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Usp9x regulates Ets-1 ubiquitination and stability
to control NRAS expression and tumorigenicity
in melanoma
Harish Potu1, Luke F. Peterson1, Malathi Kandarpa1, Anupama Pal1, Hanshi Sun2, Alison Durham3,

Paul W. Harms4, Peter C. Hollenhorst5, Ugur Eskiocak6,w, Moshe Talpaz1 & Nicholas J. Donato7

ETS transcription factors are commonly deregulated in cancer by chromosomal translocation,

overexpression or post-translational modification to induce gene expression programs

essential in tumorigenicity. Targeted destruction of these proteins may have therapeutic

impact. Here we report that Ets-1 destruction is regulated by the deubiquitinating enzyme,

Usp9x, and has major impact on the tumorigenic program of metastatic melanoma. Ets-1

deubiquitination blocks its proteasomal destruction and enhances tumorigenicity, which could

be reversed by Usp9x knockdown or inhibition. Usp9x and Ets-1 levels are coincidently

elevated in melanoma with highest levels detected in metastatic tumours versus normal skin

or benign skin lesions. Notably, Ets-1 is induced by BRAF or MEK kinase inhibition, resulting in

increased NRAS expression, which could be blocked by inactivation of Usp9x and therapeutic

combination of Usp9x and MEK inhibitor fully suppressed melanoma growth. Thus, Usp9x

modulates the Ets-1/NRAS regulatory network and may have biologic and therapeutic

implications.
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R
ecent progress has been made in targeting pathways
activated by mutations in metastatic melanoma, and these
advances have led to major improvements in patient

treatment and survival1. However, many biological and clinical
characteristics of melanoma are still unknown and current
targeted therapies (BRAF and/or MEK inhibitors) are only
effective in a subset of patients and typically for a limited duration
(4–12 months)2. Combination kinase inhibitor therapy can
circumvent or delay resistance and reactivation of immune
responsiveness has shown some promising results. However,
these therapies are only effective in 30–40% of patients and
serious side effects (that is, auto-immunity) limit sustained
clinical benefit, highlighting the need for novel strategies that
could add to existing therapies3. Adjoined to that need, is the lack
of understanding of some of the basic biology of melanoma,
particularly what underlies the progression to metastatic disease
after driver mutations are in place. Some recent studies have
provided insight and have suggested that age, environmental
factors and diet may underlie the transition1,4,5.

The ubiquitin-proteasome system (UPS) has received con-
siderable attention as a source of new drug targets because of the
clinical success of 20S proteasome inhibitors in specific cancers.
The UPS has multiple components that are considered
targetable6,7. Among them are deubiquitinases (DUBs):
enzymes that mediate removal of ubiquitin monomers or
polymers from target proteins, and are major regulators of the
UPS. Many DUBs demonstrate specificity for proteins involved in
disease-associated pathways and are deregulated in disease
by mutations, altered expression or post-translational
modification8–10. Ubiquitin specific peptidase 9, X-linked
(Usp9x), also known as FAF; FAM; DFFRX and MRX99, is a
high MW DUB that has been shown to be over-expressed in
several cancers, but can have both positive and negative impact
on tumorigenicity, depending on the cancer type and disease
model studied11–16. Usp9x deubiquitinates proteins essential in
tumour cell signalling and survival, protecting some of them from
proteasomal destruction14,15,17.

The ETS (E26 transformation-specific or E-twenty-six; based
on the gene transduced by the leukaemia virus, E26) transcription
factor family is composed of 28 members, which recognize a
DNA binding sequence minimally consisting of GGA(A/T)18–20.
Specific members of this highly conserved family are frequently
activated by chromosomal translocation, overexpression and
stabilization (by altered ubiquitination) and are essential in
tumorigenesis21. For example, FLI1 and ERG are overexpressed
in Ewing sarcoma and prostate cancer as a consequence of
chromosomal translocation and are key drivers of these
malignancies22,23. Ets-1, and other family members, are
overexpressed and regulated (positively and negatively) by
phosphorylation, sumoylation and ubiquitination associated
with specific signalling events24–27. Phosphorylation of specific
ETS proteins mediated by an aberrant RAS/RAF/MEK/ERK
signalling pathway provides one mechanism for promoting gene
expression essential in driving the cancer phenotype and
dominant negative versions of ETS genes can block oncogenic
RAS/ERK tumorigenicity19,28. Ets-1 overexpression has been
documented in many invasive and metastatic cancers, including
breast, lung, colon, pancreatic and thyroid cancer25,29–34,
where Ets-1 drives gene expression associated with
cellular differentiation, migration, proliferation, survival and
angiogenesis. Members of the ETS transcription factor family
are considered excellent therapeutic targets but most targeting
approaches have failed35.

This report provides evidence of an essential role for Usp9x in
melanoma because of its regulation of Ets-1 protein levels.
Through Usp9x-mediated, site-specific deubiquitination, Ets-1

proteasomal destruction is inhibited, resulting in Ets-1 accumula-
tion and increased melanoma tumorigenicity, which could be
blocked by inhibition of Usp9x activity or knockdown of Ets-1.
We also determined that Ets-1 expression was negatively
regulated by BRAF and/or MEK kinase activity and inhibition
of this pathway increased Ets-1 expression to increase NRAS
levels by activating the NRAS promoter. Since NRAS mutations
are common (15–20%) in melanoma patients (and other cancers
including multiple myeloma, lymphoma, lung, thyroid and
colorectal cancer36) and its continual expression is essential for
NRAS mutant melanoma cell growth and survival37,38, NRAS
mutant tumours were highly dependent on Usp9x. Thus, we
provide evidence that Usp9x plays an important role in Ets-1
regulation and melanoma tumorigenicity, in part through NRAS
transcription which may be of particular importance in tumours
driven by NRAS mutation.

Results
Usp9x is required for in vivo melanoma growth. We and
others previously described Usp9x activity and expression in
melanoma10,39 and sought to define its role in primary and
metastatic disease. Initially, we depleted Usp9x using a previously
characterized shRNA knockdown (KD) vector40 in three
melanoma cell lines with distinct driver mutations (BRAF
mutant: SK-Mel28, A375; NRAS mutant: SK-Mel147) and
metastatic efficiencies (highly metastatic: A375, SK-Mel147) and
compared biological effects to control cells. Usp9x knockdown
(KD) modestly reduced the steady-state level of the anti-apoptotic
protein Mcl-1 (a previously defined Usp9x substrate14), activated
caspase cleavage (Fig. 1a) and reduced tumour growth under
standard monolayer growth conditions (2D). However, Usp9x
KD significantly impaired 3D melanoma growth, which is a better
discriminator of the malignant and benign phenotype41,42

(Fig. 1b,c). Usp9x depletion blocked expansive tumour growth
in matrigel, particularly in tumours with NRAS mutations
(Fig. 1c,d). To assess clinical relevance, we examined melanoma
chemosensitivity to our recently described small molecule Usp9x
inhibitor (G9)39,43 and detected moderately greater sensitivity in
NRAS versus BRAF mutant lines (Fig. 1e). Tumour cells grown
in 3D had higher levels of Usp9x activity/expression than
those measured in 2D cultures (confirmed in additional cell
lines—Supplementary Fig. 1a) and G9 inhibited Usp9x activity in
cells from either culture condition (Fig. 1f). Both Usp9x KD and
G9 blocked anchorage-independent melanoma growth (Fig. 1g)
and G9 dose-dependently inhibited melanoma growth in
matrigel (Fig. 1h), with nM sensitivity against NRAS mutant
cells (SK-Mel103; IC50 B300 nM), suggesting that Usp9x plays a
role in tumour expansion, particularly in tumours with an NRAS
mutation.

