
����������
�������

Citation: Malik, K.; Rehman, F.;

Maqsood, T.; Mustafa, S.; Khalid, O.;

Akhunzada, A. Lightweight Internet

of Things Botnet Detection Using

One-Class Classification. Sensors

2022, 22, 3646. https://doi.org/

10.3390/s22103646

Academic Editors: Akhilesh Tyagi

and Himanshu Thapliyal

Received: 8 February 2022

Accepted: 23 March 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Lightweight Internet of Things Botnet Detection Using
One-Class Classification
Kainat Malik 1 , Faisal Rehman 1 , Tahir Maqsood 1, Saad Mustafa 1, Osman Khalid 1 and Adnan Akhunzada 2,*

1 Department of Computer Science, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
kainatmalik055@gmail.com (K.M.); frehman@cuiatd.edu.pk (F.R.); tmaqsood@cuiatd.edu.pk (T.M.);
saadmustafa@cuiatd.edu.pk (S.M.); osman@cuiatd.edu.pk (O.K.)

2 Faculty of Computing and Informatics, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
* Correspondence: adnan.akhunzada@ums.edu.my

Abstract: Like smart phones, the recent years have seen an increased usage of internet of things
(IoT) technology. IoT devices, being resource constrained due to smaller size, are vulnerable to
various security threats. Recently, many distributed denial of service (DDoS) attacks generated with
the help of IoT botnets affected the services of many websites. The destructive botnets need to be
detected at the early stage of infection. Machine-learning models can be utilized for early detection of
botnets. This paper proposes one-class classifier-based machine-learning solution for the detection
of IoT botnets in a heterogeneous environment. The proposed one-class classifier, which is based
on one-class KNN, can detect the IoT botnets at the early stage with high accuracy. The proposed
machine-learning-based model is a lightweight solution that works by selecting the best features
leveraging well-known filter and wrapper methods for feature selection. The proposed strategy is
evaluated over different datasets collected from varying network scenarios. The experimental results
reveal that the proposed technique shows improved performance, consistent across three different
datasets used for evaluation.

Keywords: internet of things (IoT); one-class KNN; botnet detection; classification

1. Introduction

Internet of things (IoT) is an evolving technology that offers a platform for different
gadgets to automate activities in various areas. The idea of the “Internet of Things” (IoT) is
utilized in numerous fields of data and communication designing. According to a recent
study presented in Ref. [1], the market size of worldwide IoT can reach USD 1567 billion by
2025. The ubiquitous nature and ease of use enables IoT devices to sense and transmit data
for numerous advanced applications. It is anticipated that the number of IoT gadgets will
reach 75 billion by 2030 [2].

IoT devices transmit data via communication mediums, which makes them vulnerable
to various security attacks [3]. Traditional network security models designed for conven-
tional networks become inefficient for IoT-based systems due to their low computational
and storage capacities and inability to install frequent security updates.

Botnet is a threat that takes advantage of the security lapses of IoT. More precisely,
botnets are networks consisting of nodes that were infected by malware, which turned
them into bots that can attack any system as a response to orders of a botmaster. Many
destructive DDoS attacks have been launched using IoT botnets; Mirai is one notable
example. Mirai compromised 100,000 IoT devices in the span of just a few months and
created a large botnet out of them. Mirai botnet was then used to generate the highest rated
DDoS attacks of almost 1.2 Tbps causing Twitter and GitHub to go offline for their users [1].

With increasing number of threats and inability of IoT devices to enhance security,
users cannot depend just on updates for each security vulnerability. Therefore, more
consideration should be given to investigate security vulnerabilities, their identification,

Sensors 2022, 22, 3646. https://doi.org/10.3390/s22103646 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103646
https://doi.org/10.3390/s22103646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6119-154X
https://orcid.org/0000-0002-6804-3467
https://doi.org/10.3390/s22103646
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103646?type=check_update&version=2

Sensors 2022, 22, 3646 2 of 17

classification and recovery of IoT devices after the attacks. This makes an intrusion detection
system (IDS) essential for IoT.

Network traffic generated from IoT devices follows specific patterns of variable nature
depending upon the application and scenario. The traffic data can be given input to various
machine-learning (ML) algorithms to perform traffic prediction [4]. Moreover, ML can be
used as one of the most efficient computational models to be effectively used in the IoT
gadgets for threat prediction and detection without human supervision [5,6].

The viability of machine-learning methods has empowered research scientists to
utilize learning models in IoT domains to improve detection and identification among IoT
gadgets. In Ref. [7], two machine-learning models were used to guard IoT sites against
DDoS attacks. The proposed technique can identify as well as classify the attacks. For
reaching a productive solution utilizing a machine-learning algorithm, an appropriate
real-world dataset is exceptionally fundamental along with a feature selection method [8,9].
Although, a lot of work has been performed, there is still a need for an efficient feature
selection technique based on an algorithm that can be trained on consumer IoT devices
to effectively recognize IoT botnet attacks with an increased detection rate and reduced
false alarms.

