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ABSTRACT: Independent component analysis (ICA) is an excellent latent
variables (LVs) extraction method that can maximize the non-Gaussianity
between LVs to extract statistically independent latent variables and which
has been widely used in multivariate statistical process monitoring (MSPM).
The underlying assumption of ICA is that the observation data are composed
of linear combinations of LVs that are statistically independent. However, the
assumption is invalid because the observation data are always derived from
the nonlinear mixture of LVs due to the nonlinear characteristic in industrial
processes. Under this circumstance, the ICA-based fault detection is unable to
provide accurate detection for specific faults of industrial processes. Since the
observation data come from the nonlinear mixing of LVs, this makes the
observation data change faster than the intrinsic LVs on the time scale. The
temporal slowness can be regarded as an additional criterion in the extraction
of LVs. The slow feature analysis (SFA) derived from the temporal slowness has received extensive attention and application in
MSPM in recent years. Simultaneously, the temporal slowness is expected to make up for the problem that the LVs extracted by ICA
have difficulty accurately describing the characteristics of the process. To solve the above problems, this work proposes to monitor
non-Gaussian and nonlinear processes using the independent slow feature analysis (ISFA) that combines statistical independence
and temporal slowness in extracting the LVs. When the observation data are composed of a nonlinear mixture of LVs, the extracted
LVs of ISFA can describe the characteristics of the processes better than ICA, thereby improving the accuracy of fault detection for
the non-Gaussian and nonlinear processes. The superiority of the proposed method is verified by a numerical example design and
the Tennessee−Eastman process.

1. INTRODUCTION

Process failures are usually inevitable in modern industrial
processes; the occurrence of faults may affect the quality of
products, the working efficiency, and service lives of industrial
equipment and even endanger the life safety of staff in severe
cases. Therefore, it is crucial to monitor whether the process is
abnormal and detect and locate the faults in time.
The data-driven multivariate statistical process monitoring

(MSPM) approach only uses the data collected under normal
operation condition and does not need much mechanism
knowledge of the process. This approach has a strong
adaptability and has attracted more attention from the academic
community, making it still retain high activity in recent years.1,2

With the development of sensor technology, the measurable
process variables become more diversified, which makes the
observation data have characteristics of high dimensionality,
strong correlation, nonlinearity, and non-Gaussian. Because of
the significant correlation of process variables and high
redundancy of information, the main variations in the processes
are usually dominated by a few latent variables (LVs), and the
dimensions of the dominating LVs are often far lower than the
actual dimensions of the process variables. Therefore, it is only

necessary to monitor the dominating LVs to determine whether
the processes are abnormal.3 For this reason, some typical data-
driven LVmodels, such as principal component analysis (PCA),
have received extensive attention and significant progress in
MSPM.4,5

Traditional PCA assumes that the LVs are statistically
uncorrelated and follow the Gaussian distribution.6 However,
these assumptions are usually invalid in industrial processes,
such as chemical and biochemical processes. The LVs often
follow a non-Gaussian distribution in chemical processes, and
the traditional PCA-based process monitoring method has a low
fault detection rate (FDR) in this situation. To solve this
problem, independent component analysis (ICA) was proposed
to be used in MSPM. ICA can extract the LVs that are
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statistically independent as far as possible from the observation
data and through monitoring the variations of LVs to determine
whether the process is faulty. Traditional PCA only uses second-
order information (mean and variance), which can only ensure
that the extracted LVs (i.e., loading vectors) are uncorrelated but
not independent. Uncorrelation is a necessary and insufficient
condition for independence. ICA further uses high-order
information (i.e., skewness and kurtosis) on the basis of PCA.
According to the Central Limit Theorem, the higher the non-
Gaussian degree of the variable, the more statistically
independent.7 The same number of independent variables
contain more information than dependent variables. The
assumption that ICA requires data to follow the non-Gaussian
distribution is more in line with the actual situation of the
industrial processes. Therefore, ICA can provide more accurate
monitoring results than PCA in this situation.
Another implicit assumption of ICA is that the observation

