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Abstract

Background: There is inconsistent evidence for the causal role of serum insulin-like

growth factor-1 (IGF-1) concentration in the pathogenesis of human age-related diseases

such as type 2 diabetes (T2D). Here, we investigated the association between IGF-1 and

T2D using (clustered) Mendelian randomization (MR) analyses in the UK Biobank.

Methods: We conducted Cox proportional hazard analyses in 451 232 European-ancestry

individuals of the UK Biobank (55.3% women, mean age at recruitment 56.6 years), among

which 13 247 individuals developed type 2 diabetes during up to 12 years of follow-up. In ad-

dition, we conducted two-sample MR analyses based on independent single nucleotide

polymorphisms (SNPs) associated with IGF-1. Given the heterogeneity between the MR

effect estimates of individual instruments (P-value for Q statistic¼4.03e�145), we also

conducted clustered MR analyses. Biological pathway analyses of the identified clusters

were performed by over-representation analyses.

Results: In the Cox proportional hazard models, with IGF-1 concentrations stratified in quin-

tiles, we observed that participants in the lowest quintile had the highest relative risk of type

2 diabetes [hazard ratio (HR): 1.31; 95% CI: 1.23–1.39). In contrast, in the two-sample MR
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analyses, higher genetically influenced IGF-1 was associated with a higher risk of type 2 dia-

betes. Based on the heterogeneous distribution of MR effect estimates of individual instru-

ments, six clusters of genetically determined IGF-1 associated either with a lower or a higher

risk of type 2 diabetes were identified. The main clusters in which a higher IGF-1 was associ-

ated with a lower risk of type 2 diabetes consisted of instruments mapping to genes in the

growth hormone signalling pathway, whereas the main clusters in which a higher IGF-1 was

associated with a higher risk of type 2 diabetes consisted of instruments mapping to genes

in pathways related to amino acid metabolism and genomic integrity.

Conclusions: The IGF-1-associated SNPs used as genetic instruments in MR analyses

showed a heterogeneous distribution of MR effect estimates on the risk of type 2 diabe-

tes. This was likely explained by differences in the underlying molecular pathways that

increase IGF-1 concentration and differentially mediate the effects of IGF-1 on type 2

diabetes.

Key words: Clustered Mendelian randomization analysis, cohort studies, Mendelian randomization analysis, type 2

diabetes, insulin-like growth factor-1

Introduction

Insulin-like growth factor-1 (IGF-1) is a pleiotropic hor-

mone that plays a major role in cellular growth, prolifera-

tion and survival.1 The secretion of IGF-1, predominately

by the liver, is promoted by growth hormone (GH); con-

versely, IGF-1 in the circulation feeds back centrally to the

hypothalamus to inhibit GH secretion.2 The availability of

free IGF-1 in the blood is regulated by its association with

distinct insulin-like growth factor-binding proteins

(IGFBPs) which can increase IGF-1 half-life or block its

binding to IGF-1 receptors.3 IGF-1 plays a very important

role in the aging process, and it was found that the level of

IGF-1 increases during puberty and decreases gradually

with increasing age during adulthood.4,5 IGF-1 was also

found to be involved in the pathophysiology of various dis-

eases, including cancer, neurodegenerative disease, cardio-

vascular disease and type 2 diabetes mellitus.6 Several

(prospective) cohort studies have found that lower levels of

IGF-1 were associated with an increased risk of impaired

glucose tolerance, increased insulin resistance and hence

the development of diabetes mellitus.7,8

In contrast to these multivariable-adjusted association

analyses, a recent study demonstrated that a higher geneti-

cally influenced IGF-1 concentration was associated with a

higher risk of developing type 2 diabetes, using Mendelian

randomization (MR) analyses.9 MR is an approach to de-

termine whether the association between risk factors and

outcome is causal, by using genetic variants as instrumen-

tal variables,10 and therefore does not meet the require-

ments for triangulation of observations done in

epidemiology.11 However in some circumstances, there is

clear heterogeneity in the causal effects of the individual

single nucleotide polymorphisms (SNPs) that are used as

instrumental variables, which may indicate either pleiot-

ropy or differences in biological pathways contributing to

high levels of the exposure.12 Clustered MR was recently

Key messages

• High genetically-influenced insulin-like growth factor-1 (IGF-1) was associated with higher risk of type 2 diabetes

mellitus, but individual instruments show a heterogeneous distribution of effect estimates in Mendelian

randomization (MR).

• Six clusters associated either with a lower or a higher risk of type 2 diabetes were identified, which mapped to

distinct molecular pathways.

• Our results indicate that the association between IGF-1 and the risk of developing type 2 diabetes is context-

dependent.

• Cause-specific, but not total, IGF-1 concentrations result in a more accurate risk assessment of an individual to

develop type 2 diabetes mellitus.
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developed to provide a means to address the heterogeneity

in causal effects by clustering variants that show similar in-

dividual causal estimates on the outcome.12 Previously,

such context-dependent MR analyses have been proposed

to provide more biological perspective in causal

associations.13,14

We hypothesized that heterogeneity in causal effects of

individual variants could be a reflection of different biolog-

ical mechanisms involved in the association between IGF-1

and type 2 diabetes. For example, variation influenced by

processes causing insufficient GH signalling may have an

impact on T2D different from variation influenced by pro-

cesses causing increased GH resistance. Therefore in this

study, we aimed to investigate the association between

IGF-1 and incident type 2 diabetes followed by clustered

MR analyses15 in the large UK Biobank population, and

explored the possible biological pathways involved in the

clustered causal associations.