This paper proposes a model that offers a lightweight solution to detect anomalous
behavior in resource-constrained IoT devices. The proposed solution makes use of the
one-class K-nearest neighbor (KNN), which does not need anomalous data to train a model.
One-class KNN is a specific machine-learning strategy in which, rather than grouping an
instance in one of the different pre-characterized patterns, the instance is modeled as a
single pattern and used to perceive whether a new sample belongs to that pattern or not.
For reduction in computation power and ML decision time, feature selection (consisting
of wrapper and filter method) is used along with one-class KNN, which has shown the
best performance among one-class classifiers [10]. For gaining deep insight into features,
a customized script of feature extraction is used. Feature space of datasets was reduced
by almost 72%; only important features that had an impact on performance were chosen.
This technique shows a satisfactory performance by achieving an F1-score of 98% to 99%
on different IoT datasets.

The rest of the paper is organized as follows. Section 2 presents the literature review;
Section 3 presents the methodology; and Section 4 discusses the experiment with one-class
KNN. In Section 5, the results and analysis are presented. Lastly, Section 6 discusses the
conclusions and future work.

2. Related Work

ML approaches are known to be efficient in securing IoT networks when used with
appropriate datasets [11,12]. Many researchers used different supervised and unsupervised
approaches for detecting and blocking attacks in IoT networks. In utilizing ML algorithms
for the security of IoT networks, researchers have used synthetically generated datasets,
e.g., CIDDS-001, UNSWNB15 and NSL-KDD [13], to name a few. A significant problem is
finding appropriate datasets, as well as a proper feature selection method [1].

Authors in Ref. [14] used a combination of machine-learning strategies and parallel
data processing for detecting IoT botnet attacks. For reducing the size of training data,
preprocessing was applied to clean the raw data. Because of high computational cost,
the proposed work could only be applied on high-energy nodes. Researchers in Ref. [15]
developed a solution for the detection of IoT botnet using deep learning. Autoencoder
was used to detect the malicious communication, which is computationally expensive.
The suggested solution detected the IoT botnet with zero false positive rate (FPR). A total
of 115 features were used to train the algorithms, causing an overhead on resources. In
Ref. [16], the researchers suggested a framework based on ML to detect the IoT botnet
in large networks with an accuracy of 94%. The multiclass algorithm was trained with
the selected features. However, the specific details of the features were not provided. In
Ref. [17], the authors suggested an IoT botnet detection framework based on host features.

Sensors 2022, 22, 3646 3 of 17

A machine-learning algorithm was trained using the synthetic dataset, making the solution
less reliable. Moreover, feature selection was also not used; rather, the machine-learning
algorithm was trained with numerous features. The dataset diversity was not taken into
account, which is important to check the scalability of the system.

The authors in Ref. [18] used a supervised learning algorithm to secure a smart home
by detecting intrusions. The proposed framework considered three cases. First, the IoT
devices were grouped based on their conduct in ordinary scenarios. Second, during an
attack, the malicious packets were distinguished based on their characteristics. Finally, the
attack was classified based on its nature. In Ref. [19], the authors proposed a technique
to secure a smart home by using a supervised algorithm (support vector machine) to
distinguish between normal and abnormal behavior. In Ref. [20], the security of an IoT
domain was provided by constantly monitoring network traffic. A total of 28 different
gadgets were used to attain normal traffic behavior, and then, a classification algorithm
was used to classify normal and abnormal traffic attributes.

In Ref. [21], the detection of different attacks, e.g., DDoS, data type probing, etc. was
performed with the help of machine-learning algorithms. The performance of various
algorithms was also assessed, and random forest was found to be effective. In Ref. [22], the
proposed scheme used the dataset NSL-KDD, which is a generic dataset, not related to the
IoT environments. Moreover, an ineffective feature selection method was used to reduce
the redundancy of data. The authors in Ref. [7] designed a framework called flow guard,
which can be used for the defense against IoT botnet DDoS attacks. Variation in traffic
volume was used to detect a DDoS attack generated by the IoT botnet. Long short-term
memory algorithm was used for the detection. The classification accuracy was about 99%.

Researchers in Ref. [23] proposed a deep-learning-based botnet detection in IoT for
highly imbalanced datasets. For the improvement of the imbalanced class, additional
samples of that class were generated. A real-world IoT dataset was used to train a deep
recurrent neural network [24]. The proposed solution was able to detect the IoT botnet with
a 99% of F1-score. The complexity due to deep-learning methods creates a deployment
problem in IoT networks, as the devices are resource constrained. In Ref. [25], the authors
proposed a decision-tree-based machine-learning approach to detect IoT botnets. A dimen-
sionality reduction method was introduced to enhance the machine-learning performance.
Results indicated that the decision tree combined with random projection was able to detect
the IoT botnet with 100% accuracy. However, the dimensionality reduction process results
in some amount of data loss. To optimize the detection accuracy of IoT botnets, ensemble
learning was introduced by the researchers in Ref. [26]. The algorithms from supervised,
unsupervised and regression learning were chosen to enhance accuracy and reduce the
number of features at the time of training. Ensemble learning requires high computation
power, as multiple models need to be built.

Most of the above-discussed techniques provided good solutions with an accuracy of
more than 90%. However, they are either computationally expensive due to employing
costly machine-learning models, or the selected dataset is generic and not specific to IoT
environments. Moreover, selecting a large number of features affects the detection efficiency
of an algorithm in IoT environments. Therefore, in the proposed technique, we present an
efficient feature selection mechanism that renders it a lightweight solution for IoT devices.
Moreover, to reduce the computational overhead, we utilized a one-class classifier to obtain
a satisfactory detection rate along with low false-alarm rates.