data are linearly combined by the statistically independent LVs.
In actual industry, however, such assumptions are difficult to
satisfy because of the strong nonlinearity of the process variables.
Suppose x1, x2 are two statistically independent components and
their any nonlinear functions ε1(x1) and ε2(x2) are also
statistically independent. Furthermore, a nonlinear mixture of
x1 and x2, such as x1 sin(x2) or x1 cos(x2), is still statistically
independent.8 This indicates that when the observation data are
composed of a nonlinear mixture of LVs, the ICA may only
extract the nonlinear function of LVs or the nonlinear mixed
form of multiple LVs. For example, the LVs extracted by ICA
may be ε1(x1) and ε2(x2) but not x1 and x2. To solve this
problem, it is necessary to add additional constraints besides the
independence to extract more suitable LVs for process
monitoring.
Since the observation data come from the nonlinear mixing of

LVs, this makes the observation data change faster than the
intrinsic LVs on the time scale. The temporal slowness can be
regarded as an additional criterion in the extraction of LVs. Slow
feature analysis (SFA) is a novel unsupervised LVs extraction
method that can extract slowly varying LVs from temporal data9

and has been used in blind source separation, pattern
recognition, remote sensing, and image processing.10−12 SFA
also has been concerned and favored by scholars inMSPM.13−22

Shang et al. proposed to apply SFA in process monitoring,
through the analysis of experimental data, the results show that
SFA can both describe the steady state and the dynamic state of
the process and has improved the interpretation ability in terms
of temporal coherence compared to that with classical data-
driven methods.23 Shang et al. proposed combining the fault
diagnosis method based on SFA with contribution plots, which
can accurately locate the fault location and find out the
variations of other LVs caused by the fault.24 Shang et al.
provided a recursive SFA to adaptively monitor industrial
processes.25 Zhang and Zhao applied SFA to monitoring batch
processes.26 Zhao et al. proposed a condition-driven data
analytics and monitoring method for wide-range nonstationary
and transient continuous processes, which made full use of SFA
to extract static and dynamic temporal characteristics under
different operation conditions.27 The temporal slowness can be
regarded as a suitable criterion for LVs extraction.
Blaschke and Wiskott proposed that statistical independence

can be combined with the temporal slowness to obtain a new
method of LVs extraction, i.e., independent slow feature analysis
(ISFA).28 Sprekeler and Wiskott showed in ref 29 that the
eigenvalue equation of the optimal function of SFA can be

decomposed into a set of harmonic eigenvalue separation
problems, each of which is only related to one of the statistically
independent signal sources. They studied the structure of
harmonics, and the study showed that the slowest nonconstant
harmonics are a certain monotonic function of statistically
independent signal sources. They proved that the nonlinear
transformation of statistically independent signal sources can be
regarded as some kind of coordinate transformation. There is no
difference between using SFA to extract features from data after
nonlinear mixing and using SFA to extract features from signal
sources. We will give an example to help readers understand this
claim better. Consider a cosine signal x1 = cos(t) and its
quadratic polynomial extension x2 = x1

2 = 0.5(1 + cos(2t)). x2
vary more quickly than x1 because of the frequency
magnification caused by squaring. In general, among any time-
dependent one-dimensional signal x(t) and its nonlinear
function forms ε(x(t)), the slowest varying with time is the
signal x(t) itself or its invertible transformation.29,30 Inspired by
this, we propose to use ISFA in process monitoring in this work.
The ISFA can extract LVs that are not only statistically
independent but also vary slowly over time when the
observation data are composed of a nonlinear mixture of LVs.
Compared with the LVs extracted by ICA, those extracted by
ISFA can better characterize the characteristics of the
observation data and thus obtain better monitoring results.
The main contributions are as follows:

1. Both the statistical independence and temporal slowness
are considered in extracting of the LVs from the
observation data. When the observation data are
composed of a nonlinear mixture of LVs, the ISFA can
extract the LVs used for a nonlinear mixture instead of
their nonlinear form. The influence of nonlinearity of
observation data can be reduced, and more accurate
monitoring results can be obtained;

2. To the best of our knowledge, ISFA-based process
monitoring is proposed for the first time, and a complete
process monitoring model based on ISFA is established.