To further elucidate the role of Usp9x in melanoma and
examine the sensitivity of NRAS mutant tumours to Usp9x KD
and inhibition, we first assessed the effects of Usp9x KD on
specific RAS proteins in highly metastatic NRAS and BRAF
mutant melanomas. Usp9x KD reduced NRAS protein levels in
both NRAS and BRAF mutant cells with little to no effect on
HRAS or KRAS expression (Fig. 2a). Previous studies demon-
strated that continual expression of mutant NRAS was essential
for NRAS mutant melanoma survival37,44, and we confirmed that
dependence in NRAS KD studies (Supplementary Fig. 1b). Usp9x
KD suppressed NRAS, but not KRAS gene expression (Fig. 2b).
Thus, Usp9x-mediated regulation of NRAS expression in
melanoma, particulalrly in NRAS mutant cells, may partly
underly their dependence on Usp9x for continual expansion
and survival. However, Usp9x may alter other components within
the RAS signalling pathway as we detected a paradoxical increase
in ERK activation in Usp9x KD cells.
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To determine the in vivo relevance of Usp9x in tumour
expansion of NRAS mutant cells, equal numbers of viable control
KD and Usp9x KD SK-Mel147 cells were transplanted into NSG
mice and tumour growth was monitored over a 6-week interval.
As shown in Fig. 2c, only one animal (of 3) had detectable
tumour (shown) in mice injected with Usp9x KD cells, while
control tumours grew to maximal burden in all 3 animals. We
next enforced expression of Usp9x in HEK293T and SK-Mel29
cells (with low endogenous Usp9x expression) and detected
upregulation of NRAS (Fig. 2d). Control and Usp9x-over-
expressing SK-Mel29 cells were transplanted into NSG mice,
and tumour growth was monitored in control and G9-treated
mice (15 mg kg� 1, ip, QOD; begun after tumour was measurable)
(Fig. 2e). Usp9x enforced expression increased tumour expansion
by 42-fold over controls (red versus blue lines) and growth of
Usp9x-overexpressing tumours could be blocked by in vivo G9
treatment (red versus green line). These results suggest that
Usp9x enhances NRAS expression and in vivo tumour growth,
which could be blocked by Usp9x depletion or inhibition.

Usp9x modulates the melanoma ubiquitylome. Analysis of
Usp9x pulldowns failed to detect direct NRAS association or
alterations in NRAS ubiquitination in Usp9x deficient or over-
expressing cells. Therefore, we conducted an unbiased assessment
of Usp9x-regulated ubiquitination in NRAS mutant melanoma to
define potential targets and pathways that could mediate NRAS

regulation. The ubiquitylome induced by Usp9x KD or
short-term G9 treatment (6 h) was compared with control cells
(Supplementary Fig. 2a). Lysates from control, Usp9x KD and
G9-treated SK-Mel147 cells were subjected to trypsinization and
ubiquitin-remnant recovery45,46. Recovered Ub-peptides were
identified following LC/MS/MS analysis and assignment of the
spectral data. Multiple proteins were differentially ubiquitinated
in Usp9x KD and G9-treated cells compared with controls
(Fig. 3a), with predictive changes at specific amino acids
(Supplementary Data 1 and 2). Positive and negative changes
were noted and B40% of the defined ubiquitylome was
common to both Usp9x KD and G9-treated cells. Heat maps
(Supplementary Fig. 2b; Supplementary Data 1–7) were
constructed from two independent analyses, which suggested
that Usp9x controls a broad range of ubiquitinated targets,
with some previously identified as Usp9x substrates by other
approaches17. Usp9x affected ubiquitination of multiple proteins
within the UPS, including 11 DUBs, as noted in prior
publications43. Identified targets were contributors to multiple
pathways, with gene expression events being most prominent
(REACTOME.org; Supplementary Fig. 2c; Supplementary Data 8).

To identify Usp9x targets with NRAS regulatory potential, we
performed cluster analysis and screened for proteins within the
Usp9x ubiquitylome with the following characteristics: (1) known
effectors of the Ras pathway, (2) negative regulators of signal
transduction and/or (3) transcription factors. We also searched
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the ubiquitylome for proteins known to interact with Usp9x or
belonging to a protein family with a domain recognized by
Usp9x. Specific ETS proteins emerged as possible contributors as
several members have an essential role in tumorigenicity and
embryonic development19,20,24,33. Ets-1 is both responsive to and
a target of the RAS/MEK/ERK signalling pathway24, and other
members of the ETS family (that is, ERG, FLI1, FEV) have been
shown to associate with and be deubiquitinated by Usp9x
(ERG)15. Ub-remnant analysis indicated that both Usp9x KD and
inhibition of activity with G9 increased Ets-1 (and its isoform),
Ets-2, ETV2 and/or GABPa ubiquitination specifically within
their ETS domain (K388 in Ets-1), a domain previously shown to
be recognized by Usp9x (Fig. 3b)15. Since assignment is based on
peptide sequence, we assessed lysates for changes to specific
ETS proteins and solely detected significant reduction in Ets-1
in Usp9x KD cells (Fig. 3c) and we confirmed that Ets-1 is
susceptible to proteasomal degradation (Supplementary Fig. 2d).
Association between endogenous Usp9x and Ets-1 was detected
by pulldown and immunoblotting (Fig. 3d). The active site Cys
(C1566) of Usp9x was required for optimal Ets-1 binding in
co-expression experiments (Fig. 3e), and the central domain of
Usp9x, upstream from the catalytic site, was the primary site of
Ets-1 interaction (Supplementary Fig. 2e). We determined that
Ets-1 is primarily ubiquitinated with K63-linked polymers
(Supplementary Fig. 2f), and Ets-1 reduction by Usp9x KD
was blocked by 20S proteasome inhibition, indicating Ets-1
degradation is proteasome dependent27 (Fig. 3f). Both Usp9x KD
and G9 treatment increased Ets-1 ubiquitin content (Fig. 3g).

To assess the importance of the K388 ubiquitination site on
Ets-1, we mutated it (K388R, K388A) and detected reduced Ets-1

ubiquitination compared with wild-type protein, indicating K388
serves as a site for ubiquitination (Fig. 4a). Enforced expression of
Usp9x reduced recovery of ubiquitinated Ets-1 (Fig. 4b). We also
expressed wild-type (WT) HA-Ets-1 and K388R mutant protein
in SK-Mel29 cells and detected increased stability (longer
half-life) of the mutant protein (Fig. 4c,d), indicating that K388
ubiquitination/deubiquitination plays a role in Ets-1 stability.
To determine whether this site affects Ets-1 tumorigenic
activity, mutant Ets-1 (K388R) was expressed in melanoma
with low endogenous Ets-1 expression (SK-Mel29; Fig. 4e),
and tumorigenic activity was assessed by monitoring colony
formation (Fig. 4f) or plating on matrigel (Fig. 4g). Expression of
the Ets-1 mutant was diminished (1.9-fold) when compared with
the WT protein in melanoma, but equivalent expression was
achievable in HEK293T cells (Supplementary Fig. 2g). Differential
expression of the mutant protein may be because of expression of
distinct E2/E3 enzymes in these cell types. Expression of both WT
and mutant Ets-1 increased colony number and 3D growth of
melanoma; however, after normalizing for expression levels,
the K388R mutation conferred greater tumorigenicity compared
with overexpression of the WT protein (Fig. 4h).