3. Proposed Methodology

In the proposed work, we considered datasets generated in three different labs as
mentioned in Refs [27–29]. A real consumer IoT gadget network was utilized to produce
traffic in these labs, where real-time data of normal and malware traffic were captured.
Three types of IoT botnets, Mirai, Bash lite and Torii, were deployed in the network. These
three datasets are made publicly available by the researchers and are provided in PCAP
formats. The PCAP formats are typically related to network analyzer programs, such

Sensors 2022, 22, 3646 4 of 17

as Wireshark. They generally contain the information extracted from packets within a
network. The PCAP files can be analyzed to discover the network running state and can be
used to detect any problem that occurred in the network. Moreover, the PCAP files can be
utilized to search for the information transmitted between the hosts inside or outside of
the network. The system architecture is shown in Figure 1, which represents the overall
model of the proposed solution. The mechanism of the proposed solution is outlined in
Algorithm 1. The methodology of the proposed work is divided into the following stages.

Algorithm 1: Botnet detection using one-class KNN

Input: datasets d1, d2, d3

1. Convert datasets d1, d2, d3 into PCAP format
2. Apply filtering based on source and destination IP
3. Perform features extraction for f ∈ (f1, f2, f3, . . . fn)
4. Data preprocessing to eliminate missing, infinite, NAN and HEX values
5. Perform feature selection using
6. Filter method
7. Wrapper method
8. End feature selection
9. For each dataset d1, d2, d3 apply one-class KNN
10. Load the training dataset
11. Choose the value of k
12. Train the model
13. Load the test dataset
14. For each point in the test data until

point = NULL

15. Find Euclidian distance d to all training data points d =

√
k
∑

i=1
(xi − yi)

2

16. Store d in a list L and sort it
17. Choose the first k points
18. Assign class to the test points
19. End For
20. End For

Figure 1. System architecture model.

Sensors 2022, 22, 3646 5 of 17

3.1. Data Assortment

A real-time IoT device network traffic dataset was obtained from three different IoT
labs [27–29] that contained benign and malicious traffic. Consumer IoT devices were used
by the labs to generate the dataset. All the datasets were in PCAP file format, which gave
us the ability to thoroughly analyze the data at the packet and frame level. The three
datasets were labeled by their source, which helped in distinguishing the generated results
for each dataset.

3.2. PCAP Filtering

PCAP filtering is a method to filter out specific packets. If the source IP is of interest,
the source IP filter can be applied, and the packets will be shown with that source IP. PCAP
files of each IoT device were filtered based on some specific filters. For this purpose, the
broadly utilized network monitoring tool Wireshark was used. Wireshark is a free and
open-source tool used to analyze network traffic. It captures the traffic progressively and
stores it in a PCAP file for later examination. PCAP files are the files in which all IoT
gadgets’ captured traffic is available. Once the PCAP file is loaded in Wireshark, it is
reviewed for protocols and fields. The IP addresses of IoT gadgets are available in each
dataset, so it was convenient to separate PCAP files for each IoT gadget. To separate traffic
for an IoT gadget, a filter based on source and destination IP was applied. Steps for filtering
PCAP files are shown in Figure 2.

Figure 2. PCAP filtering missing value strategy.

3.3. Feature Extraction

The most basic and significant phase of this work was the extraction of features from
PCAP files, which were filtered and labeled according to the gadget. These input features
have a significant role in output variable prediction.

3.4. Shark Script

A bash script, named a Shark script, was programed for the purpose of feature
extraction from PCAP files so that the network transmission characteristics and properties
could be studied. The developed script was able to extract 46 features from a PCAP file
using Tshark [30], which is a command line [31] version of Wireshark that can capture live

Sensors 2022, 22, 3646 6 of 17

traffic or investigate packets from PCAP files. It writes its output in a file using various
kinds of filters that can be applied to assess a particular packet.

When a PCAP file was given as input to the Shark script, it produced a CSV file
containing 46 predictor variables as shown in Table 1. The feature extraction process is
shown in Figure 3.

Table 1. Extracted features.

S. No. Feature Name Description S. No. Feature Name Description

1. ip.src Source IP address 24. tcp.flags.syn TCP Syn flag

2. ip.dst Destination IP address 25. tcp.flags.ack TCP ACK flag in packet

3. frame.len Length of frame in bytes 26. tcp.flags.push TCP PUSH flag in packet

4. ip.proto IP protocol number 27. tcp.flags.reset TCP RESET flag in packet

5. tcp.srcport TCP source port 28. tcp.flags.fin TCP fin flag in packet

6. tcp.dstport TCP destination port 29. ip.flags IP header flags,
such as fragmentation

7. udp.srcport UDP source port 30. ip.frag_offset IP fragmentation flag

8. udp.dstport UDP destination port 31. ip.ttl Time to live of IP packet

9. tcp.seq TCP sequence numbers 32. tcp.ack TCP ACK packet of
three-way handshake

10. frame.time_epoch Packet timestamp 33. tcp.window_size Windows size for
TCP communication

11. tcp.stream TCP streams between nodes 34. tcp.nxtseq Next expected sequence number

12. frame.time_relative Time since the first packet in
frame received 35. tcp.analysis.flags Flags for analysis TCP sequence

number and Acknowledgment

13. ip.len Total length of packet/size
of IP frame 36. udp.stream Statistics of UDP streams

14. tcp.len Length of TCP payload 37. udp.length.bad UDP bad length value message