This work is organized as follows: the basic principles of ICA
and SFA are introduced in Section 2.1 and Section 2.2. The
introduction of ISFA and the mathematical principle of the
combining ICA and SFA are given in Section 2.3. The
establishment of monitoring statistics and control limits are
introduced in Section 3. The conclusion will be drawn in Section
4. Finally, the superiority of the proposed method is verified
through a simulated multivariate process and the Tennessee−
Eastman process in Section 5.

2. OVERVIEW OF ISFA
In this section, ICA and SFA are first introduced, respectively.
Then, the ISFA is introduced in detail and the feasibility of the
combination of ICA and SFA is explained. The objective
function and optimization procedure are given at the end of this
section.

2.1. Independent Component Analysis. It is assumed
that the observation data are a vector set of N-dimensional data
with zero mean. x(t) = [x1(t), ..., xN(t)]

T can be expressed as
linear combinations of N unknown LVs, i.e., l(t) = [l1(t), ...,
lN(t)]

T, and is defined by

t tx Al( ) ( )= (1)

The purpose of ICA is to estimate LVs only from the
observation data with unknown mixing matrix A and the

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06649
ACS Omega 2022, 7, 6978−6990

6979

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06649?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


unknown LVs l(t) = [l1(t), ..., lN(t)]
T. The only assumption of

ICA is that the observation data follow a non-Gaussian
distribution and the LVs are statistically independent of each
other. Then the optimization objective of ICA is to find a matrix
P that satisfies the components of

t t t ty Qu QWx Px( ) ( ) ( ) ( )= = = (2)

and are mutually statistically independent or as independent as
possible. u(t) = Wx(t) is the whitening (or sometimes called
sphering) transformation commonly used in signal processing
and forms the whitened signal components ui(t) with zero mean
and unit variance. The covariance matrix Cx = E(x(t)xT(t)) of
the observation data x(t) is decomposed by singular value
decomposition Cx = UΛUT and the whitening matrix W =
Λ−1/2UT. After whitening, the optimization problem of ICA is
transformed into finding an orthogonal matrix to make the
extracted LVs as independent as possible. Matrix Q is an
orthogonal matrix, as verified by the following relation:

E t t E t ty y Q u u Q QQ I( ) ( ) ( ) ( )T T T T{ } = { } = = (3)

There are several methods to obtain orthogonal matrix Q;
here we use the technique introduced by ref 31, which used
second-order statistics and verified its validity. The objective
function can be written as

C CQ Q Q( ) ( ( )) ( )
i j

i j

N

ij
i j

i j

N

m n

N

im jn mn
y u

ICA
, 1

( ) 2

, 1 , 1

( )

2

∑ ∑ ∑τ τΓ = =τ
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≠
=

i
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jjjjjjj
y
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(4)

whereCij
(y)(τ) is an entry of the correlation matrix related to time

delay and is defined as follows:

t t t tC y y y y( )
1
2

( ) ( ) ( ) ( )y( ) T Tτ τ τ= ⟨ + + + ⟩
(5)

C y t y t y t y t( )
1
2

( ) ( ) ( ) ( )ij i j i j
y( ) τ τ τ≔ ⟨ + + + ⟩

(6)

where τ is the time delay, ⟨...⟩ denotes averaging over time,31,32

and C(u)(τ) can be defined correspondingly.
The objective function ΓICA

τ can be intuitively understood as
minimizing the square sum of the off-diagonal terms of the
correlation matrix related to time delay; that is, the correlation
matrix related to time delay is diagonalized as far as possible.
Setting several time delays can have better robustness.
2.2. Slow Feature Analysis. SFA is a novel method that can

extract slow varying LVs from the observed time series signals. It
was initially used in object recognition and pattern recognition.
In recent five years, it has been applied to process monitoring
and has achieved good results. It is assumed that the observation
data are a vector set ofN-dimensional data with zeromean x(t) =
[x1(t), ..., xN(t)]