Coincident Usp9x, Ets-1 and NRAS expression in melanoma.
To further investigate Ets-1 function in melanoma, Ets-1
expression was modulated in SK-Mel29 cells, and NRAS
expression, colony formation and 3D growth were assessed. Ets-1
overexpression increased NRAS levels and colony formation
(Supplementary Fig. 3a-left and Supplementary Fig. 3b), while
Ets-1 KD reduced NRAS levels and blocked long-term survival of
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immunoblotted. Bottom—Map and summary of the Usp9x deletion constructs and their Ets-1 binding activity. The position of the ubiquitin C-terminal

hydrolase (UCH) in the catalytic domain is shown by bold letters. Numbers and letters designate highlighted amino acids. (f) Immunoblot for Usp9x, Ets-1

and actin in control and Usp9x KD WM1366 NRAS mutant cells treated±MG132 for 8 h (10 mM). (g) HEK293T cells ectopically expressing FLAG-Ets-1 and

HA-Ubiquitin were subjected to control or Usp9x KD (left) or treated with vehicle or G9 (2.5mM, 6 h—right). FLAG immunoprecipitation was followed by

HA blotting to detect Ub-Ets-1 levels. Immunoblot for FLAG (Ets-1) in the pulldowns (top) and input lysate (Usp9x and actin—bottom) is shown.
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tumour cells grown in 3D (Supplementary Fig. 3a, right and
Supplementary Fig. 3c). Similar effects were noted in both NRAS
and BRAF mutant melanoma cells following Ets-1 or Usp9x KD
(Supplementary Fig. 3d). Finally, Usp9x KD in ERG-positive
prostate cancer cells (VCaP) reduced NRAS protein content
(Supplementary Fig. 3e). Thus, Usp9x-mediated stabilization of
Ets-1 (and ERG) regulates NRAS expression. To further examine
Usp9x regulation of Ets-1 and NRAS expression, Ets-1 and NRAS
levels were evaluated in melanoma cell lines with modulated
Usp9x expression. Usp9x KD reduced both Ets-1 and NRAS
levels, while its overexpression increased both proteins (Fig. 5a).
Usp9x KD paradoxically increased pERK levels, suggesting a
more complex regulation of the RAS/MEK/ERK pathway by
Usp9x. Dusp4 is a phosphatase capable of dephosphorylating
ERK and JNK kinases47,48 and was found to be a potential
Usp9x target (Supplementary Data File 1). This was confirmed
in pulldown, knockdown and degradation protection assays
(Supplementary Fig. 4a–d), and Dusp4 modulation appears to
underlie activation of ERK in Usp9x KD cells. However
additional studies and analysis of the Usp9x ubiquitylome
will be needed to confirm the sufficiency of Usp9x-mediated
regulation of Dusp4 levels as an independent mediator of ERK

activation. As expected, either Ets-1 or Usp9x overexpression in
SK-Mel29 cells increased 3D tumour growth (Fig. 5b), while Ets-1
KD blocked both control and Usp9x-enhanced 3D growth and
colony formation (Fig. 5c,d). Usp9x KD reduced the stability
of Ets-1 in both BRAF (Fig. 5e) and NRAS (Fig. 5f) mutant
melanoma and decreased NRAS, but not total RAS protein levels.
We confirmed regulation of Ets-1/NRAS levels by Usp9x using a
doxycycline-inducible Usp9x KD vector (TRIPz) in WM1366
cells (Supplementary Fig. 3f). Both Usp9x and Ets-1 KD
consistently and effectively suspended 3D growth of NRAS
mutant melanoma (Fig. 5g) derived from metastatic lesions.
Overall, Usp9x appears to control ubiquitination of proteins
essential in melanoma 3D growth (Ets-1) and attenuation of
kinase signalling (Dusp4).

Usp9x, Ets-1 and NRAS protein expression was further
assessed in a tissue microarray containing tumour and normal
tissue. In normal skin, Usp9x, Ets-1 and NRAS were detected at
low levels, with slight accentuation of Ets-1 and NRAS in
basal keratinocytes (Fig. 5h, Supplementary Fig. 5a). Benign nevi
showed modest staining for Usp9x and minimal staining for
NRAS and Ets-1. One nevus expressed higher Usp9x levels in
superficial dermal nests in a maturation pattern similar to that
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described for HMB45 (refs 49,50), and Usp9x/Ets-1/NRAS
staining co-localized in this sample (Supplementary Fig. 5b,
yellow versus red arrows). There was co-incident and significant
overexpression of Usp9x, Ets-1 and NRAS in melanoma
versus nevi (Fig. 5i), but Usp9x expression was not notably
different between primary and metastatic melanoma (Fig. 5j;
Supplementary Fig. 5a). Analysis of fresh tumour tissue from
primary or metastatic sites (Supplementary Table 1) by
immunoblotting suggested that Usp9x positivity was more
common in metastatic (8/9) than primary tumour (3/9) and
correlated with higher Ets-1 (or its isoform) levels in most
Usp9x-expressing tumours (Fig. 5k). NRAS levels trended toward
higher expression in Ets-1/Usp9x-positive samples, but did
not reach statistical significance (Fig. 5l). Melanoma tumours
pre-characterized as efficient metastasizers51 showed higher
expression of Usp9x, Ets-1 and NRAS protein than those
with inefficient metastatic activity (Supplementary Fig. 5c).
Assessment of high-resolution images suggested that Ets-1 was
localized in both the cytoplasm and nucleus, particularly in
tumour tissues (Supplementary Fig. 5d) as previously noted with
other ETS proteins52,53. Altogether, these results suggest that
Usp9x overexpression is an early event in expansion of primary
and metastatic melanoma, involving stabilization of Ets-1 to
amplify NRAS expression.

Usp9x stabilizes Ets-1 to induce NRAS expression. To define a
mechanism for regulation of NRAS expression by Usp9x in
melanoma, we examined the effect of Usp9x (or Ets-1) on NRAS
promoter activity. Previous ChIP-SEQ studies in other cell lines
(Supplementary Fig. 6) confirmed multiple ETS sites in the
NRAS promoter region. We cloned the NRAS promoter from
SK-Mel147 cells and established a luciferase reporter construct.
In two melanoma cell lines (SK-Mel29, WM1366; Fig. 6a,b),
Usp9x activated NRAS promoter activity by B2-fold, while Ets-1
expression increased promoter activity by 42.5-fold. ChIP-SEQ
defined 5 ETS sites (designated E1M through E5M) on the NRAS
promoter (Fig. 6c), which were individually mutated to define
their involvement in ETS responsiveness. E1M, E2M, E3M and
E4M point mutations suppressed ETS promoter activity (Fig. 6d),
suggesting cooperation between sites. Mutation of E5M had
minimal effect. To assess the effect of Usp9x knockdown on Ets-1
levels on chromatin, chromatin-immunoprecipitation of Ets-1
and NRAS promoter PCR were performed (ChIP-PCR) on
nuclear extracts from control and Usp9x KD WM1366 cells.
Usp9x KD markedly reduced the recovery of Ets-1 bound to the
NRAS promoter (Fig. 6e). Thus, Ets-1 appears to mediate NRAS
expression by binding multiple sites in the NRAS promoter and is
subject to regulation by Usp9x.