15. udp.length Length of UDP payload 38. udp.length.bad_zero UPD length is zero

16. frame.time_delta Difference time between
frames 39. frame.packet_flags_fcs_length FCS (frame check sequence) length

17. ip.hdr_len Length of IP header 40. ip.fragment.error Defragmentation error

18. tcp.hdr_len Size of TCP header in 32 bits 41. tcp.analysis.keep_alive TCP keep-alive segment

19. tcp.analysis.bytes_in_flight Bytes in flight
for each packet 42. tcp.analysis.window_full TCP windows full specified by user

20. tcp.time_relative Time since first frame in TCP
session 43. tcp.analysis.window_update TCP window update

21. tcp.time_delta Elapsed time between
current and prior packet 44. tcp.analysis.zero_window TCP zero window segment

22. tcp.analysis.ack_rtt TCP ack and RTT
(round time trip) for packet 45. tcp.analysis.zero_window_probe TCP zero window probe

23. tcp.flags TCP flags 46. frame.cap_len Length of the captured frame

Figure 3. Feature extraction.

3.5. Data Preprocessing

Data preprocessing is applied for cleaning and making the data suitable for the training
of the ML classifier. Frequently, data contain some missing, invalid and infinite variables.
These values should be removed or treated to make data available for an algorithm that
can be trained on the data. The dataset available in CSV is passed through the data
preprocessing phase as shown in Figure 4.

Sensors 2022, 22, 3646 7 of 17

Figure 4. Data preprocessing.

The dataset of each gadget present in the CSV file contains some missing values. The
missing variable can be managed through various techniques. We substituted the missing
values with a numeric zero by utilizing the Pandas library’s function [32].

3.5.1. NaN and Infinite Value Checking

All the datasets were checked for the NaN and infinite values, as these contribute
negatively to ML training. The Pandas library was utilized to address this issue.

3.5.2. Categorical Values

Those variables, which have non-numeric values and are divided into groups, are
called categorical variables. Most of the ML classifiers require input variables to be in nu-
meric or number format. For this reason, categorical variables are converted into numerical
values by utilizing encoding. In this paper, the “one-hot encoding” was utilized to convert
all categorical values into numeric ones [33]. The “Get_dummies method” of Pandas was
utilized for this purpose [34]. When the CSV dataset was inspected for categorical values,
the source and destination IPs addresses were considered as categorical. These two were
converted into numerical values utilizing the aforementioned library.

3.5.3. Hex Values

The dataset present in CSV files contains a property ip.flags that is in hex format.
All the features other than ip.flags are in the decimal number system. So, to keep all the
features in the same number system, ip.flags feature was converted using Pandas library
from hex to decimal number system so that it could be easily recognized by the classifier.

3.6. Feature Selection

After implementing feature extraction with the help of Shark script, 46 features were
extracted from each dataset. Then, the feature selection process was applied to reduce the
number of independent variables, thereby reducing the computational overhead. Feature
selection process allows keeping only those variables that greatly affect the response

Sensors 2022, 22, 3646 8 of 17

variable and eliminates irrelevant or repetitive features. Training ML classifiers with a
high number of independent variables not only increases the training time and memory
utilization but also affects the performance of the algorithm. In our work, we applied the
filter and wrapper methods of feature selection, as discussed below.

3.6.1. Filter Method

Filter method uses statistical thresholds by which the features are dropped or kept.
Filter method can be further split up into two primary classes: univariate filter method and
multivariate filter method, as discussed in the subsequent text.

Univariate Filter

In the univariate filter strategy, single features are kept or dropped by measurable test
by utilizing a threshold. The univariate filter strategy began with maximum features and,
by applying diverse thresholds and filters, the number of features was dropped down. The
univariate filter method was implemented by using the following steps:

• First, Jupyter Notebook was set up, and essential libraries were imported.
• Datasets that contained benign and malicious files were imported.
• Each feature was examined for missing value so that there should be no feature with a

missing value in the dataset.
• Constant features were examined by setting the variance threshold equivalent to

zero. A total of 14 features were found with constant values, and those features
were discarded.

• Quasi-constant features were examined by adjusting the variance threshold to 0.1.
A total of five features not meeting the criteria were deleted.

• Dataset was examined for repeated columns, and duplicate columns were deleted to
make them distinct.

• At the end of the univariate filter method, the remaining features number 27.

Multivariate Filter

The multivariate filter method looks for a relationship among variables and eliminates
repetitive features.

• After implementing the univariate filter method, the remaining 27 features
were inspected for correlation utilizing Pearson’s correlation coefficient using
library phik_matrix [35].

• For visualizing the correlation score, a heatmap was plotted as shown in Figure 5.
• Features with a score correlation value greater than 0.95 were filtered. As a result, 5

more features were dropped, leaving the feature count at 22.
• Resulting data frame comprised 22 features and was saved as CSV for additional

utilization and filtering through the wrapper method.

Sensors 2022, 22, 3646 9 of 17

Figure 5. Heatmap showing correlation score.

3.6.2. Wrapper Method

In the wrapper method, the feature selection cycle depended on a particular ML
algorithm that we attempted to fit on a given dataset. Moreover, in the wrapper method,
we attempted to utilize a subset of features and train a model over those. Considering the
derivations that we drew from the previous model, we applied the wrapper method to
further add or eliminate features from our subset. The forward and backward phases of
the wrapper method are discussed below.