Methods

Study setting and study population

The UK Biobank is a very large prospective cohort study

with over 500 000 participants aged 40–69 years at recruit-

ment across the entire UK.16 Participants were recruited

between 2006 and 2010 in 22 assessment centres across

the UK. Baseline examinations in all participants included

physical measures, collection of blood, urine and saliva, a

self-completed touch-screen questionnaire and a brief

computer-assisted interview to investigate sociodemo-

graphics, family history, environmental factors, lifestyle,

psychosocial factors etc.

The present project was accepted under project number

22474. We restricted the analyses to the UK Biobank par-

ticipants who reported to be of European ancestry includ-

ing British, Irish and any other European background, who

had information available on serum IGF-1 concentration

and who were in the full release imputed genomics

datasets.

Biochemical analyses

Biological samples were collected to measure biochemical

markers including IGF-1 at baseline (2006–10), comprising

�480 000 participant samples. Serum levels of IGF-1 were

analysed using chemiluminescent Immunoassay (DiaSorin

Liaison XL) with a one-step sandwich. Coefficients of varia-

tion derived from the internal quality control samples of the

low, medium and high IGF-1 concentrations ranged from

6.03% to 6.18%. More information on assay performance

of the UK Biobank Biomarker Project can be found online

[https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1227].

Outcome definitions

Prevalent and incident diagnosis of type 2 diabetes mellitus

was identified in UK Biobank as the date of first appear-

ance of non-insulin-dependent diabetes mellitus (data-field

130708 in the UK Biobank Database). This variable has

been composed through a standard algorithm combining

the data derived from hospital admissions (through linkage

with the medical records from the National Health

Service), general practitioners and death records, and

through self-report. Based on the date of first appearance

and the data of enrolment, we defined whether a case was

prevalent (before enrolment) or incident (after enrolment).

Statistical analyses

The cross-sectional association between IGF-1 and preva-

lent type 2 diabetes was assessed by means of logistic re-

gression modelling adjusting for age at recruitment, sex

and body mass index (BMI).

Participants without diabetes mellitus at baseline were

followed until the occurrence of type 2 diabetes, mortality

or loss of follow-up, whichever occurred first. The associa-

tion between IGF-1 levels (as continuous and stratified var-

iables) and incidence of type 2 diabetes in the UK Biobank

cohort was assessed using Cox proportional hazard mod-

els. Participants were categorized into five groups based on

quintiles of IGF-1 concentration. Quintile 1 (lowest 20%)

and quintile 5 (highest 20%) were used separately as refer-

ence groups to calculate the hazard ratio (HR), respec-

tively. Potential confounders included sex, age at

recruitment and baseline BMI based on height and weight

measured at the assessment centres. The analyses were con-

ducted in R using the survival package (version 3.2–7).17

The Kaplan–Meier curve was plotted to visualize the dif-

ference of survival probability between IGF-1 quintiles and

whether the proportionality assumption holds.

Genotyping and genetic imputations. Genome-wide geno-

type data for all 500 000 UK Biobank participants, gener-

ated using Affymetrix UK BiLEVE Axiom array (initial

50 000 participants) and the Affymetrix UK Biobank

Axiom Array (remaining 450 000 participants), genotyped

around 850 000 variants. All genetic data were quality-

controlled centrally by UK Biobank resources. In addition,

UK Biobank resources performed centralized imputations

on approximately 96 million genotypes using the UK10K

haplotype,18 1000 Genomes Phase 319 and Haplotype

Reference Consortium (HRC) reference panels.20

Autosomal SNPs were pre-phased using SHAPEIT3 and

imputed using IMPUTE4. Related individuals were identi-

fied by estimating kinship coefficients for all pairs of sam-

ples using only markers weakly informative of ancestral

background. More information on the genotyping
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processes and genetic imputation can be found online

[https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=263].

Genome-wide association analyses. Genome-wide associa-

tion studies (GWAS) on continuous IGF-1 concentrations

were performed on all European individuals to provide a

list of independent lead SNPs to be used as instrumental

variables for exposure (IGF-1) in the MR analyses.

Analyses were performed using linear mixed models imple-

mented in the program BOLT_LMM (version 2.3.2).21 We

adjusted the analyses for age, sex and the first 10 principal

components, and corrected for the Kinship matrix to cor-

rect for familial relationships in the UK Biobank popula-

tion. Analyses were done on the autosomal chromosomes

only. SNPs with a minor allele frequency <0.01, as well as

SNPs with an imputation quality <0.3, were excluded. P-

values of SNPs smaller than 5e�8 were extracted and

stored for the MR analyses. Visualization of the results

was performed using the R-based packages ggplot222 and

EasyStrata23 [www.genepi-regensburg.de/easystrata].