Usp9x is a valid tumour target in melanoma. In addition to
their role in tumorigenicity and NRAS regulation, Usp9x and
Ets-1 may control responsiveness to kinase inhibition. We noted
constitutive overexpression of nuclear Ets-1 in a melanoma
cell model of vemurafenib resistance54 and previously reported
that G9 overcame this resistance via DUB inhibition39

(Supplementary Fig. 7a–c). Recent publications have described
downregulation of several ETS family proteins following kinase
inhibition, but specific upregulation of Ets-1 has been noted in
cells treated with a BRAF inhibitor (Supplementary Fig. 7d–f),
suggesting a distinct regulatory mechanism exists for Ets-1
(refs 55–57). Short-term inhibition of MEK or BRAF kinase
activity with small molecules (PD 0325901, vemurafenib) blocked
ERK activation but increased Ets-1 and NRAS expression
in BRAF-mutant SK-Mel29 cells (Supplementary Fig. 7g),
suggesting that MEK inhibition reverses a negative feedback

loop suppressing Ets-1 expression55,56. We confirmed that both
MEK- (PD) and BRAF- (vemurafenib) inhibition increased Ets-1
gene and protein expression in a time-dependent fashion
(Fig. 7a–e) and also increased NRAS promoter activity (Fig. 7f).
Usp9x KD blocked kinase inhibitor-induced Ets-1 and NRAS
expression (Fig. 7g) and correlated with greater cell growth
inhibition (Fig. 7h) and apoptosis (Fig. 7i) than that activated by
kinase inhibition alone. Ets-1 KD caused similar changes in cells
treated with kinase inhibitor (Fig. 7j).

To determine whether Usp9x-targeting agents could have
clinical value in melanoma patients, we evaluated G9 activity in
an in vivo model of NRAS mutant melanoma. G9 rapidly reduced
Ets-1 protein levels in NRAS mutant cells (Fig. 8a). Mice
inoculated with NRAS mutant SK-Mel147 cells were treated with
G9, PD or their combination, and tumour growth was assessed
over a 3-week treatment interval. Both G9 and PD reduced
tumour growth (Fig. 8b), but tumour cells refractory to either
agent began to emerge by the end of the treatment interval
(Fig. 8b, right). Combined G9 and PD treatment completely
blocked tumour growth measured in vivo, (Fig. 8b, right)
which was confirmed by end of study assessment of tumour
weight (Fig. 8c) and appearance (Fig. 8d). To further assess the
clinical potential of DUB inhibition in melanoma therapy,
tumour derived from a patient with NRAS mutant melanoma
(M405—Supplementary Fig. 5c) was established in NSG mice and
treated with vehicle or G9. G9 treatment blocked tumour growth,
assessed by tumour volume (Fig. 8e) and end of study tumour
size (Fig. 8f) and weight (Fig. 8g) measurements. In addition,
Ets-1 protein levels were significantly reduced in tumours from
G9-treated mice (Fig. 8h,i). These results suggest that DUB
inhibition can suppress tumour growth and enhance the
antitumor activity of kinase inhibitors by reducing Ets-1 protein
content and NRAS expression in melanoma.

Discussion
Usp9x has been shown to be overexpressed or mutated in several
cancers, but its effects on tumorigenesis have been difficult to
define, possibly because of the context-specific function of its
many substrates17. We noted that melanoma was unexpectedly
dependent on Usp9x for 3D growth and in vivo expansion, with
potential Usp9x addiction noted in NRAS mutant melanoma. We
found that Usp9x KD or inhibition induced major changes in the
melanoma ubiquitylome when assessed by ubiquitin-remnant
enrichment, suggesting that modification of multiple proteins
could underlie the observed effects of Usp9x on melanoma.
However, each potential modification needs to be validated
as Ub-peptide sequence information alone does not fully
discriminate between ‘hits’ and true or effector substrates, as
noted with specific members of the ETS family (Fig. 3c) in this
study. Within this hit list, we identified Ets-1 as a Usp9x substrate
and key mediator of Usp9x dependence in melanoma. We further
demonstrated that Ets-1 promotes NRAS gene expression, which
may at least partly underlie the high sensitivity of melanoma to
Usp9x inhibition and Ets-1 depletion. Since NRAS mutations
occur in a broad range of tumour types38, those regulated by
Ets-1 (or other member of the ETS family) may be treatable
through Usp9x inhibition. Indeed, previous reports have
shown Usp9x deubiquitinates and stabilizes ERG, and our
previously described DUB inhibitor (WP1130) demonstrated
anti-tumour efficacy in ERG-driven prostate cancer15. The
Usp9x-deubiquitation site on Ets-1 (K388) shares sequence
identity with previously defined sites of interaction between
ETS proteins and Usp9x, suggesting that Usp9x may stabilize
other ETS family members (ERG, FLI1, FEV) through
this specific recognition motif (MNY(D/E)K*LSR)15. Additional
studies are needed to confirm this. It is worth noting that
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non-mutant NRAS is also transcriptionally activated by Ets-1 and
controllable by Usp9x. Thus, tumours dependent on elevated
wild-type NRAS expression (for example, basal-like breast
cancer)58 may also be highly responsive to Usp9x inhibition.
Other RAS regulatory proteins were also detected in the Usp9x
ubiquitylome (that is, RIN, RSU1)59,60 and may contribute to the
effects of Usp9x inhibition on the NRAS pathway. However,
regulation of specific ETS proteins by Usp9x may also have
implications outside the NRAS regulatory network. For example,
ETS proteins can bind to mutated upstream promoters of critical
genes (that is, hTERT) and may also underlie the biological
importance of Usp9x in melanoma and other tumours30,31.

Analysis of the Usp9x ubiquitylome predicted a diverse group
of substrates, including a number of targets within the UPS, but
whether these are valid targets or are regulated directly or
indirectly by Usp9x requires further investigation. As we recently
noted, inactivation of Usp9x leads to expression of a closely
related enzyme (Usp24) as a compensatory mechanism43. To
account for dynamic changes caused by Usp9x KD, we compared
the ubiquitylome generated after Usp9x KD to that induced by

our recently characterized DUB inhibitor with activity
against Usp9x (ref. 43). About 40% of targets were common to
both conditions, including some previously defined by other
approaches (Supplementary Data File 6). One common target,
Ets-1, was pursued based on its biologic role in tumour expansion
and involvement in the RAS/MEK/ERK pathway. Dusp4 was
selected based on similar criterion. The ubiquitylomes generated
with G9 and Usp9x KD probably had incomplete overlap because
G9 targets other DUBs, including Usp24 and Usp5 (refs 39,43).
UbiScan analysis did not capture all previously defined Usp9x
targets, perhaps because of limitations of the technique or
differences in gene expression in the cell type examined here. In
addition, protein ubiquitination and turnover may have kinetics
that cannot be fully resolved by single time point studies and
knockdowns performed in one cell line. Definitive identification
of substrates for Usp9x and other UPS proteins in specific
tissues will require a combination of genetic and biochemical
approaches.