Forward Feature Selection

This technique begins with no element and then adds a single feature in each turn.

Backward Feature Elimination

This technique begins with all features and eliminates one feature in each turn.

• In the first step, we imported machine-learning libraries, loaded the dataset and split
it into training and testing sets.

• We performed the forward feature selection method in Python. Random forest classi-
fier was used for feature selection.

• All 22 features were input to random forest that assigned a score to each feature using
the mean decrease accuracy measure.

• Among the features, 13 features were selected based on their importance. These
features produced the highest accuracy with random forest.

• The selected features were then used to train our algorithm as shown in Table 2.
• We then utilized the selected features to construct a full model utilizing our training

and test datasets and then evaluated the accuracies.

Sensors 2022, 22, 3646 10 of 17

Table 2. Features finalized after selection process.

1 frame.len 8 tcp.hdr_len

2 ip.proto 9 tcp.time_relative

3 udp.srcport 10 ip.flags

4 udp.dstport 11 tcp.ack

5 tcp.stream 12 tcp.nxtseq

6 frame.time 13 ip.frag_offset

7 ip.len

4. Experiments with One-Class KNN

The traffic of IoT devices is usually very specific and does not experience frequent
fluctuations. For instance, a smart fan’s only task is to sense the temperature or some
other on–off operation. This is why the benign network traffic behavior of IoT devices is
predictable and does not change over time. The one-class KNN algorithm was chosen, as it
generates a classification model that can be easily explained, allowing a better interpretation
of the classification result and making the model a lightweight solution [36].

One-class KNN is a classification algorithm that takes a single class for training, and
based on that training, it predicts whether the future dataset is normal or malicious. The
single-class KNN classifier has various parameters that might be changed. For example,
the quantity of neighbors can be changed. Therefore, the distances of normal k to the
first k neighbors are determined. The threshold value for obtaining outlier classes can be
changed. Likewise, the distance metric can be changed. The one-class KNN is formulated
as follows. The distance between two samples, x and y, can be found by the following
distance functions. √√√√ k

∑
i=1

(xi − yi)
2 (1)

k

∑
i=1
|xi − yi| (2)

[
k

∑
i=1

(|xi − yi|)q

] 1
q

(3)

In the proposed research work, 80,000 (80K) instances of benign and malicious datasets
were used, out of which 60K were benign and 20K were malicious. The benign instances
were split by 80%–20% ratio to train and test the algorithm performance. Because of recog-
nizing whether a packet is malicious or normal, the classification is evaluated comparatively
with the training dataset, generating four outputs:

4.1. True Positive

Packets are benign and are predicted benign.

4.2. False Positive

Packets are malicious but predicted benign.

4.3. True Negative

Packets are malicious and are predicted malicious.

4.4. False Negative

Packets are benign and are predicted malicious.

Sensors 2022, 22, 3646 11 of 17

To test the classification performance, we utilized commonly used measures, which
are accuracy, F-measure, precision and recall.

4.5. Precision

Precision (P) measures the total amount of anomalous packet recognition that was correct.

Precision =
tp

tp + fp
(4)

4.6. Recall

Recall estimates what number of anomalous packets were recognized correctly.

Recall =
tp

tp + fn
(5)

4.7. F-Measure

The F-measure is a proportion of a test’s accuracy. It is determined from the precision
and recall of the test.

F−measure =
2× Precision× Recall

Precision + Recall
(6)

The performance of one-class KNN classifier is analyzed based on F1-score. F1-score
is appropriate for an imbalanced dataset and due to skewness property in class dispersing
in the dataset [37], in which one class is dominating, and in our situation, the benign class
was dominating.

5. Results and Analysis

Two different feature selection methods were used, filter and wrapper methods, which
carry out operations to eliminate features that do not have any impact on performance in
terms of reducing the classification time. Machine-learning models can be investigated uti-
lizing more than one performance metric. As our dataset was imbalanced and asymmetric,
it was suitable, in this situation, to utilize the F1-score as a performance metric.

5.1. Dataset Description

Three types of datasets were used that were collected from three different IoT labs
as mentioned previously. The description of IoT devices is shown below in Table 3. For
the MedBiot [24] dataset collection, 83 IoT devices were connected in the lab environment.
Data were collected for both benign and malicious traffic. For malicious traffic, IoT botnets,
such as Mirai, BashLite and Torii, were deployed. The dataset [25] consists of a labeled
dataset, which included botnet activity and DDoS attacks.

Table 3. Dataset description.

Dataset IoT Devices Source

MedBiot [27] IoT device TPLink smart switch

Chris Dataset [28] IoT device Camera

HCRL (INID) [29]
IoT device 1 SKT NUGU (NU 100) Speaker

IoT device 2 EZVIZ Wi-Fi Camera

A lab environment consisting of an IoT smart camera was set up. Benign and malicious
traffic for the IoT camera was captured. HCRL lab [26] generated an academic purpose
dataset, where benign dataset was captured for smart home devices, such as smart speakers.
A malicious dataset was also collected after infecting the devices with IoT botnet binaries,
such as Mirai.

