated or frozen, platelets are stored at  
room temperature, making them more likely to become con-
taminated with bacteria and cause septic transfusion reactions  
(STRs)1. In the US, despite the mandatory requirement to test 
all platelet collections by performing primary bacterial culture 
on a sample obtained from the product, it is estimated that 1 in 
every 5,000 platelet collections is contaminated by bacteria and  
escapes detection2, posing the risk of a STR. Various strategies 
have been proposed and implemented to further reduce the risk 
of bacterial contamination of platelets. In the US, pathogen  
reduction technology (PRT) is one of the options accepted by  
the FDA. PRT has already been in use in Europe for more  
than 15 years. Although pathogen-reduced platelets (PRPs) have 
a good record of efficacy and safety, a number of questions and  
concerns still remain.

This article will provide a summary of currently available PRP 
products and the key publications that laid the groundwork 
for their adoption. More recent work that details the areas of  
debate and concern regarding the use of platelets treated with 
PRT are reviewed. In the conclusion, critical questions that future  
research must address regarding PRPs are highlighted.

Products available
PRT causes irreversible damage to the nucleic acids of  
bacteria, viruses, and parasites, preventing their replica-
tion and thereby decreasing transfusion-transmitted infections 
(TTIs). Three technologies are currently available for the treat-
ment of platelets: INTERCEPT (Cerus Corp., Concord, CA, 
USA), Mirasol (Terumo BCT Inc., Lakewood, CO, USA), and  
THERAFLEX (MacoPharma, Mouveux, France). All three dem-
onstrate clinically significant reduction of bacteria in platelets3,4.  
Recent reviews by Gravemann, Yonemura, and Schubert  
summarized data showing their effectiveness against bacteria  
and other infectious agents that are nucleic acid based5–7.

INTERCEPT uses a synthetic psoralen compound, amotosalen, 
and ultraviolet A (UVA) light to prevent nucleic acid replica-
tion, thereby inactivating infectious agents and lymphocytes8. 
After INTERCEPT treatment, an adsorption step removes nearly 
all residual amotosalen9. Countries in Europe were the earliest  
adopters of PRPs when INTERCEPT was given Conformité 
Européenne (CE) designation by the European Union (EU) in 
200210. Belgium adopted INTERCEPT PRPs by royal decree 
in 2009. In Switzerland, PRPs were introduced in 2011 and  
implemented nationwide within 12 months11, followed by France 
in 2017. Based on national hemovigilance data from Europe, 
there have been no confirmed STRs after the transfusion of  
227,797, 167,200, and 214,293 PRPs in Belgium, Switzerland, 
and France, respectively12. An updated study from Switzerland  
reported no confirmed cases of transfusion-transmitted bacterial 
infection after the transfusion of 205,574 INTERCEPT PRPs11.  
In 2014, the INTERCEPT system became the first PRT to be 
approved for use in the US by the FDA and is currently in a post-
marketing surveillance study (PIPER, identifier: NCT02549222). 
In 2018, it was licensed in Canada.

Mirasol is another PRT that uses riboflavin (vitamin B2) as the 
light-activated photochemical and broad-spectrum UVA/UVB  
illumination. Riboflavin and its byproducts are naturally occur-
ring and do not have any known side effects. Thus, there is no  
removal after treatment, as it is not believed to be necessary.  
Mirasol is approved for use in Europe (CE designated in the 
EU in 2007), Russia, and the Middle East and is currently being  
evaluated in the US in a phase III randomized clinical trial 
(MIPLATE, identifier: NCT02964325)13.

A third PRT, THERAFLEX, uses UVC and vigorous shaking5 
and is currently under evaluation in a phase III clinical trial in  
Europe (CAPTURE)14. This technology is viewed as promising  
but not as far along in development as INTERCEPT or Mirasol.