Outcome data source. For this analysis, the instruments

for outcome (type 2 diabetes) were acquired from the

DIAGRAM Consortium, which is a publicly available

summary-statistics GWAS meta-analysis of European an-

cestry comprising 32 studies and 898 130 individuals

(74 124 type 2 diabetes cases and 824 006 controls).24

The summary statistics of outcome for glycated haemo-

globin (HbA1c), fasting glucose, C-reactive protein (CRP)

level and BMI were retrieved from an online source

[https://gwas.mrcieu.ac.uk/] under the GWAS IDs ieu-b-

104 (HbaA1c, N¼ 46 368), ieu-b-114 (fasting glucose,

N¼ 133 010), ieu-b-35 (CRP, N¼204 402) and ieu-b-40

(BMI, N¼ 681 275).

Mendelian randomization analyses. Two-sample MR was

performed with summary-based statistics of GWAS using

the R-based statistical package Two Sample MR [http://

github.com/MRCIEU/TwoSampleMR]25 This statistical

package also connects to a large library of exposures from

published GWAS to use as instrumental variables, which is

aligned with the online GWAS catalogue.

For the present study, we performed clumping process

(window size¼ 10 000 kb, R2<0.001) with the European

samples from the 1000 Genomes Project, which were used

to estimate linkage disequilibrium (LD) between SNPs.

Among the pairs of SNPs with R2 above the specified

threshold (R2¼0.001), only the SNPs with the lowest P-

value were retained to provide a list of independent lead

SNPs from the MR analyses. Otherwise, the statistical

power of MR analyses would be overestimated (e.g. under-

estimated standard errors of the summary estimates of the

MR analyses). SNPs present in UK Biobank, but absent

from the LD reference panel, were removed. On the basis

of the significant independent lead SNPs (P-value<5e�8),

we assessed their possible association with type 2 diabetes.

Methods for MR analyses of summary-level data based

on a two-sample design have been described in detail previ-

ously.26,27 Using inverse-variance-weighted (IVW) analy-

ses, we combined the effects of the individual genetic

instruments to obtain a genetically-determined association

between exposure and outcome under the assumption of

the absence of horizontal pleiotropy. However, given the

large number of genetic instruments included in the present

analyses, there is a high probability that at least some SNPs

show pleiotropic effects. To test whether possible pleiotro-

pic effects could bias the overall effect estimates (horizon-

tal pleiotropy), we performed the sensitivity analyses MR

Egger regression28 and weighted median estimator (WME)

analyses.29 MR Egger does not force the regression line

through the intercept and is, therefore, able to test for the

presence of directional pleiotropy, and WME estimator

assumes at least 50% of the instruments included in the

MR analyses were valid.

Clustered Mendelian randomization analyses. Clustered

MR analyses were conducted to identify groups of genetic

variants that have similar causal estimates of the exposure

on the outcome, which has been described in detail previ-

ously.15 Briefly, this method performs likelihood-based

clustering on a sample of ratio estimates and standard

errors of genetic variants. An MR-Clust mixture model is

firstly built for ratio estimates and the mixture proportion

for cluster k, after which these two parameters are esti-

mated by using an expectation-maximization (EM) algo-

rithm and optimized by using maximum likelihood

estimates (MLE). This MR-Clust mixture model automati-

cally accounts for the possibilities that some or all of the

ratio estimates may be drawn under two distribution—a

null distribution (the ratio estimates are centred around

zero) and a junk distribution (highly dispersed ratio esti-

mates considered as outliers in the sample). The presence

of null and junk clusters minimizes false-positive findings

from the model, with no need to interpret. The maximiza-

tion step to optimize the parameter values resembles the

inverse-variance weighted estimates of the causal effect of

the exposure on the outcome. Last, the numbers of sub-

stantive clusters are estimated based on the values derived

from MLEs for each value of k possible substantive clus-

ters, by minimizing the Bayesian information criterion

(BIC) which helps to avoid ove-rparameterization.

Therefore, if the causal estimates of each genetic variant on

the outcome were similar (e.g. their ratio estimates were

similar in direction, magnitude and precision), it was
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divided into different clusters in which the included genetic

variants were more homogeneous concerning the causal

estimates. The inclusion probability of SNPs in each cluster

was higher than 0.8.

In order to identify distinct causal effects of genetic var-

iants derived from GWAS of continuous IGF-1 levels on

type 2 diabetes, we made use of the R-based MR-Clust

package [https://github.com/cnfoley/mrclust]. MR-Clust

performs likelihood-based clustering on Wald ratio esti-

mates and accompanying standard errors. Genetic instru-

ments within a cluster share similar causal estimates (e.g.

Wald ratio estimates are similar in direction, magnitude

and precision) of the causal effect of the exposure on the

outcome. MR analyses were repeated on all clusters to in-

vestigate the causal effects of each cluster on type 2 diabe-

tes. The stability of the clusters was measured by repeating

the same analyses using 1000 randomly generated subsets

containing 200 SNPs and with the full set of 332 SNPs as-

sociated with IGF-1 levels. In addition, cross-validation

analyses were performed by randomly sub-dividing the

UKB participants into two subsets and repeating the same

clustered MR analyses within each subset of the UKB.