Our studies indicate that Usp9x may be a good therapeutic
target in melanoma because of its effects on tumour expansion,
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regulation of Ets-1 stability, NRAS expression and response to
kinase inhibitors. However, other Usp9x substrates may also add
(for example, Mcl-1) or diminish (for example, Dusp4) anti-
tumour activity of Usp9x inhibition and will need to be further
examined in melanoma and other tumours. In melanoma, both
MEK and BRAF inhibition led to an induction of Ets-1 and
NRAS expression that could be blocked by Usp9x inhibition.
Combined kinase and DUB inhibition was effective in completely

suppressing NRAS-mutant melanoma in vivo, suggesting
combination therapy may prevent resistance mediated by Ets-1
induction. Usp9x inhibition is expected to add to the treatment
options for patients with Ets-1-overexpressing tumours, particu-
larly when used in rational, biologically based combinations.
Equally attractive, Usp9x inhibition may be an effective means of
targeting NRAS-mutant and -dependent tumours, a goal that has
been particularly elusive with other approaches.
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Figure 7 | Ets-1 expression induced by BRAF and MEK inhibitors is blocked by Usp9x inhibition. (a) Expression levels of the indicated genes (Ets-1,
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Dusp4) by RT-PCR in NRAS mutant (WM1366) cells treated with PD0325901 for the interval noted. (d) Immunoblot for the proteins indicated in NRAS

mutant (WM1366) cells treated with PD0325901 as described. (e) Expression levels of the genes indicated (Ets-1, Ets-2, GABPA and Dusp4) by RT-PCR in

BRAF mutant (SK-Mel29) cells treated with vemurafenib for the interval indicated. (f) Relative luciferase units (firefly/Renilla) from NRAS mutant

(WM1366) cells expressing the NRAS promoter for 24 h and treated with PD0325901 (0.5mM) as noted. (g) Immunoblot for the proteins indicated in

control and Usp9x KD NRAS mutant (SK-Mel147) cells treated with PD0325901 as indicated. (h) Phase contrast images of control and Usp9x KD NRAS

mutant (SK-Mel147) cells treated with PD0325901 for 48 h. (i) Annexin V assessment in control and Usp9x KD NRAS mutant (SK-MEL147) cells treated

with PD0325901 (1 mM) for 48 h as indicated. (j) Immunoblot for the proteins indicated in control and Ets-1 KD NRAS mutant (WM1366) cells treated with

PD0325901 as indicated.
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Methods
Cell culture. A375, SK-Mel2, WM1366 (ATCC), SK-Mel28, SK-Mel29, SK-Mel147
and SK-Mel103 cell lines were provided by Dr Monique Verhaegen (University of
Michigan, Ann Arbor, MI, USA). The A375R (vemurafenib-resistant) cell line was
a kind gift from Dr Juxiang Cao (Boston University School of Medicine, Boston,
Massachusetts, USA). HEK293T cells were primarily maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM). The VCaP2 (prostate) cell line was provided
by Dr Arul Chinnaiyan (University of Michigan, Ann Arbor, MI, USA) and
cells were cultured in DMEM Glutamax. All media was supplemented with
10% heat-inactivated FBS (Atlanta Biological), 2 mM L-glutamine and
1% penicillin/streptomycin (GIBCO). Tet Free FBS was from Omega Scientific, Inc.

Antibodies. Primary antibodies used in this study include: NRAS, Pan-RAS,
HRAS, Dusp4, Ubiquitin (total), Ets-2, GABPAa, Mcl-1, HA, b-Actin, ERK2
(total) (Santa Cruz); KRAS (Calbiochem, OP24); AF-6, Usp9x, Ets-1 (Bethyl
Laboratories); pERK, Caspase8, PARP, BID, BIM (Cell Signaling); ERG (Abcam);
HA (Roche); FLAG (Sigma). Blots were developed with ECL substrate (Pierce)
and imaged on X-ray film (BioExpress). Antibody catalogue numbers and their
dilutions are included in Supplementary Table 2.

Three-dimensional cultures (3D). Equal numbers of viable control, KD and
overexpressing cells from each cell type (1,000 cells per well or as indicated) were
grown on growth factor-reduced Matrigel (Catalogue # 354230; BD transduction)
for 7 days61. Phase contrast images were acquired at � 5 or � 10 resolution on a
Leica inverted microscope. For cells treated with small molecule inhibitors, media
was exchanged every 3 days. To quantify the number of colonies, total numbers of
colonies from 2 to 3 wells of an 8-well chamber slide were counted using phase
contrast images acquired at � 5 resolution. For spheroid culture, 106 cells were
plated in complete media on 100 mm dishes coated with 1% agarose. The cells were
allowed to grow for 2–3 days. The spheroids were collected, pelleted, lysed in lysis
buffer and subjected to immunoblot analysis.

Assessment of the Usp9x ubiquitylome (UbiScan). Sample preparation and
mass spectrometry. Cells were collected in Urea Lysis Buffer (20 mM HEPES
(pH 8.0), 9.0 M urea, 1 mM sodium orthovanadate (activated), 2.5 mM sodium
pyrophosphate, 1 mM �-glycerol-phosphate) and processed by Cell Signaling
Technology using the Ubiquitin Branch Motif Antibody (CST cat. #3925)45,46

for PTMScan analysis. Lysates were sonicated, centrifuged at 20,000 g for 15 min
and ‘cleared’ protein extracts were reduced (with DTT), carboxamidomethylated
(with iodoacetamide) and normalized for total protein before tryptic digestion
(Worthington, cat. #LS003740). Peptides were enriched by solid-phase extraction
with Sep-Pak C18 classic cartridges (Waters cat. #WAT051910), lyophilized and
re-dissolved. Slurries of the Ubiquitin Branch Motif Antibody were used to recover
ubiquitin-remnant peptides, which were eluted from antibody-resin with 0.15%
trifluoroacetic acid (100 ml total volume). Peptides were desalted on Empore C18

(Sigma) packed tips and eluted with 40% acetonitrile in 0.1% TFA, then loaded
directly onto a 10 cm� 75 mm PicoFrit capillary column packed with Magic C18
AQ reverse-phase resin. The column was developed with a linear gradient of
acetonitrile in 0.125% formic acid, delivered at 280 nl min� 1 over a 90-min
interval. Analytical replicates were generated by running duplicate samples to
increase the number of MS/MS identifications from each sample. A LTQ-Orbitrap
Velos mass spectrometer running Xcalibur 2.0.7 SP1 was used to collect tandem
mass spectra by the top 20 method, a dynamic exclusion repeat count of 1, and
repeat duration of 30 s. A singly charged polysiloxane ion m/z¼ 371.101237 was
used for real time recalibration of mass error. SEQUEST and the Core platform
from Harvard University were used to evaluate MS/MS spectra and files were
searched against the NCBI Homo sapiens FASTA Database updated on 27 June
2011 containing 34,899 forward and 34,899 reverse sequences. Precursor ion mass
accuracy of ±5 p.p.m., and 1 Da for product ions was allowed. Protease specificity
was limited to trypsin, with at least one tryptic (K- or R-containing) terminus
required per peptide and a maximum of four mis-cleavages. Methionine residue
oxidation and the di-glycine (K-GG) remnant was allowed on lysine residues and
cysteine carboxamidomethylation was specified as a static modification. False
discovery rates were estimated using reverse decoy databases and filtered using a
5% FDR in the Linear Discriminant module of Core. We also filtered for the
presence of the K-GG motif in peptides.