Benefits
First and foremost, the most significant benefit of PRPs is the  
multi-log inactivation of susceptible blood-borne pathogens. 
While the supplementation of primary culture testing with other  
strategies like secondary culture or point of release testing can  
further mitigate the risk of bacterial contamination, PRPs have 
the added advantage of protecting the platelet supply from viruses 
and other nonbacterial agents, including new and emerging  
infectious agents. When new and emerging agents arise, trans-
fusion recipients are even more vulnerable to TTIs during the  
lengthy period of time that it typically takes for the risk to be 
recognized and for protective measures to be implemented. PRT  
takes a proactive approach against pathogens that are not yet 
recognized as posing a risk for TTIs15. Furthermore, PRT may  
avoid the need to develop and implement expensive and time-
consuming algorithms for screening and testing for new  
infectious agents and provides an alternative approach to address 
certain low-prevalence or ‘tolerable’ risks such as Zika virus16. 
If all types of blood products can be successfully treated with  
PRT, it may even be possible to envision a future where the  
residual risk of TTI is so low that infectious disease marker (IDM) 
testing could be made less stringent.

Transfusion-associated graft-versus-host disease (TA-GVHD) 
is a serious complication of transfusion caused by the via-
ble donor lymphocytes present in the blood product. When  
transfusion recipients are severely immunocompromised 
or when donor and recipient HLA types are similar, irradi-
ated blood products are required to reduce the risk of develop-
ing TA-GVHD. A second benefit of PRT is the inactivation of  
donor lymphocytes, which effectively protects transfusion recipi-
ents from developing TA-GVHD; PRPs are approved for this  
indication8.

Currently, in most countries, including the US, PRPs can be 
stored for only 5 days. However, the FDA does allow 7-day  
storage of conventional platelets (CPs) when they are collected in  
specially approved containers and subjected to specific secondary 
culture or secondary point of release testing. Therefore, in the 
future, PRPs could be approved for 7-day storage, which would 
provide another strategy to help reduce platelet outdating, improve 
platelet availability, and ease platelet inventory management.

Subjects of debate
Despite the benefits previously discussed, there are several  
topics of debate worthy of discussion. First, PRT offers incredible  
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enhancement towards microbial safety. However, pyrogenic cell 
wall components, endotoxins, biofilm-positive isolates, spore- 
forming bacteria and non-enveloped viruses, and prions, while 
exceedingly rare, remain infectious risks transmissible through 
transfusion even after treatment with PRT17–21.

Second, there are concerns regarding the clinical efficacy of 
PRPs, in part because of initial data reporting decreased in vitro  
survival of PRPs compared to CPs22,23. The euroSPRITE,  
controlled, randomized, double-blinded study demonstrated that 
both 1-hour (hr) post-transfusion platelet count increment (PPCI) 
and 24-hr PPCI did not differ significantly between INTER-
CEPT PRPs and CPs22. Subsequently, the randomized, controlled,  
SPRINT trial reported that while the incidence of World 
Health Organization (WHO) grade 2, 3, and 4 bleeding was  
equivalent, 1-hr corrected count increment (CCI) and mean days 
to next transfusion were decreased for INTERCEPT PRPs when 
compared to CPs23. A meta-analysis of 12 clinical trials that  
assessed hematology oncology patients found moderate-quality 
evidence that transfusion of PRPs does not affect the risk of  
clinically significant or severe bleeding and high-quality  
evidence that PRP transfusions increase platelet transfusion  
requirement24. Subsequent to the publication of this meta- 
analysis, three clinical studies were conducted to answer the  
question of whether PRPs are noninferior to CPs with regard to  
prevention of WHO grade 2 or higher bleeding in thrombocy-
topenic patients with hematologic malignancies25–27. The first 
study was not able to establish noninferiority of PRPs owing 
to low statistical power25. The EFFIPSP study concluded that  
INTERCEPT PRPs are noninferior to platelets in additive  
solution, but noninferiority was not achieved when comparing 
INTERCEPT PRPs with platelets suspended in plasma26. The  
PREPAReS trial evaluated the performance of Mirasol PRPs 
compared to CPs in plasma prepared from whole blood by the 
buffy coat method. This study demonstrated noninferiority 
in the intention to treat analysis, but noninferiority was not  
established in the per-protocol analysis27. Unfortunately,  
noninferiority studies cannot demonstrate superiority of PRPs 
over CPs, or vice versa28. In addition, the majority of bleeding  
events studied in these noninferiority studies were WHO grade 2, 
with insufficient statistical power to show a difference with  
WHO grade 3 or grade 4 bleeding because of the infrequency of 
these more severe bleeding outcomes.