Pathway analyses. We performed pathway analysis on all

the six IGF-1 clusters, to provide insights into biological

pathways which could explain the heterogeneity between

causal estimates of genetic variants in different clusters on

type 2 diabetes. Gene candidates of each locus were deter-

mined with the SNP2Gene function of FUMA (the

Functional Mapping and Annotation of Genome-Wide

Association Studies platform),30 where we used a 20-kb

positional map and included genes whose expression was

associated with the locus in GTEx v8. Gene candidates of

a locus which were also linked to a gene that had a clear bi-

ological relation to IGF-1 were excluded from the analysis.

Specifically, we defined the list of prioritized genes as

IGF1, IGF2, INS, IGFALS, GHR, GHSR, GH1, GH2,

AKT3, FOXO3, which we based on their overlap with the

IGF1 gene in the pathway databases that we used in the

subsequent analysis.

Pathway analysis was performed using the pathway defi-

nitions of the KEGG (a bioinformatics resource for decipher-

ing the genome) and Reactome database, which were

downloaded from ConsensusPathDB31 on 28 October 2021.

Gene sets with more than 1000 genes or less than two were

excluded. Since genes with a shared function sometimes

colocalize on the genome, we developed a novel method for

performing over-representation analysis that corrects for the

inflation induced by the colocalization effect. In detail, we de-

fined gene clusters of similar function and close proximity on

the genome by merging all genes that were within a 100-kb

distance on the genome (GENCODE v38) and that co-

occurred in at least one pathway. This operation reduced the

total number of genes that were covered in the KEGG and

Reactome pathways from 11 855 to 9123 gene clusters and is

completely independent from the set of gene candidates

obtained from the GWAS results. Subsequently the pathway

gene sets and the gene candidate set were mapped on the

gene clusters, and the over-representation was done in terms

of the gene clusters where loci that mapped multiple times to

genes within the same cluster were counted only once. Over-

representation analysis was done using Fisher’s exact test and

results were corrected for multiple testing with the

Benjamini–Hochberg procedure where pathways with the

same definition were counted as one. Only pathways with

false-discovery rate (FDR) >0.1 were shown in the present

study.

In addition, as follow-up analyses, we conducted two-

sample MR analyses to associate IGF-1 and several meta-

bolic traits related to type 2 diabetes including HbA1c,

fasting glucose, CRP and BMI.

Results

Characteristics of the study population

In total, 451 232 European participants without diabetes

mellitus at baseline were included in our study, of whom

13 247 developed type 2 diabetes in up to 12 years of

follow-up (Table 1). Of the participants not developing

type 2 diabetes, 55.7% were women, the mean age at re-

cruitment was 56.5 (SD¼ 8.1) years, the average BMI was

27.1 (SD¼ 4.5) kg/m2 and the mean IGF-1 levels were

21.5 (SD¼ 5.6) nmol/L. Of the participants developing

type 2 diabetes during follow-up, women accounted for

41.9%, the mean age at recruitment was 59.3 (SD¼ 7.2)

years, the average BMI was 31.7 (SD¼ 5.6) kg/m2 and the

mean IGF-1 level was 19.9 (SD¼ 6.5) nmol/L.

Table 1 Characteristics of the UK Biobank study population

for prospective analyses

Controls Cases Total

N 437 985 13 247 451 232

Age at recruitment, in years 56.5 (8.1) 59.3 (7.2) 56.6 (8.0)

Time to diagnosis, in years – 5.3 (2.5) –

% of women 55.7 41.9 55.3

BMI, in kg/m2 27.1 (4.5) 31.7 (5.6) 27.2 (4.6)

IGF-1 levels, in nmol/L 21.5 (5.6) 19.9 (6.5) 21.5 (5.6)

Data presented as means with standard deviation (SD) or as stated

otherwise. Information on BMI was missing for 7599 controls and 417 cases.

Information on age at diagnosis was missing for 1228 cases. Information on

IGF-1 levels is missing for 29889 controls and 990 cases.

IGF-1: insulin-like growth factor-1; BMI: body mass index.
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Association between IGF-1 and prevalent and inci-

dent type 2 diabetes

The cross-sectional analyses showed that a higher level of

IGF-1 was significantly associated with a lower odds of

prevalent type 2 diabetes (odds ratio: 0.98; 95% CI: 0.97–

0.98, per nmol/L increase of IGF-1).

Multivariable-adjusted Cox proportional hazard model

analyses were performed to evaluate the association be-

tween IGF-1 levels (as quintile and continuous variables)

and incident type 2 diabetes. The Kaplan–Meier curve

(Figure 1) illustrated that participants in the lower IGF-1

quintiles (quintiles 1and 2) had proportionally lower risk

of type 2 diabetes compared with participants in the higher

quintiles (quintiles 3, 4 and 5), which is consistent with the

result of Cox proportional hazard model when IGF-1 is

assessed as a continuous variable. The results showed that

higher levels of IGF-1 are associated with lower risk of

incident type 2 diabetes, with HR of 0.98 per nmol/L IGF-

1 and 95% confidence interval (CI) of 0.97–0.98.

More specifically, individuals in quintile 2 had a lower

risk of type 2 diabetes (HR: 0.77; 95% CI: 0.73–0.81) than

individuals in quintile 1 (Table 2), as did those in quintile 3

(HR: 0.70; 95% CI: 0.66–0.74), quintile 4 (HR: 0.68; 95%

CI: 0.64–0.72) and quintile 5 (HR: 0.76; 95% CI: 0.72–

0.81). Taking participants in quintile 5 as the reference

group, a higher risk was observed in quintile 1 (HR: 1.31;

95% CI: 1.23–1.39), and those in quintiles 3 (HR: 0.92;

95% CI: 0.86–0.98) and 4 (HR: 0.89; 95% CI: 0.83–0.95)

had a lower risk of developing type 2 diabetes.