T. The objective of SFA is to find a set of
nonlinear input−output functions h(x) = [h1(x), ..., hM(x)], such
that the components of s(t) = h(x(t)) are varying as slow as
possible.30 We use the square of the first derivative with respect
to time to measure the variance of time. The smaller the value,
the slower it varies, and vice versa. The objective function can be
written as

s ts ( )i
2Δ = ⟨ ̇ ⟩ (7)

under the constraints

s t( ) 0i⟨ ⟩ = (8)

s t( ( )) 1i
2⟨ ⟩ = (9)

s t s t j i( ) ( ) 0i j⟨ ⟩ = ∀ < (10)

Constraints 8 and 9 help avoid the trivial solution ui(t) =
constant. Constraint 10 ensures that different components of
s(t) carry different information, instead of simply copying each
other.9 To solve the nonlinear problem, the optimization
procedure is divided into two steps: expand the input signal x(t)
nonlinearly and treat the problem linearly in the expanded high-
dimensional space. This is a common technique to solve a
nonlinear problem. x(t) is an N-dimensional input signal, g(t) =
ε(x(t)) is an M-dimensional signal after nonlinear expansion,
and ε is a nonlinear expansion function. The commonly used
nonlinear expansion form is a polynomial expansion, such as
binomial expansion:

x x x x x x x x x( ) , ..., , , , ...,N N N1 1 1 1 2
T

0
Tε ε= [ ] − (11)

where ε0
T is a constant vector. The dimension of binomial

expansion isM = N + N(N + 1)/2; the value corresponds to the
mean of each dimension so that the mean of each dimension is
zero.
After obtaining the nonlinear expanded signal g(t), we can

handle the optimization problem of SFA linearly in high-
dimensional space. The input−output functions h(x) can be
written as

h x P x Pg( ) ( )ε= = (12)

where P is an M × M matrix to be calculated.
In order to simplify the optimization procedures, the

nonlinear expanded signal g(t) is whitened (sphered) to obtain
the whitened signal u(t) = Wg(t), so the mean value of each
component ui(t) is zero, and they are uncorrelated to each other.
Matrix W is a whitening matrix as in normal ICA. Then we get
y(t) = Qu(t) = QWg(t) = Pg(t) = h(x(t)); the optimization
problem of SFA is transformed into finding an orthogonal matrix
Q so that the components in y(t) vary as slowly as possible over
time. From constraint 9, the proof that matrixQ is an orthogonal
matrix is as follows:

t t t ty y Q u u Q QQ I( ) ( ) ( ) ( )T T T T⟨ ⟩ = ⟨ ⟩ = = (13)

The objective function of SFA can be further transformed
subject to maximization:

C Q Q CQ( ) ( ( )) ( )
i

M
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jjjjjjj
y
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(14)

The objective function ΓSFA
τ can be intuitively understood as

maximizing the sum of squares of the diagonal terms of the
correlation matrix related to time delay. Since SFAmakes u̇(t)≈
u(t+1) − u(t) approximately, the value of the time delay τ can
only take 1. The reasoning steps are described in detail in ref 33.