Label-free quantitation. All quantitative results were generated using Progenesis
V4.1 (Waters Corporation) or XCalibur 2.0.7 SP1 to extract the integrated peak
area of the corresponding peptide assignments according to previously published
protocols45,46. The Progenesis software incorporates a chromatographic alignment
(or time warping) algorithm that performs multiple binary comparisons to
generate an overall clustering strategy for the complete data set of all identified
peptides on the basis of mass precision. Extracted ion chromatograms for peptide
ions that changed in abundance between samples were manually reviewed to
ensure accurate quantitation either in Progenesis or using XCalibur software
(version 2.0.7 SP1, Thermo Scientific). This eliminated the possibility that the
automated process selected the wrong chromatographic peak from which to derive
the corresponding intensity measurement. Peak areas were normalized using a log2
median normalization strategy in Progenesis45,46.

shRNA-mediated gene knockdown. Melanoma cells were infected with the
lentiviral expression system for short hairpin RNA (shRNA) against human
pLVX-Usp9x, kindly provided by Dr Dzwokai Ma (University of California,
Santa Barbara)40. For NRAS and control KD: pGIPZ Control, pGIPZ-NRAS-1, and
pGIPZ-NRAS-2 were obtained from Open Biosystems. Open Biosystems TRIPZ
control (clone ID: RHS4743) and TRPIZ human Usp9x (clone ID: V3THS320834)
doxycycline-inducible shRNA vectors were also used in melanoma cells.
Doxycycline at 1 mg ml� 1 was used to induce shRNA expression.

Ets-1 shRNA was kindly provided by coauthor, Dr Peter C. Hollenhorst
(Indiana University, Bloomington, Indiana). HEK293T cells were transfected with
the lentiviral packaging vectors pMD2.G and psPax2 (Addgene) together with the
shRNA vectors to produce virus using PolyFect as described by the manufacturer
(QIAGEN). The medium was changed to DMEM with 10% fetal bovine serum, and
after 48 h, viral supernatant was collected. Viral supernatant containing 4 mg ml� 1

of Polybrene (Sigma-Aldrich) was added to each melanoma cell line. Cells with
stable KD were selected with puromycin.

Chemical reagents. EOAI3402143 (referred to as G9) was synthesized and
provided by Cheminpharma (Branford, CT). Other reagents used in this study
were obtained from the following sources: hemagglutinin-tagged ubiquitin vinyl
methyl sulfone (HA-UbVS; Boston Biochem); vemurafenib (PLX4032; Chemie
Tek); PD 0325901 (Cayman Chemical). All reagents were made up and stored
frozen as 10 mM stock solutions.

Crystal violet colony staining. Equal numbers of viable SK-Mel29 (or A375)
cells with modified gene expression were grown in 6-well plates for 3 weeks and
subjected to crystal violet staining (3.7% paraformaldehyde (PFA), 0.05% Crystal
Violet in distilled water (filter at 0.45 um)) for 20 min at room temperature. The
plate was photographed by scanning.

DUB-labelling assays. To assay DUB activity, melanoma cells were lysed in DUB
buffer (50 mM Tris pH 7.2, 5 mM MgCl2, 250 mM sucrose, protease inhibitor
cocktail (Roche), 1 mM NaF and fresh 1 mM PMSF) for 10 min at 4 �C, followed by
brief sonication. The lysates were centrifuged at 20,000 g for 10 min, and the
supernatants (20 mg) were incubated with 2 mM of HA-UbVS for 75 min at
37 �C, followed by boiling in reducing sample buffer and resolving by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE). DUBs were detected
by HA immunoblotting62.

Lysate preparation and western blotting. Total cell lysates were prepared by
sonicating and boiling cell pellets in � 1 Laemmli-reducing sample buffer.
Detergent-soluble cell lysates were prepared by lysing cells in cold isotonic lysis
buffer (10 mM Tris–HCl, pH 7.5, 0.1% Triton X-100, 150 mM NaCl, protease
inhibitor cocktail and 1 mM PMSF) for 15 min on ice and centrifuging for 10 min
at 20,000 g. The clarified supernatant was used as the detergent-soluble cell fraction.
Primary and metastatic melanoma tumours were isolated from patients, and a
small portion was sliced, minced and snap frozen with liquid nitrogen followed by
homogenization in lysis buffer. Lysates were electrophoresed (SDS–PAGE gels) and
transferred to nitrocellulose membranes (Whatmann). Proteins were detected by
immunoblotting. Uncropped western blots of key figures are presented in
Supplementary Fig. 8.

Plasmids. For overexpressing Usp9x, p3xFlag-Usp9x was created by 3-way
cloning using PCR to amplify a 320 bp N-terminal fragment of Usp9x with the
StuI site in Usp9x. Forward: 50- tgtacgaagcttacagccacgactcgtggctc-30 ; Reverse:
50ggaaccacccatcgaggcc-30 . The PCR product was cut with HindIII and StuI.
pCDNA5-TAP-Usp9x was cut with StuI and NotI. These fragments were ligated
into p3XFlag-CMV10 (Sigma) linearized with HindIII/NotI. A PCR was performed
with forward primer 50-gctctagatctatggactacaaagacc-30 and the reverse primer
described above. This product was cut with BglII and StuI, and ligated together
with the StuI/BamHI fragment from p3XFlag-Usp9x together with MIGR1
linearized with BglII. pcDNA3-Usp9x-HA was kindly provided by Dr Dzwokai Ma
(University of California, Santa Barbara)40. 3xFlag-Ets-1 and pGL4.25 were kindly
provided by Dr Peter C. Hollenhorst (Indiana University, Bloomington, Indiana)24.
HA-Ets-1 (WT) was kindly provided by William G. Kaelin, Jr. (Dana-Farber
Cancer Institute, Boston). Approximately, 5 mg of each pCDNA3 and
pCDNA3-Usp9x-HA plasmid, and 2 mg of p3xFlag-Ets-1 WT, HA-Ets-1WT and
HA-Ets-1/K388R were used for overexpression in SK-Mel29 and A375 cells.

MTT assay. Cells were seeded in a 96-well plate at 5,000 per well in the presence of
the indicated concentration of compound for 3 days in a CO2 incubator at 37 �C.
Twenty microliters of 5 g l� 1 MTT solution was added to each well for 2 h at 37 �C.
The cells were then lysed in 10% SDS buffer, and absorbance at 570 nm relative to a
reference wavelength of 630 nm was determined with a microplate reader. To
examine proliferation using the MTT assay, cells were plated in triplicate and
processed for MTT assay as described above.
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Quantitative RT-PCR. Melanoma cells were grown on 100 mm dishes with or
without PD 0325901 or vemurafenib for 0–48 h followed by RNA isolation using
the RNeasy kit (Qiagen, Valencia, CA). Samples for qRT-PCR were prepared with
� 1 SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) and
primers listed in Supplementary Information. The primers were optimized for
amplification under the following reaction conditions: denaturing at 95 �C for
10 min, followed by 40 cycles of 95 �C for 15 s and 60 �C for 1 min. Melting curves
were analysed for all samples after completion of the amplification protocol.
GAPDH was used as the housekeeping gene for control expression. All RT-PCR
primers were purchased from RealTimePrimers.com.