Mendelian randomization analyses

There were 95 877 significant SNPs (P<5e�8) identified in

the GWAS of continuous IGF-1 (Supplementary Figure S1,

Figure 1 Kaplan–Meier survival curves displaying the time to develop incident type 2 diabetes by quintiles of insulin-like growth factor-1 concentra-

tions. The x-axis presents days of follow-up and the y-axis presents overall survival probability. Censoring is indicated by vertical marks

Table 2 Hazard ratio of incident type 2 diabetes according to quintiles of insulin-like growth factor-1 concentrationa

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Ranges of IGF-1 (nmol/L) 1.44–16.73 16.73–19.93 19.93–22.63 22.63–25.77 25.77–126.77

Hazard ratio (95% CI) Reference 0.77 (0.73–0.81) 0.70 (0.66–0.74) 0.68 (0.64–0.72) 0.76 (0.72–0.81)

Hazard ratio (95% CI) 1.31 (1.23–1.39) 1.01 (0.94–1.07) 0.92 (0.86–0.98) 0.89 (0.83–0.95) Reference

aThis table presents the hazard ratio (HR) and 95% confidence interval (CI) of incident type 2 diabetes by insulin-like growth factor-1 concentration in quin-

tiles. The second row shows hazard ratios of incident type 2 diabetes using quintile 1 as reference group. The third row shows hazard ratios of incident type 2 dia-

betes using quintile 5 as reference group.

IGF-1, insulin-like growth factor-1.
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available as Supplementary data at IJE online), of which 387

independent lead SNPs were derived. After quality control

performed by the TwoSample MR package (e.g. excluding

palindromic SNPs and SNPs with intermediate allele

frequencies), 323 SNPs were used in the MR analyses

(Supplementary Table S1, available as Supplementary data at

IJE online). The MR estimates assessing the effect of IGF-1

on type 2 diabetes showed that a 1-nmol/L increase in IGF-1

was associated with a 1% higher risk of type 2 diabetes in

the IVW analyses (OR: 1.01; 95% CI: 1.00–1.02). Similar

results were obtained from MR Egger (OR: 1.02; 95%

CI: 1.00–1.05) and WME analyses (OR: 1.01; 95%

CI: 1.00–1.02).

Clustered Mendelian randomization analyses

We observed large heterogeneity in the individual MR

effect estimates (Figure 2) as was also evidenced by the Q

statistic (P¼ 4.03e�145). The individual MR effect

estimates were clustered into a total of six clusters with an

inclusion probability of SNPs higher than 0.8 (Figure 3;

Supplementary Table S2, available as Supplementary data

at IJE online). MR estimates from different methods

assessing the effect of six clusters on type 2 diabetes are

presented in Figure 4, Table 3 and Supplementary Figure

S2, available as Supplementary data at IJE online. In clus-

ter 1 (IVW: OR: 1.54, 95% CI: 1.43–1.65), cluster 2

(IVW: OR: 1.03; 95% CI: 1.02–1.04) and cluster 5 (IVW:

OR: 1.20; 95% CI: 1.18–1.22), higher levels of IGF-1 were

associated with a higher risk of type 2 diabetes. On the

other hand, cluster 3 (IVW: OR: 0.92; 95% CI: 0.91–

0.94), cluster 4 (IVW: OR: 0.62; 95% CI: 0.58–0.67) and

cluster 6 (IVW: OR: 0.80; 95% CI: 0.76–0.85) showed

that higher levels of IGF-1 were associated with lower risk

of type 2 diabetes. The results from sensitivity analyses by

using weighted median estimator and MR-Egger did not

materially differ from the result of the IWV method. The

results from the stability test of the MR-Clust demon-

strated that IGF-1 clusters were consistently constructed

across different random subsets of IGF-1 SNPs and across

different runs with the same set of 332 IGF-1 SNPs

(Supplementary Figures S3 and S4, available as

Supplementary data at IJE online). The cross-validation

analyses also provided evidence that at least three clusters

for IGF-1 were reproducible (Supplementary Figures S5

and S6, available as Supplementary data at IJE online).

Pathway analyses

Gene candidates for each SNP and gene used for the follow-

ing pathway analyses can be found in Supplementary Table

S3 (available as Supplementary data at IJE online). For the

pathway analyses, we found that cluster 2 and cluster 3 were

mapped to specific pathways. Cluster 2 mapped to 11 path-

ways, including metabolism of xenobiotics by cytochrome

P450 and chemical carcinogenesis (Supplementary Figure S7

and Table S4, available as Supplementary data at IJE online).