2.3. Independent Slow Feature Analysis. The final
objective functions of ICA and SFA described above have a high
degree of similarity. Therefore, they were combined to become a
new method called independent slow feature analysis.28,30 It is
assumed that the observation data are a vector set of N-
dimensional data with zero mean x(t) = [x1(t), ..., xN(t)]

T. First,
the input signal x(t) is nonlinearly expanded and one obtains
g(t) = ε(x(t)), ε being the nonlinear expansion function and
g(t) being an M-dimensional signal with zero mean in each
component. Then, whitening of g(t) is done to obtain the
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whitened signal u(t) =Wg(t). Finally, the ISFA is applied on the
whitened signal u(t), and an M × M matrix Q is obtained. The
output signal y(t) can be written as

t t t ty Qu QWg QW x( ) ( ) ( ) ( ( ))ε= = = (15)

The first R components y1(t), ..., yR(t) are statistically
independent and vary slowly over time; these R components
are called independent slow features (ISFs). The last M − R
components vary faster than the previous R components and
may not be independent of each other. Although the last L − R
components are irrelevant to the final result, they are still
essential in the subsequent optimization procedure. In general,
the dimension of the statistically independent components is
much smaller than the number of the remaining components.
The optimization objective of ISFA can be written as a
minimization objective function:

y y

C C
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T i j

i j
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ij
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τ

∈

∈ =

≠
=

(16)

The objective function of ISFA is the linear combination of the
objective function of ICA in eq 4 and the objective function of
SFA in eq 14. ωICA and ωSFA represent the weights of the ICA
part and the SFA part respectively, which determine that either
statistical independence or temporal slowness plays a leading
role in ISFA. In this work, we believe these two are equally
important and set the value of these two parameters to 1. TICA is
the set of time delay and κICA

τ is the set of weighting factors for
different time delays in the objective function of ICA. The value
of κICA

τ determines the importance of different time delays in the
ICA objective function. The objective function of ICA is
connected with the objective function of ISFA by minus sign
because the optimization objective of ICA is to minimize the
objective function and the optimization objective of SFA is to
maximize the objective function. Therefore, the optimization
objective of ISFA is to minimize eq 16. The objective function of
ISFA guarantees the statistical independence and the temporal
slowness of the extraction results.
In general, we have an N-dimensional input signal x(t) and

obtain an M-dimensional signal u(t) after nonlinear expanding
and whitening of x(t). Then an orthogonal matrixQ is obtained
by minimizing the objective function of ISFA. The objective
function of ISFA can be intuitively understood as maximizing
the sum of the first R diagonal items of the correlation matrix
related to time delay while diagonalizing the correlation matrix
related to time delay as much as possible. Successive Givens
rotation is a good choice for optimization procedure because of
its intuitive understanding and low computational cost.34 Givens
rotation is a rotation transformation that selects two parameters
μ and ν and rotates the vector counterclockwise in radians
around the origin in the (μ,ν) plane. The rotation matrix has the
following form:

Q

i j
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The objective function of ISFA based on Givens rotation can
be written as
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where y′ are the instantaneous signals in the step of rotation
procedures. The method of calculating rotation matrix Q was
described in detail in ref 30. After obtaining matrixQ, ISFs y1(t),
..., yR(t) that are independent of each other and vary slowly can
be obtained, yielding C(y)(τ) = QC(u)(τ)QT.

3. PROCESS MMONITORING WITH ISFA
When using ISFA for process monitoring, it is necessary to use
the extracted ISFs to establish the monitoring statistics and
confidence limits, respectively. In this work, two new process
monitoring statistics are established on the basis of the
characteristics of the extracted ISFs, and confidence limits are
estimated on the basis of the probability distribution of the
monitoring statistics. To the best of our knowledge, this is the
first time that a complete process monitoring model is given on
the basis of ISFA.

3.1. Process Monitoring Statistics with ISFA. As
mentioned above, the first R components y1(t), ..., yR(t) of the
ISFs y(t) are considered as ISFs and are used to monitor the
dominating part of the process. The lastM − R components are
usually ignored as noise. The demixing matrix is defined as B =
QW; then it can be obtained from eq 15:

t t t t ty Qu QWg QW x B x( ) ( ) ( ) ( ( )) ( ( ))ε ε= = = =
(19)