Sensors 2022, 22, 3646 12 of 17

5.2. Accuracy, Precision and Recall

Accuracy, precision and recall of different datasets are shown in Figures 6–8 when
these are trained and tested using one-class KNN. It can be seen that the proposed model
outperforms the counterparts in terms of accuracy, precision, recall and F-measure by
reducing the feature space. Additionally, the outcomes show that the proposed model is
adaptable and exhibits consistent behavior in various IoT environments, as it was tested
on three different datasets from different IoT domains. Previous researchers disregarded
the significance of feature selection methods, which can decrease the number of features
for the training phase. Therefore, in our case, the training with a smaller set of features
decreases the training time and utilizes less computation power.

Figure 6. Accuracy of different datasets.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

A lab environment consisting of an IoT smart camera was set up. Benign and mali-

cious traffic for the IoT camera was captured. HCRL lab [26] generated an academic pur-

pose dataset, where benign dataset was captured for smart home devices, such as smart

speakers. A malicious dataset was also collected after infecting the devices with IoT botnet

binaries, such as Mirai.

5.2. Accuracy, Precision and Recall

Accuracy, precision and recall of different datasets are shown in Figures 6–8 when

these are trained and tested using one-class KNN. It can be seen that the proposed model

outperforms the counterparts in terms of accuracy, precision, recall and F-measure by re-

ducing the feature space. Additionally, the outcomes show that the proposed model is

adaptable and exhibits consistent behavior in various IoT environments, as it was tested

on three different datasets from different IoT domains. Previous researchers disregarded

the significance of feature selection methods, which can decrease the number of features

for the training phase. Therefore, in our case, the training with a smaller set of features

decreases the training time and utilizes less computation power.

Figure 6. Accuracy of different datasets.

Figure 7. Precision of different datasets. Figure 7. Precision of different datasets.

Figure 8. Recall of different datasets.

Sensors 2022, 22, 3646 13 of 17

5.3. F1-Score on Different Datasets

F1-score against different datasets is shown in Figure 9. From the results, it can be
analyzed that the proposed solution provides a consistent F1-score across three different
IoT datasets. Thus, the proposed solution is able to detect the malicious pattern without
the dependency on the environment.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

Figure 8. Recall of different datasets.

5.3. F1-Score on Different Datasets

F1-score against different datasets is shown in Figure 9. From the results, it can be

analyzed that the proposed solution provides a consistent F1-score across three different

IoT datasets. Thus, the proposed solution is able to detect the malicious pattern without

the dependency on the environment.

Figure 9. F1-score of different datasets.

5.4. Effect of Feature Selection

Feature selection methods are applied to reduce the features and shortlist those fea-

tures that affect the performance of the machine-learning model. The following Table 4

shows the effect of feature selection on the F1-score.

Table 4. Effect of feature selection.

Data Type
Chris Dataset MedBiot Dataset HCRL (INID) Dataset

F1-Score Accuracy Recall F1-Score Accuracy Recall F1-Score Accuracy Recall

Normal 88% 87% 94% 81% 88% 92% 83% 87% 91%

FS

Applied
99% 99% 100% 98% 98% 100% 98% 98% 100%

Those features that have a lesser effect on performance are removed. After the filter-

ing method, the wrapper method is applied, which selects top features for machine-learn-

ing training purposes, and this also improves the F1-score.

Figure 9. F1-score of different datasets.

5.4. Effect of Feature Selection

Feature selection methods are applied to reduce the features and shortlist those features
that affect the performance of the machine-learning model. The following Table 4 shows
the effect of feature selection on the F1-score.

Table 4. Effect of feature selection.

Data Type
Chris Dataset MedBiot Dataset HCRL (INID) Dataset

F1-Score Accuracy Recall F1-Score Accuracy Recall F1-Score Accuracy Recall

Normal 88% 87% 94% 81% 88% 92% 83% 87% 91%

FS Applied 99% 99% 100% 98% 98% 100% 98% 98% 100%

Those features that have a lesser effect on performance are removed. After the filtering
method, the wrapper method is applied, which selects top features for machine-learning
training purposes, and this also improves the F1-score.

5.5. Comparison with Recent Research Works

The proposed solution is compared with the research [17,18], and results are shown in
Table 5, which used different ML algorithms for evaluating botnet detection.

Table 5. Comparison with current research works.

Research F1-Score Feature
Selection

Multiple
Dataset

One-Class
Classifier

IOTDS [17] 94% No No Yes

Smart home IDS [18] 98% No No No

Proposed Solution (LBOD) 99% Yes Yes Yes

As shown in Table 5, the proposed solution has a good performance, attaining a mean
F1-score of 99%, also shown in Figures 10–13. The methods of feature selection (filter and
wrapper) reduced the feature space and improved the performance of classifiers, which
were not used in the existing research work. Moreover, feature extraction was performed

Sensors 2022, 22, 3646 14 of 17

using a shark Script that was able to extract 46 features out a PCAP file, which represents
all the behavior of communication.

Figure 10. Comparison of accuracy.

Figure 11. Comparison of precision.

Figure 12. Comparison of F1-score.

Sensors 2022, 22, 3646 15 of 17

Figure 13. Comparison of recall.

The combination of the Shark script dataset and the one-class KNN method gives the
highest F1-score. The feature selection methods of filter and wrapper decreased the feature
space by up to approx. 72%.

5.6. Comparison of Training Time before and after Feature Selection

It is shown in Table 6 that training and prediction time after applying feature selection
was reduced, which shows the proposed model is a lightweight strategy.

Table 6. Comparison of training and prediction time. FS: feature selection.