Cluster 3 mapped to six pathways, including growth

hormone synthesis, secretion and action, prolactin receptor

signalling and growth hormone receptor signalling

Figure 2 Scatter plots of the MR effect estimates of continuous IGF-1 on type 2 diabetes derived from different MR tests. The x-axis is the genetic asso-

ciation between SNPs and IGF-1 and the y-axis is the genetic association between SNPs and type 2 diabetes. Analyses were conducted using the in-

verse-variance-weighted, weighted median and MR Egger methods. The slope of each line presents the estimated MR effect for each method. MR,

Mendelian randomization; IGF-1, insulin-like growth factor-1; SNPs, single nucleotide polymorphisms
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Figure 3 Scatter plots of the MR effect estimates of continuous IGF-1 on type 2 diabetes for clustered MR analyses. The x-axis is the genetic associa-

tion between SNPs and IGF-1 and the y-axis is the genetic association between SNPs and type 2 diabetes. MR, Mendelian randomization; IGF-1, insu-

lin-like growth factor-1; SNPs, single nucleotide polymorphisms

Figure 4 Forest plot of the MR estimates and MR sensitivity analyses for the six clusters of genetically predicted IGF-1 levels on type 2 diabetes. Odds

ratios measured the associations between IGF-1 clusters and type 2 diabetes. No. SNPs, number of SNPs used in the separate MR analyses; 95% CI,

95% confidence interval; MR, Mendelian randomization; IGF-1, insulin-like growth factor-1; SNPs, single nucleotide polymorphisms
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(Supplementary Figure S8 and Supplementary Table S5,

available as Supplementary data at IJE online). Clusters 1, 4,

5 and 6 did not map to any specific pathway.

Follow-up analyses of the clusters in relation to

other traits

The results of follow-up analyses using two-sample MR are

shown in Supplementary Table S6 (available as

Supplementary data at IJE online). Using IVW, high geneti-

cally influenced IGF-1 levels through cluster 2, 3 and 6 were

associated with higher HbA1c. In addition, high genetically-

influenced IGF-1 levels through cluster 5 and cluster 6 were

associated with lower CRP; and high genetically influenced

IGF-1 through cluster 5 was also associated with lower fast-

ing glucose. In general, results were (directionally) consistent

in the weighted median and MR-Egger sensitivity analyses.

Discussion

In this study, we investigated the association of IGF-1 and

type 2 diabetes using prospective multivariable-adjusted

survival analyses followed by MR and clustered MR analy-

ses in the UK Biobank. The results from the MR analyses

showed that a genetically influenced higher level of IGF-1

was associated with a higher risk of type 2 diabetes, which

was in contrast to the results from the prospective analyses

showing that a higher concentration of IGF-1 was associ-

ated with a lower risk of type 2 diabetes. Since the underly-

ing individual genetic instruments showed a heterogeneous

distribution of MR effect estimates, clustered MR identi-

fied six clusters of genetic instruments for IGF-1 with dif-

ferent associations with type 2 diabetes, which mapped to

distinct molecular pathways. Collectively, our results indi-

cate that the association between IGF-1 and the risk of de-

veloping type 2 diabetes is context-dependent.

Findings from other prospective studies regarding the as-

sociation between IGF-1 and type 2 diabetes have been

inconsistent. Our results from the prospective analyses were

in line with another cohort study showing that high levels of

IGF-1 were associated with a lower risk of type 2 diabetes

mellitus during 4.5 years of follow-up.7 However, some

nested case-cohort studies suggested there was no association

between total IGF-1 levels and the risk of type 2 diabetes.32,33

In addition, a cohort study found that the association be-

tween free IGF-1 and type 2 diabetes was dependent on the

level of insulin in women.34 Interestingly a recent study, that

used a data-driven approach to metabolically subtype the UK

biobank participants, found that the subgroup associated

with increased prevalence and incidence of type 2 diabetes

exhibited a decreased level of IGF-1.35 The inconsistency of

these findings reinforces the notion that the association be-

tween IGF-1 and type 2 diabetes is context-dependent, which

is in line with the distinct biological mechanisms identified by

the clustered MR analyses in our study.

Many studies found a J- or U- shaped association be-

tween IGF-1 and type 2 diabetes7,36 or insulin resistance.37

For example, one study showed that individuals with both

low or high IGF-1 levels were at increased risk of develop-

ing diabetes, in a prospective cohort study.36 Similarly, a

U-shaped association between IGF-1 and measures of insu-

lin resistance was found in a cross-sectional study in

Danish adults.37 Partly in line with these results, we ob-

served a J-shaped relationship between IGF-1 and type 2

diabetes, with particularly low levels of IGF-1 being associ-

ated with an increased risk of developing type 2 diabetes.

The result of MR analyses of continuous IGF-1 and

type 2 diabetes in our study was supported by a recent pub-

lication showing that genetically determined higher levels

of IGF-1 were associated with increased risk of developing

type 2 diabetes.9 However, we observed large between-

SNP heterogeneity, and the MR effect estimates were not

proportional to each other. We identified six main clusters

of IGF-1 genetic instruments with distinct effects on type 2

diabetes, by using clustered MR. After mapping the genetic

instruments to genes and over-representation analysis

Table 3 Mendelian randomization effect estimates derived from different methods for six clusters on type 2 diabetesa

Clusters Number of SNPs Inverse-variance-weighted Weighted median MR Egger

OR (95% CI) OR (95% CI) OR (95% CI)

Cluster 1 3 1.54 (1.43–1.65) 1.54 (1.38–1.72) 1.60 (1.00–2.57)

Cluster 2 41 1.03 (1.02–1.04) 1.02 (1.01–1.04) 1.01 (0.99–1.04)

Cluster 3 17 0.92 (0.91–0.94) 0.93 (0.91–0.95) 0.93 (0.90–0.96)

Cluster 4 4 0.62 (0.58–0.67) 0.64 (0.56–0.73) 0.52 (0.38–0.72)

Cluster 5 18 1.20 (1.18–1.22) 1.21 (1.18–1.24) 1.19 (1.14–1.23)

Cluster 6 3 0.80 (0.76–0.85) 0.80 (0.75–0.86) 0.91 (0.70–1.17)

aThis table presents the odds ratio (OR) and 95% confidence interval (CI) of associations between six clusters and type 2 diabetes.