Analysis of Ets-1 ubiquitination in 293T cells. HEK293T cells grown in DMEM
with 10% FBS were co-transfected with Flag-Ets-1 and HA-ubiquitin expression
plasmids. For analysis of the effects of Usp9x KD, the cells were transfected
with shRNAs against Usp9x or a non-targeting shRNA for 72 h before plasmid
transfection. For the analysis of the effects of G9, cells were co-transfected with
Flag-Ets-1 and HA-ubiquitin (WT) expression vectors for 40 h, then treated with
G9 (2.5 mM) for 5 h. Cells were lysed in 1% NP-40, 1% SDS, 2 mM EDTA, 1 mM
NEM (fresh) and 25 mM Tris–HCl, pH 7.5, boiled for 20 min, and then diluted
with 10 volumes of immunoprecipitation buffer (lysis buffer with 1% NP-40).
Lysate of 500 mg was immunoprecipitated with anti-FLAG overnight and then
with 30 ml protein A/G for 2 h at 4 �C. The beads were washed five times with
immunoprecipitation buffer and 0.1 M NaCl. Western blot analysis was performed
with anti-HA or ubiquitin antibody to detect ubiquitinated Ets-1. Usp9x, FLAG
and actin were probed by immunoblotting.

Immunoprecipitation for K63-linked ubiquitination. To assess ubiquitination of
Ets-1, HEK293T cells were co-transfected with FLAG-Ets-1, pRK5-HA-ubiquitin
(WT), pRK5-HA-Ub/K48 only or pRK5-HA-Ub/K63 only (obtained from
Dr Vaibhav Kapuria (University of Lausanne, Switzerland)), and after 48 h, cells
were lysed in 1% NP-40, 1% SDS, 2 mM EDTA, 1 mM NEM (fresh) and 10 mM
Tris–HCl, pH 7.5. Lyses were boiled for 20 min and then diluted with 10 volumes
of immunoprecipitation buffer (lysis buffer with 1% NP-40). FLAG was
immunoprecipitated as described above. Western blot analysis was performed
with anti-HA or ubiquitin antibody to detect ubiquitinated Ets-1.

Immunoprecipitation for Ets-1/K388 mutant ubiquitination. The Ets-1/K388
(K388A, K388R) mutant was generated using a Quickchange II Site-Directed
mutagenesis Kit on the HA-Ets-1 construct (Agilent Technologies). Primer
sets used in mutagenesis are provided in Supplementary Table 3. To assess
ubiquitination of Ets-1, HEK293T cells were co-transfected with HA-Ets-1,
HA-Ets-1/K388A or HA-Ets-1/K388R with pRK5-HA-ubiquitin (WT), and
immunoprecipitation with Ets-1 antibody (Bethyl, Montgomery, TX) was
performed as described above. Western blot analysis was performed with the
anti-HA and ubiquitin antibody.

Usp9x and Ets-1 immunoprecipitation. For immunoprecipitation of endogenous
Usp9x, SK-Mel2 cells were lysed in lysis buffer (25 mM HEPES (pH 7.5), 400 mM
NaCl, 0.5% IGEPAL CA-630, 5% glycerol, protease inhibitors and 1 mM fresh
PMSF). The soluble fraction of the lysate (1 mg) was diluted to adjust NaCl and
IGEPAL CA-630 concentrations to 100 mM and 0.125%, respectively. Precleared
lysates were incubated with a rabbit control IgG or anti-Usp9x antibody (5 mg)
(Bethyl) at 4 �C for 3 h with rotation, followed by immunoprecipitation with
Protein A/G PLUS Agarose (Santa Cruz Biotechnolgy) beads at 4 �C for 1 h with
rotation. Beads were washed five times with 100 mM NaCl and 0.1% IGEPAL CA-
630 and boiled in Laemmli buffer for Western blot analysis. Anti-Ets-1 was used to
immunoprecipitate Ets-1 as described above.

Co-immunoprecipitation for Usp9x and Ets-1. FLAG-Usp9x WT, FLAG-Usp9x-
CDM, FLAG-Usp9x E1, FLAG-Usp9x E1M, FLAG-Usp9x E5 (ref. 43) and
HA-Ets-1 WT plasmids were transfected into HEK293T cells. Forty-eight hours
after transfection, cells were lysed in lysis buffer (25 mM HEPES (pH 7.5), 400 mM
NaCl, 0.5% IGEPAL CA-630, 1 mM NEM (fresh) 1 mM DTT, 5% glycerol and
protease inhibitors) and the soluble fraction of the lysate was diluted to adjust NaCl
and IGEPAL CA-630 concentrations to 100 mM and 0.125%, respectively. Lysate of
0.5 mg was immunoprecipitated with anti-HA (Ets-1) overnight and then with
40ml protein A/G for 2 h at 4 �C. Beads were washed five times with 100 mM NaCl
and 0.1% IGEPAL CA-630, and boiled in Laemmli buffer for Western blot analysis.
Western blot analysis was performed with anti-FLAG antibody (Usp9x).

Apoptosis measurement. An Annexin V-fluorescein isothiocyanate (FITC)
staining assay was performed as previously described43. The cells were seeded in
six-well plates and exposed to compounds as indicated for 48 h. The cells were then
trypsinized, washed with cold PBS, and stained with Annexin V-FITC for 10 min
on ice. Positive cells were detected by flow cytometry.

Xenograft studies. NSG (NOD/SCID/IL2r-g (null)) mice were injected
mid-dorsally with 3� 105 BRAF mutant SK-Mel29 expressing HA-control,
HA-Usp9x cells, or 5� 105 NRAS mutant SK-Mel 147 cells in 0.1 ml of
Matrigel/DMEM suspension. 5� 105 M405 (NRAS mutant) patient-derived
melanoma tumour cells51 in 0.1 ml of Matrigel/L15 suspension were also
inoculated in NSG mice. Tumours were allowed to reach about 10 mm3, after
which mice were tumour-size matched and assigned to treatment groups consisting
of vehicle, PD 0325901 or G9 as indicated. G9 and PD 0325901 were administered
in DMSO: PEG300 (1:1) by i.p. injection every other day at 15 mg kg� 1 for G9 and
every day for PD 0325901 at 5 mg kg� 1. Tumour size was monitored by calipers
every other day using the following formula: volume¼ (width)2� length� height/2.
Animal weight was also recorded every other day.

Tissue banking. The tissue bank protocol used for this study was developed and
approved jointly by the clinical director of the University of Michigan (UM)
melanoma program, UM Cancer Center director of tissue procurement, UM chief
of anatomic pathology, and UM director of the section of dermatopathology. The
protocol was developed to avoid any compromise in patient care, pathologic
diagnosis, tumour staging, or treatment. Patient confidentiality was maintained
by password and firewall-protected access to all pertinent databases. Melanoma
specimens were obtained with informed consent from all patients according to
protocols approved by the Institutional Review Board of UM Medical School
(HUM00102527). All patients included in this study had stage II or III melanoma
proven by biopsy (most often needle core). A small (typically 2–6 mm) tissue
sample was obtained from surgically resected tumours. Most of the melanomas in
this study were regional stage III lymph node or skin/soft tissue disease with
palpable, clinically enlarged node(s) or soft tissues.