Most studies evaluating the clinical efficacy of PRPs have been  
performed in adult hematology oncology patients. The thera-
peutic efficacy of PRPs in other patient populations such as  
pediatric patients or patients undergoing massive transfusion 
(MT) in the setting of trauma, organ transplantation, or surgery  
has not been adequately studied, but there are no a priori reasons 
to believe that PRPs would not provide similar clinical efficacy in 
these populations.

Rotational thromboelastometry (ROTEM) in vitro simulations of 
transfusion support in trauma using PRT-treated products versus 
untreated plasma and platelets showed no significant difference 
in ROTEM parameters when 30% of products were PRT treated 
but showed decreased hemostatic activity when 50% or greater  
PRT-treated plasma and platelets were used29. A retrospective  
cohort analysis of 306 patients who had MTs in the setting of 

trauma, liver transplant, and cardiac and vascular surgery found 
that the introduction of INTERCEPT PRPs did not adversely affect 
clinical outcomes measured by blood product usage, in-hospital 
mortality, and length of stay30.

Clinical efficacy data in the pediatric population exist but are  
limited. A retrospective study found similar utilization patterns 
for red blood cells but noted increased platelet transfusions in 
children aged 1–18 following the transfusion of INTERCEPT  
PRPs31. Another retrospective evaluation of a total of 137  
pediatric patients reported lower post-transfusion platelet  
counts, as well as lower 1-hr, 4-hr, 18-hr, and 24-hr CCIs in the 
Mirasol PRP group compared to the CP group, but the incidence 
of bleeding events did not differ32. An observational study found  
a significant increase in platelet transfusion in Mirasol-treated 
platelet transfusions (458) compared to CP transfusions (176) in 
neonates33. Additional studies are required to assess the efficacy of 
PRPs in pediatric patients as well as in those undergoing massive 
hemorrhage24

Third, as with any new therapy, the safety profile of the product, 
namely the risk of transfusion-related adverse events (TRAEs), 
must be scrutinized. There is potential for UV exposure and/
or residual photo-active compounds and byproducts to have  
short-term or long-term adverse effects34–36. For the INTERCEPT 
technology, a specific concern is related to the possibility of  
residual psoralen causing skin rashes in neonates who required 
phototherapy for hyperbilirubinemia37. However, post-market  
surveillance conducted at an academic tertiary care medical center 
reported no episode of new rash in 11 neonatal intensive care 
patients undergoing phototherapy and transfused INTERCEPT  
PRP31.

Another concern in patients of all ages is the risk of acute  
respiratory distress syndrome (ARDS). In the US, the INTER-
CEPT product is labeled with the precaution to monitor patients 
for signs and symptoms of ARDS, as patients receiving PRPs  
in the SPRINT trial had a higher (1.6% versus 0%) rate of 
developing ARDS23. The PIPER trial is specifically designed to  
capture ARDS and clinically serious pulmonary adverse 
events38. Of note, the Swiss hemovigilance data have reported a  
favorable safety profile for INTERCEPT platelets11. Nonetheless, 
safety remains a concern in the vulnerable pediatric population 
because children are generally believed to be at an increased risk  
for TRAEs, and findings from studies in adult patients cannot 
be readily extrapolated to pediatric patients39. A large Austrian  
regional medical center that provides transfusion support to  
hematology oncology and cardiac surgery as well as pediatric 
and neonatal patient populations reported only mild TRAEs that 
were not significantly different between CPs and INTECEPT  
platelets40. Over a 5-year period, 379 children and 1,980 adults  
were transfused Mirasol platelets in the Balearic Islands of  
Spain and only mild TRAEs were observed33. While the PIPER 
study will likely be informative, additional studies will still be 
required to determine if there are any long-term toxic effects of 
PRPs.

Another subject for deliberation is the risk of HLA alloimmuni-
zation. This topic was recently reviewed by Stolla41. Studies in 
mouse and dog models have reported reduced alloimmunization  
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rates after the transfusion of platelets treated with riboflavin and 
UV42,43. In contrast, the PREPAReS trial found a significantly 
increased rate of alloimmunization to HLA class I antigens44. 
For INTERCEPT, the SPRINT trial found no significant  
difference in HLA antibody formation23. These inconsisten-
cies between animal studies and clinical trials and the variability 
noted in different trials may be due to the relative rare incidence 
of alloimmunization making it difficult to assess the increased  
risk of alloimmunization. Additional data from large clinical  
trials, such as data collected during the EFFIPAP trial and data 
currently being collected in the MIPLATE trial, may provide  
much-needed additional insight.