SNPs, single nucleotide polymorphisms.
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using the KEGG and Reactome databases, several clusters

were mapped to specific pathways.

To gain insight into the biological basis of the identified

IGF-1 genetic clusters in relation to type 2 diabetes, we

performed pathway analyses and identified two clusters as-

sociated with specific pathways. Cluster 2 (in which higher

genetically influenced IGF-1 was associated with a higher

risk of type 2 diabetes) mapped to multiple pathways, in-

cluding metabolism of xenobiotics by cytochrome P450

and chemical carcinogenesis. In addition, MR follow-up

analyses using two-sample MR showed cluster 2 was asso-

ciated with higher HbA1c, which supports our findings on

type 2 diabetes. However, the exact interpretation of this

cluster is complicated and requires additional research. It is

tempting to speculate that since the cytochrome P450 sys-

tem is likely involved in the breakdown of HbA1c, it influ-

ences the risk of type 2 diabetes by affecting the residence

time of HbA1c in blood. In support of this notion, a direct

effect of IGF-1 on the cytochrome P450 system has been

demonstrated before.38

Cluster 3 (in which a higher level of genetically influ-

enced IGF-1 was associated with a lower risk of type 2 dia-

betes) was mapped to pathways related to GH synthesis,

secretion and action and to GH receptor signalling.

However, counterintuitively, cluster 3 was associated with

higher levels of Hb1Ac, despite being associated with a

lower risk of type 2 diabetes. Although this finding seems

difficult to interpret, this could mean that as IGF-1 plays

an important role in growth and development, higher IGF-

1 may have resulted in a larger pancreas, which confers an

advantage in a non-diabetic situation (as used in the

Hb1Ac analyses) by enabling a stronger response to rising

glucose levels, resulting in lower HbA1C. However, under

conditions of chronically elevated insulin demand, such

strong pancreatic response may in the end cause an acceler-

ated exhaustion of insulin production and a rapid develop-

ment of a more insulin-dependent-like phenotype of type 2

diabetes. Previously, IGF-1 has been shown to interact

with beta cells,39 and to have direct effects on pancreas de-

velopment and beta cell compensation to insulin resis-

tance.40 In support of the biological interpretation of the

genes mapped to cluster 3, dysregulation of GH receptor

signalling and the GH-IGF-1 axis can lead to multiple dis-

eases such as type 2 diabetes. Mice with liver IGF-1 defi-

ciency had a 4-fold increase in GH levels. Upon treatment

with a GH antagonist, these mice had decreased blood glu-

cose and insulin levels and increased peripheral insulin sen-

sitivity compared with mice with untreated liver IGF-1

deficiency. These data indicate that the GH/IGF-1 axis

plays a balancing role in insulin sensitivity and thus type 2

diabetes.41 In addition, an epidemiological cross-sectional

study showed that IGF-1 was associated with type 2

diabetes risk, but this association varied depending on the

insulin levels: in individuals with low levels of insulin, IGF-

1 decreased type 2 diabetes risk and in individuals with

high levels of insulin IGF-1, increased type 2 diabetes

risk.34

The main strength of our study is the extremely large

sample size, allowing stratification of the genetic instru-

ments with sample statistical power. A limitation of the

present study is that the IGF-1 level used was total IGF-1

concentration and not free IGF-1 (e.g. relative to the con-

centration of IGF-binding proteins). Furthermore, the

study was performed in a study of European-ancestry par-

ticipants. Translation of the results to participants of non-

European ancestry should be done with caution. Although

the SNP-outcome dataset (DIAGRAM) used in two-sample

MR analyses had an overlap of 49.3% with the SNP-

exposure dataset (UKB only), we expect that the effect of

this overlap is limited given the very large sample size,

since it has been shown that one-sample MR performs well

in large samples.42 In addition, non-fasting blood sampling

has likely resulted in somewhat increased variation in IGF-

1 concentration and consequently a slight reduction in sta-

tistical power.43 However, given that this variation is most

likely independent from genetic make-up, no bias in the

results was expected from this. Although sensitivity analy-

ses in a random subset of the UK Biobank and clustering

using random subsets of SNP-exposure relationships gave

similar results, results warrant replication in an indepen-

dent sample using SNP-exposure associations derived from

a fully independent study sample. Last, as our

multivariable-adjusted Coxproportional hazard models in-

dicated a possible non-linear association between IGF-1

levels and type 2 diabetes, this was not taken into account

in the MR analyses which were done on continuous levels.

Whether the different clusters could possibly contribute to

a non-linear association is currently not known.