Luciferase assays. Luciferase assays used a Dual Luciferase Reporter Assay
System (Promega) according to the manufacturer instructions. NRAS promoter
sequences (733 bp) from the NRAS mutant melanoma cell line SK-Mel147 were
cloned upstream of the firefly luciferase-pGL3-Basic (Promega) plasmid cut with
Hind III and XhoI (Forward Primer- 50-AGACTCGAGGAGGAGTGCC-30 -XhoI,
Reverse Primer- 50-GATCAAGCTTAAATGTTGGAGACCCCGGAA-30—HindIII)
and site-directed mutagenesis of promoter and expression constructs were
performed using the Quickchange Lightning Multi Site-Directed mutagenesis Kit
(Agilent Technologies). Primer sets used in mutagenesis are provided in
Supplementary Table 4. Positive clones were confirmed by the UM sequence core.
Melanoma SK-Mel29 and WM1366 cells were plated at B50% confluence in a
6-well plate (3� 105 cells per well) 24 h before transfection. Cells were transfected
with 1 mg of each p3xFlag, p3xFlag-Usp9x, p3xFlag-Ets-1, HA-Ets-1, wild-type
(WT) or point mutant NRAS promoter constructs (WT, E1M, E2M, E3M, E4M
and E5M), 2 mg of firefly and 200 ng of Renilla plasmid using PolyFect Transfection
Reagent (Qiagen). After 48 h, media was removed, and cells were washed two times
with � 1 PBS, resuspended in 500 ml � 1 PLB, disrupted by one freeze/thaw cycle
(� 80 �C) and dissociated with a BD 1 ml 26G syringe. Luciferase activity was
measured in 20ml of cell lysate using a BD PharMingen (Monolight 3010C)
luminometer. Firefly values were normalized to Renilla values.

Melanoma tissue microarray (TMA) immunohistochemistry. For immuno-
histochemical analysis, tissue microarrays (TMA) were used, containing 36 cases of
melanoma and 12 cases of normal and non-melanoma tumour tissues of the skin in
duplicates (96 cores) (Catalogue No.: Z7020108, BioChain Institute, Inc.). All the
tissues were from surgical resection. They were fixed in 10% neutral-buffered
formalin for 24 h. Ninety-four cores consisted of 8 normal skin, 8 benign nevi, 4
cases of non-melanoma skin cancer basal cell carcinoma (BCC), 4 cases non-
melanoma skin cancer squamous cell carcinoma (SCC), 48 malignant melanomas
and 24 metastatic melanomas. Immunohistochemistry was also performed on
individual slides for Usp9x, Ets-1 and NRAS. Formalin-fixed, paraffin sections were
cut at 5 microns and rehydrated to water. Heat-induced epitope retrieval was
performed with FLEX TRS high pH retrieval buffer (9.01) for 20 min. After per-
oxidase blocking, the antibody was applied at room temperature for 60 min. The
FLEX HRP EnVision System was used for detection. DAB chromagen was then
applied for 10 min. Slides were counterstained with Harris Hematoxylin for 5 s and
then dehydrated and coverslipped. Tumour content of each core or slide was
verified by H&E staining. Immunohistochemistry was performed using anti-Usp9x
(1:1,000, Abcam), Ets-1 (1:500, Bethyl) and NRAS (1:150, Origene, clone 5G7).
Slides were scored by a UM dermatologist and pathologist (Dr Paul William
Harms) for percentage of positive cells and intensity of staining. All positive cases
displayed nuclear and cytoplasmic staining. Photomicrographs were taken with a
SPOT Insight Colour camera (Diagnostic Instruments) on an Olympus BX41
microscope with Olympus UPlanFL � 10 and � 40, � 200 and � 400 objectives
using SPOT Basic software.

Immunofluorescence. BRAF mutant A375 parental and vemurafenib-resistant
cells were grown on 6-well slides for 24 h. Media was then decanted and the wells
were washed 3� with PBS. Cells were fixed in methanol for 20 min at � 20 �C,
washed 3� with PBS and blocked for 1 h at room temperature in PBS with 0.3%
Tween-20 and 5% BSA. The primary antibody was Ets-1 (Bethyl), which was
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diluted 1:100 in PBS with 0.3% Tween-20 and 1% BSA (antibody dilution buffer)
and incubated overnight at 4 �C. After 3� washes in PBS, Alexa Fluor 488
anti-Rabbit secondary antibody (Life Technologies) was added at 1:500 in antibody
dilution buffer and with DAPI incubated for 1 h at room temperature. After
5� washes in PBS, slides were coverslipped with ProLong Gold anti-fade
reagent (Invitrogen). Images were acquired using an Olympus Fluo View 500.
A representative image from each sample is shown.

Chromatin immunoprecipitation assay (ChIP). WM1366 cells were seeded at a
density of 5� 107 in 150 mm dishes and protein/DNA cross-linking was induced
with formaldehyde at 1% final concentration at room temperature for 15 min.
Crosslinking was terminated by the addition of 1/10 volume 1.25 M glycine for
5 min at room temperature followed by cell lysis (1% SDS, 10 mM EDTA, 50 mM
Tris, pH 8) for 10 min and sonication (Misonix, Microson Ultrasonic Cell
Disruptor (20 s on, 40 off, 10 amplitude for 30 min) resulting in an average
chromatin fragment size of 300 bp. DNA–protein complexes were immunopreci-
pitated with 5 mg of rabbit Ets-1 (Bethyl) or 5 mg rabbit IgG antibody (Santa Cruz)
overnight at 4 �C (1:10 ml volume) in dilution buffer; (20 mM Tris at pH 8, 2 mM
EDTA, 150 mM NaCl, 0.01% Triton X-100, 0.01% SDS, protease inhibitors) and
rotated overnight and then with 50 ml Dynabeads for 2 h at 4 �C. Beads were
washed with low salt (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris at
pH 7.5, 150 mM NaCl), high salt (0.1% SDS, 1% Triton X-100, 2 mM EDTA,
20 mM Tris at pH 7.5, 500 mM NaCl), LiCl (250 mM LiCl, 1% NP-40, 1%
deoxycholic acid, 1 mM EDTA, 10 mM Tris at pH 7.5) and TE wash buffer (10 mM
Tris, pH 7.5, 1 mM EDTA) twice. Beads were resuspended with 250ml of fresh
elution buffer (1% SDS, 50 mM NaHCO3). Elutes were resuspended with 5 M NaCl
(10 ml in 250 ml of elute) and incubated at 65 �C overnight, followed by 10mg ml� 1

RNase A addition and incubated for 30 min at 37 �C. ChIP DNA was purified using
a Quick PCR Purification Kit (Qiagen). Primers used for NRAS promoter detection
(244 bp): forward primer (5-GTAGCCGCCTGGTTACTG-3), reverse primer
(5-CCCAGAGATCAAAACCTC-3). RT-PCR was performed as described above.

Statistical analysis. All statistical analysis was carried out using GraphPad Prism
software (GraphPad Prism 6 and GraphPad InStat3). For quantitative data,
treatment groups were reported as mean±s.d. and compared using the unpaired
Student’s t-test. Usp9x, Ets-1 and NRAS expression values were categorized into
low/moderate (o300 product score) and high (4300 product score). Statistical
significance was established at Pr0.05 unless otherwise noted. Data points are
shown as the mean±s.d.

Institutional approval. Protocols utilizing animals were reviewed and approved by
the University Animal Care and Use Committee (University of Michigan). All
patient samples were obtained through signed informed consent using a protocol
reviewed and approved by the Institutional Review Board (University of Michigan).

Data availability. Mass spectrometry proteomics data have been deposited with
the ProteomeXchange Consortium via the PRIDE partner repository with the
data set identifier PXD005417 (ref. 63). Access details include: Website:
http://www.ebi.ac.uk/pride, Project name: Ubiquitin remnant analysis in
melanoma post inhibition of Usp9x. Project accession: PXD005417. Project DOI:
Not applicable. G9 may be made available through a materials transfer agreement
(MTA). All other remaining data are available within the Article and its
Supplementary Files, or available from the authors on request.
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