Lastly, the financial impact of implementing PRPs must 
be addressed. While initial data from the euroSPRITE and 
SPRINT trials raised the possibility that the use of PRPs may 
increase platelet utilization, several post-market studies have not  
documented increased platelet utilization45,46 nor have plasma  
and red cell utilization differed significantly40. It is uncertain if an  
overall increase in blood products transfused would contribute 
to an increased cost associated with the implementation of  
PRPs. It is known that the per unit acquisition cost of PRPs  
is more than that of CPs47. Financial considerations have stalled 
the widespread implementation of PRPs in the US15 but non-
financial considerations may also impede adoption in low- and  
middle-income countries48,49. In the future, the cost of PRP  
implementation could potentially be offset by approval for  
7-day storage for PRPs50 and possibly by reducing the need 
for developing and performing testing for new and emerging  
infectious agents that threaten the blood supply. Switzerland 
has taken this stance and deemed that the costs of PRPs are  
acceptable for improving transfusion safety11. A recently  
published budget impact analysis (BIA) that modeled a mid-
sized US hospital predicted a minimal cost increase for PRPs  
compared to CPs51. However, an Italian BIA study concluded 
that further studies were needed to establish the cost-to-benefit  
ratio of PRPs52. The debate regarding the financial and economic 
impact of PRPs is extremely difficult to resolve because it is not 
only challenging to determine cost but also impossible and, more 
importantly, inappropriate to extrapolate these findings from one 
country to another because of vastly different blood collection, 
healthcare, and reimbursement systems.

What does the future hold?
Assuming that therapeutic efficacy is maintained and concerns 
over financial cost can be addressed, a blood supply that is  
completely treated by PRT capable of meaningfully reducing 
the risk of TTIs would provide a safeguard against currently  
known, new, and emerging infectious agents. This could possibly 

reduce donor screening and IDM testing and may even expand  
the donor pool and increase the availability of platelets.

With currently available PRT, IDM testing must continue, as  
variable levels of inactivation have been observed for bacteria 
and viruses, and none for prions53–55. Even with the multi-log  
inactivation of bacteria, on 14 June 2019 the Center for  
Disease Control and Prevention in the Morbidity and Mortal-
ity Weekly Report described a patient who had a STR after  
transfusion of PRPs postulated to be caused by post-treatment  
bacterial contamination56. Currently, PRPs require not only 
IDM testing but also diligent monitoring and reporting of  
suspected STRs. However, the PRT available today is first 
generation. The use of other light sources with or without  
photo-active compounds is likely to emerge in the future; for 
example, the use of visible blue light to inactivate porphyrin  
molecules found in pathogens is a possible novel approach 
for manufacturing PRPs15. As the storage of platelets at room  
temperature is the prime driver of the increased risk of bacterial 
contamination, there is also renewed interest in approaches that  
preserve platelet function during refrigerated storage or when  
platelets are cryopreserved57–59. It is critical that we re-evaluate 
the cost, risks, and benefits of new technologies as they become  
available, review the latest research and available evidence, and 
adjust our paradigm accordingly.

Unresolved questions
Understanding the current literature on PRPs and recognizing 
the gaps in our knowledge help to identify areas for further  
investigation. Additional research to address the following  
questions is highly desirable.

1.    �Is it possible for new PRT to eliminate the risk posed by 
biofilm-positive isolates, pyrogenic cell wall components, 
endotoxins, bacterial spores, non-enveloped viruses, and 
prions?

2.    �Are PRPs noninferior to CPs in pediatric patients and 
actively bleeding patients requiring MT?

3.    �Do PRPs increase the risk of alloimmunization?

4.    �What is the long-term safety profile of PRPs, especially 
when given to neonates and children, patient populations 
with significant lifespans post-transfusion?

5.    �How does PRP implementation impact healthcare cost?

The answers to these questions are important from the  
perspective of patient care, patient safety, and health economics 
and will therefore direct the pace and breadth of PRT adoption  
by the international blood banking community.
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