Datasets Chris Dataset MedBiot Dataset HCRL (INID) Dataset

Time (Seconds) Training Prediction Training Prediction Training Prediction

Before FS 5.3457 0.5636 7.5342 2.2327 4.3283 0.7124
After FS 2.2340 0.1298 3.2345 0.4335 2.2134 0.3190

6. Conclusions

In this paper, one-class KNN was deployed to detect deleterious IoT botnet in a het-
erogeneous environment. To overcome the computation power limitation, the lightweight
solution was derived. Feature selection methods, such as filter and wrapper methods,
were used to select the best features that had an impact on machine-learning classifier
performance. Using the filter and wrapper methods, feature space was reduced by up to
approx. 72% for different datasets. The suggested solution was environment independent,
as it was tested in three different IoT environments that were using different IoT devices.
The proposed solution was able to detect IoT botnet with an F1-score of 98% to 99% for
different IoT botnet datasets. The solution was able to detect the unknown malicious traffic
of IoT in different IoT environments.

As future work, we would like to detect other network malicious behaviors of IoT
devices, such as man in the middle (MITM) and replay attacks. We would like to simulate
a smart home environment to collect the dataset for benign as well as malicious traffic.

Author Contributions: Conceptualization, F.R. and T.M.; Formal analysis, S.M. and O.K.; Funding
acquisition, A.A.; Investigation, K.M. and S.M.; Methodology, K.M.; Resources, S.M.; Software, K.M.;
Supervision, F.R.; Writing—original draft, K.M. and F.R.; Writing—review & editing, T.M., O.K. and
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: Part of this research work has been financially supported by University Malaysia Sabah
and the APC was funded by University Malaysia Sabah.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 3646 16 of 17

References
1. Sahu, N.K.; Mukherjee, I. Machine Learning based anomaly detection for IoT Network:(Anomaly detection in IoT Network). In

Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India,
15–17 June 2020; pp. 787–794.

2. IDC Forecasts Worldwide Spending on the Internet of Things to Reach $772 Billion in 2018. Available online: https://www.idc.
com/getdoc.jsp?containerId=prUS43295217 (accessed on 22 August 2020).

3. Liu, X.; Liu, Y.; Liu, A.; Yang, L.T. Defending ON–OFF attacks using light probing messages in smart sensors for industrial
communication systems. IEEE Trans. Ind. Inform. 2018, 14, 3801–3811. [CrossRef]

4. Shahid, M.R.; Blanc, G.; Zhang, Z.; Debar, H. Anomalous communications detection in IoT networks using sparse autoencoders.
In Proceedings of the 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 26–28 September 2019; pp. 1–5.

5. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

6. Aboueata, N.; Alrasbi, S.; Erbad, A.; Kassler, A.; Bhamare, D. Supervised machine learning techniques for efficient network
intrusion detection. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks
(ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–8.

7. Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X. FlowGuard: An Intelligent Edge Defense Mechanism Against IoT DDoS
Attacks. IEEE Internet Things J. 2020, 7, 9552–9562. [CrossRef]

8. Timčenko, V.; Gajin, S. Machine learning based network anomaly detection for IoT environments. In Proceedings of the ICIST
2018: 24th International Conference on Information and Software Technologies, Vilnius, Lithuania, 4–5 October 2018.

9. Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning ddos detection for consumer internet of things devices. In Proceedings of
the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 29–35.

10. Swersky, L.; Marques, H.O.; Sander, J.; Campello, R.J.; Zimek, A. On the evaluation of outlier detection and one-class classification
methods. In Proceedings of the 2016 IEEE international conference on data science and advanced analytics (DSAA), Montreal,
QC, Canada, 17–19 October 2016; pp. 1–10.

11. Cui, L.; Yang, S.; Chen, F.; Ming, Z.; Lu, N.; Qin, J. A survey on application of machine learning for Internet of Things. Int. J. Mach.
Learn. Cybern. 2018, 9, 1399–1417. [CrossRef]

12. Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges.
IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [CrossRef]

13. Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020,
111, 2287–2310. [CrossRef]

14. Branitskiy, A.; Kotenko, I.; Saenko, I.B. Applying Machine Learning and Parallel Data Processing for Attack Detection in IoT.
IEEE Trans. Emerg. Top. Comput. 2020, 9, 1642–1653. [CrossRef]

15. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-baiot—Network-based detection of
iot botnet attacks using deep autoencoders. IEEE Pervas. Comput. 2018, 17, 12–22. [CrossRef]

16. Kumar, A.; Lim, T.J. EDIMA: Early detection of IoT malware network activity using machine learning techniques. In Proceedings
of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 289–294.

17. Bezerra, V.H.; da Costa, V.G.T.; Junior, S.B.; Miani, R.S.; Zarpelão, B.B. IoTDS: A one-class classification approach to detect botnets
in Internet of Things devices. Sensors 2019, 19, 3188. [CrossRef] [PubMed]

18. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A supervised intrusion detection system for smart home
IoT devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

19. Hsu, H.-T.; Jong, G.-J.; Chen, J.-H.; Jhe, C.-G. Improve Iot Security System of Smart-Home by Using Support Vector Machine. In
Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), Singapore, 23–25
February 2019; pp. 674–677.

20. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT devices in
smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 2018, 18, 1745–1759. [CrossRef]

21. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M. Attack and anomaly detection in IoT sensors in IoT sites using machine learning
approaches. Internet Things 2019, 7, 100059. [CrossRef]

22. Vikram, A. Anomaly detection in Network Traffic Using Unsupervised Machine learning Approach. In Proceedings of the
2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020;
pp. 476–479.

23. Popoola, S.I.; Adebisi, B.; Ande, R.; Hammoudeh, M.; Anoh, K.; Atayero, A.A. smote-drnn: A deep learning algorithm for botnet
detection in the internet-of-things networks. Sensors 2021, 21, 2985. [CrossRef] [PubMed]

24. Almiani, M.; AbuGhazleh, A.; Al-Rahayfeh, A.; Atiewi, S.; Razaque, A. Deep recurrent neural network for IoT intrusion detection
system. Simul. Model. Pract. Theory 2020, 101, 102031. [CrossRef]

25. Stiawan, D.; Arifin, M.A.S.; Rejito, J.; Idris, M.Y.; Budiarto, R. A Dimensionality Reduction Approach for Machine Learning Based
IoT Botnet Detection. In Proceedings of the 2021 8th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021; pp. 26–30.

26. Rezaei, A. Using Ensemble Learning Technique for Detecting Botnet on IoT. SN Comput. Sci. 2021, 2, 148. [CrossRef]

https://www.idc.com/getdoc.jsp?containerId=prUS43295217
https://www.idc.com/getdoc.jsp?containerId=prUS43295217
http://doi.org/10.1109/TII.2018.2836150
http://doi.org/10.1016/j.dcan.2017.10.002
http://doi.org/10.1109/JIOT.2020.2993782
http://doi.org/10.1007/s13042-018-0834-5
http://doi.org/10.1109/COMST.2020.2986444
http://doi.org/10.1007/s11277-019-06986-8
http://doi.org/10.1109/TETC.2020.3006351
http://doi.org/10.1109/MPRV.2018.03367731
http://doi.org/10.3390/s19143188
http://www.ncbi.nlm.nih.gov/pubmed/31331071
http://doi.org/10.1109/JIOT.2019.2926365
http://doi.org/10.1109/TMC.2018.2866249
http://doi.org/10.1016/j.iot.2019.100059
http://doi.org/10.3390/s21092985
http://www.ncbi.nlm.nih.gov/pubmed/33923151
http://doi.org/10.1016/j.simpat.2019.102031
http://doi.org/10.1007/s42979-021-00585-w

Sensors 2022, 22, 3646 17 of 17

27. Guerra-Manzanares, A.; Medina-Galindo, J.; Bahsi, H.; Nõmm, S. MedBIoT: Generation of an IoT Botnet Dataset in a Medium-
sized IoT Network. In Proceedings of the 6th International Conference on Information Systems Security and Privacy, ICISSP 2020,
Valletta, Malta, 25–27 February 2020; pp. 207–218.

28. McDermott, C.D.; Haynes, W.; Petrovksi, A.V. Threat Detection and Analysis in the Internet of Things using Deep Packet
Inspection. IJCSA 2018, 3, 61–83. [CrossRef]

29. Kang, H.; Ahn, D.; Lee, G.; Yoo, J.; Park, K.; Kim, H.; IoT network intrusion dataset. IEEE Dataport 2019. Available online:
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset (accessed on 15 March 2022).

30. Kuang, C.; Hou, D.; Zhang, Q.; Zhao, K.; Li, W. A Network Traffic Collection System for Space Information Networks Emulation
Platform. In Proceedings of the International Conference on Wireless and Satellite Systems, Nanjing, China, 17–18 September
2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 217–225.

31. Bash Terminal Scripting. Available online: https://www.gnu.org/software/bash/manual/html_node/What-is-Bash_003f.html
(accessed on 22 August 2020).

32. McKinney, W. Pandas: A foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 2011,
14, 1–9.

33. Seger, C. An Investigation of Categorical Variable Encoding Techniques in Machine Learning: Binary Versus One-Hot and Feature
Hashing. 2018, p. 34. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1259073&dswid=-7789
(accessed on 15 March 2022).

34. Khadka, N. General Machine Learning Practices Using Python. Bachelor’s Thesis, Oulu University of Applied Sciences, Oulu,
Finland, 2019.

35. Güner, M. Retail Data Predictive Analysis Using Machine Learning Models; MEF Üniversitesi Fen Bilimleri Enstitüsü: İstanbul,
Türkiye, 2020.

36. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014,
29, 345–374. [CrossRef]

37. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international
conference on Machine learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.

http://doi.org/10.22619/IJCSA.2018.100120
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://www.gnu.org/software/bash/manual/html_node/What-is-Bash_003f.html
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1259073&dswid=-7789
http://doi.org/10.1017/S026988891300043X

	Introduction
	Related Work
	Proposed Methodology
	Data Assortment
	PCAP Filtering
	Feature Extraction
	Shark Script
	Data Preprocessing
	NaN and Infinite Value Checking
	Categorical Values
	Hex Values

	Feature Selection
	Filter Method
	Wrapper Method

	Experiments with One-Class KNN
	True Positive
	False Positive
	True Negative
	False Negative
	Precision
	Recall
	F-Measure

	Results and Analysis
	Dataset Description
	Accuracy, Precision and Recall
	F1-Score on Different Datasets
	Effect of Feature Selection
	Comparison with Recent Research Works
	Comparison of Training Time before and after Feature Selection

	Conclusions
	References