Furthermore, the more recently introduced methods for

non-linear MR were not applicable here, given the overlap

in the SNP-exposure and SNP-outcome datasets (both UK

Biobank); the extent of bias introduced by one-sample

non-linear MR (which was shown to be limited for the

more classical two-sample MR methodologies42) is cur-

rently unknown.

Conclusion

In conclusion, from clustering analyses we found that ge-

netically determined IGF-1 was associated with both a

higher and a lower risk of development of type 2 diabetes,

which is likely mediated by distinct biological mechanisms.

Therefore, the total concentration of IGF-1 does not pro-

vide insight into the risk of developing type 2 diabetes.

International Journal of Epidemiology, 2022, Vol. 51, No. 6 1883



Ethics approval

The data used in this work are publicly available. The UK Biobank

obtained relevant participant consent and ethical approval. The

analyses in UK Biobank were done under project number 22474.

The UK Biobank study was approved by the North-West Multi-cen-

tre Research Ethics Committee (MREC). Access to information to

invite participants was approved by the Patient Information

Advisory Group (PIAG) from England and Wales. All participants

in the UK Biobank study provided written informed consent.

Data availability

Data that support the findings of this study have been deposited in the

UK Biobank under project number 22474. Data are available on re-

quest after approval of a research proposal by UK Biobank resources.

Summary data for IGF-1 from GWAS analyses is available on the

Figshare website [https://figshare.com/s/9ff69bbc84a67559989f].

Supplementary data

Supplementary data are available at IJE online.

Author contributions

W.W., E.B.T., J.B.vK., K.W.vD., A.B., D.vH., R.N.: substantial con-

tributions to concept, design, acquisition of data, data analyses and

data interpretation; drafting article and critical comment on the ini-

tial versions of the manuscript; final approval of the manuscript be-

fore submission.

Funding

This work was supported by the American Diabetes Association

grant #1–19-IBS-126. WW was supported by a scholarship from the

China Scholarship Council (201907720011).

Conflict of interest

None declared.

References

1. Rajpathak SN, Gunter MJ, Wylie-Rosett J et al. The role of

insulin-like growth factor-I and its binding proteins in glucose

homeostasis and type 2 diabetes. Diabetes Metab Res Rev 2009;

25:3–12.

2. Nicholls AR, Holt RI. Growth hormone and insulin-like growth

factor-1. Front Horm Res 2016;47:101–14.

3. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I.

Insulin-like growth factor-1 deficiency and metabolic syndrome.

J Transl Med 2016;14:3.

4. Poudel SB, Dixit M, Neginskaya M et al. Effects of GH/IGF on

the aging mitochondria. Cells 2020;9:1384.

5. Sasako T, Ueki K. [Insulin/IGF-1 signaling and aging.] Nihon

Rinsho 2016;74:1435–40.

6. Rosenzweig SA. The continuing evolution of insulin-like growth

factor signaling. F1000Res 2020;9:F1000 Faculty Rev-205.

7. Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger

DB, Wareham NJ. Circulating concentrations of insulin-like

growth factor-I and development of glucose intolerance: a pro-

spective observational study. Lancet 2002;359:1740–45.

8. Rajpathak SN, McGinn AP, Strickler HD et al. Insulin-like

growth factor-(IGF)-axis, inflammation, and glucose intolerance

among older adults. Growth Horm IGF Res 2008;18:166–73.
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Metabolic subgroups and cardiometabolic multimorbidity in the

UK Biobank. medRxiv 2021.02.01: 21250893, preprint: not

peer reviewed.

36. Schneider HJ, Friedrich N, Klotsche J et al. Prediction of incident

diabetes mellitus by baseline IGF1 levels. Eur J Endocrinol 2011;

164:223–29.

37. Friedrich N, Thuesen B, Jørgensen T et al. The association be-

tween IGF-I and insulin resistance: a general population study in

Danish adults. Diabetes Care 2012;35:768–73.

38. Zhang B, Shozu M, Okada M et al. Insulin-like growth factor I

enhances the expression of aromatase P450 by inhibiting autoph-

agy. Endocrinology 2010;151:4949–58.

39. van Haeften TW, Twickler TB. Insulin-like growth factors and

pancreas beta cells. Eur J Clin Invest 2004;34:249–55.

40. Kido Y, Nakae J, Hribal ML, Xuan S, Efstratiadis A, Accili D.

Effects of mutations in the insulin-like growth factor signaling

system on embryonic pancreas development and beta-cell com-

pensation to insulin resistance. J Biol Chem 2002;277:

36740–47.

41. Yakar S, Setser J, Zhao H et al. Inhibition of growth hormone

action improves insulin sensitivity in liver IGF-1-deficient mice. J

Clin Invest 2004;113:96–105.

42. Minelli C, Del Greco MF, van der Plaat DA, Bowden J, Sheehan

NA, Thompson J. The use of two-sample methods for

Mendelian randomization analyses on single large datasets. Int J

Epidemiol 2021;50:1651–59.

43. Levine ME, Suarez JA, Brandhorst S et al. Low protein intake is

associated with a major reduction in IGF-1, cancer, and overall

mortality in the 65 and younger but not older population. Cell

Metab 2014;19:407–17.

International Journal of Epidemiology, 2022, Vol. 51, No. 6 1885


	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn6