The Euclidean norm of each row of demixing matrix B, also
known as the 2-norm, is calculated and it is sorted in descending
order. d rows are selected with the largest Euclidean norm in
descending order to form a new matrix Bd (dominant part of B).
The remaining rows form the matrix Be (excluded part of B).
yd(t) = Bdε(x(t)) calculated by matrix Bd are the dominant
independent slow features, which is similar to the principal
component subspace part of PCA. ye(t) = Beε(x(t)) calculated
by matrix Be is the residual part, which is similar to the residual
subspace of PCA.
There are three process monitoring statistics that have been

proposed in ref 35 when using ICA for process monitoring: I2,
Ie
2, and SPE, where I2 and Ie

2 are used as the process monitoring
statistics in this work. I2 is used to monitor the subspace
composed of dominant ISFs yd(t). When the process varies, this
subspace is likely to vary accordingly. The mathematical
meaning of I2 is the dot product of the ISFs yd(t) at time t
and is defined as follows:

I t y t y t( ) ( ) ( )d d
2 T= (20)

Another process monitoring statistic Ie
2 is also very important

and is used to monitor the residual subspace composed of ye(t).
The additional statistic can not only improve the accuracy of
fault detection and provide more convincing results but also
compensate for the lack of information loss due to the incorrect
number selection of ISFs and then resulting in a low FDR. The
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mathematical meaning of Ie
2 is the dot product of the ye(t) that

forms the residual subspace at time t and is defined as follows:

I t y t y t( ) ( ) ( )e e e
2 T= (21)

In summary, through performing ISFA on the observation
data x(t), we can obtain two process monitoring statistics I2 and
Ie
2.
3.2. Control Limits for Monitoring Statistics. With the

establishment of process monitoring statistics under normal
operations, it is necessary to establish control limits to determine
whether the process deviates from the normal operations. In
PCA- and SFA-based monitoring methods, such as Hotelling’s
T2, SPE and S2 are all effective tools with good results. However,
the assumption of these process monitoring statistics is that the
LVs extracted follow a Gaussian distribution. Therefore,
probability density functions of the process monitoring statistics
follow a certain distribution, such as χ2 distribution, F
distribution, etc.23,36,37 This is also one of the reasons for
possible low FDRs and high false alarm rates (FARs) of these
methods. The same as ICA, the precondition for data processing
of ISFA is that the data must follow a non-Gaussian distribution,
which is more in line with the characteristics of complex
industrial process data structure. Since the probability
distribution of the process monitoring statistics obtained by
calculation of such data hardly meets the known distribution
form, the probability density function cannot be obtained
directly. In this work, we propose to use kernel density
estimation (KDE) to estimate the probability density functions
of I2 and Ie

2 under normal operations.
KDE, also called Parzen window, is used to estimate the

unknown probability density function and is one of the

nonparametric estimation methods. Since KDE does not use
any prior knowledge and assumptions about the data
distribution, it is a method to study the data distribution only
from the data sample itself, so it has been widely used in
statistics. A univariate KDE with kernel K is defined as
follows:38,39

f x
nh

K
x x

h
( )

1

i

n
i

1
{ }∑̂ =

−

= (22)

where x is the set of parameter points to be estimated, xi is the ith
observation value in the observation data, h is the window width,
also known as the smoothing parameter, and K is the selected
kernel function. The value of the window width h directly affects
the final result of the KDE. If the value of h is too large, the curve
of the probability density function will be too smooth, which will
result in missing details in the data. If the value of h is too small,
the curve of the probability density function will become sharp
and sensitive to outliers. It not only cannot estimate the correct
probability density function but also brings difficulties to fitting
the probability density function. The kernel function K must
satisfy the following conditions:

K x x( ) d 1∫ =
(23)

There are several kernel functions to choose from; the most
commonly used Gaussian kernel function is selected in this
work:
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2

exp
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π
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k
jjj

y
{
zzz (24)

Figure 1. Process monitoring flowchart based on ISFA.
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More details of KDE are described in ref 40.
Since most of the observation data we obtain are discrete data

in the industrial processes and the probability density estimated
by KDE are also discrete values, it is impossible to divide the
confidence bounds directly. Therefore, we do a curve fitting to
the estimated density values and get the expression of the
probability density function F(x). The control limit xlim with a
confidence level of α can be obtained by solving a variable upper
limit definite integral of the following formula:

F x x( ) d 1
x lim∫ α= −

−∞ (25)

The advantage of using kernel density estimation to calculate
the control limits is that it does not need to make any
assumptions about the distribution of the observation data.
Because of fitting industrial process data more realistically, the
probability density function of process monitoring statistics can
be estimated more accurately, thereby obtaining more accurate
process monitoring results than traditional process monitoring
statistics such as Hotelling’s T2.
3.3. Process Monitoring with ISFA. Process monitoring

with ISFA is divided into two parts: the off-linemodeling and the
online detection. The flowchart of the process monitoring is
shown in Figure 1, and the details are as follows.
Off-line modeling:

1. Compute the nonlinearly expanded signal g(t) = ε(x(t))
using x(t) under normal operations. Whiten the data after
nonlinear expansion and obtain the whitening matrix W
and the whitened data u(t).

2. Apply ISFA to u(t), and obtain the rotation matrixQ and
the demixing matrix B = QW.

3. According to the Euclidean norm of each row of matrix B,
select the rows of those with the first d largest Euclidean
norm to form the matrix Bd; the remaining rows form the
matrix Be.

4. Calculate the process monitoring statistics I2 and Ie
2 and

calculate the control limits separately according to the
confidence level.

Online monitoring:

1. For an online observation data xnew, do the same nonlinear
expansion gnew = ε(xnew) and subtract the mean of the
training data g(t).

2. Calculate the ISFs separately, ydnew=Bdgnew and
y B ge e newnew

= .

3. Calculate the process monitor ing stat i s t ics
I y yd

T
dnew

2
new new

= and I y ye e
T

e
2

new new new
=

4. If Inew
2 ≤ Ilim

2 and I Ie e
2 2

new lim
≤ , the process is normal. If

either Inew
2 or Ie

2
new

exceeds its corresponding control
limit, the process is considered to have a fault.

4. CONCLUSION
In this work, we proposed to apply ISFA to monitor the
nonlinear and non-Gaussian industrial process. By extracting
ISFs as LVs, we solve the problem that when the observed
variable is a nonlinear mixture of LVs, statistical independence is
not a sufficient criterion to extract the LVs that can describe the
characteristics of the process. We established corresponding
process monitoring statistics and used kernel density estimation
to estimate the control limits without any restriction on the
probability distribution of process monitoring statistics. The

experimental results of the proposed method in a designed
numerical example and the TE process strongly support the
theoretical analysis. Our future research direction is how to use
the LVs extracted by ISFA to establish dynamic monitoring
statistics and realize the use of ISFA to monitor dynamic and
multimode processes.27

5. CASE STUDY
In this part, four process monitoring methods, including PCA-
based, ICA-based, dynamic ICA-based, and the proposed ISFA-
based, are compared by using a designed numerical example and
the TE process to verify the superiority of the proposed method.

5.1. Numerical Example.Consider the following numerical
model of a multivariate dynamic process. This model is a
modified version based on a numerical model proposed by ref 6,
which is widely used in process monitoring.
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t t ty z v( ) ( ) ( )= + (27)

where u is the correlated input:

t t tu u w( )
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( 1) ( 1)= −
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where w is a nonlinear mixture of latent variables sig1 and sig2,

t
t t t
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This is quite an extreme nonlinearity;41 sig1 and sig2 are
functions related to t,

t
t

sig1( ) sin
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The output y is equal to z plus a Gaussian noise vector v. Each
element of v has zero mean and a variance of 0.1. The input
signal u and output signal y can bemeasured, but the remaining z
and w are not. u and y that can be measured from the input
variables x(t) = [y(t)Tu(t)T]T. The training set consists of 200
samples of x(t) under normal operations, and the mean of each
variable of x(t) is scaled to zero after data preprocessing. In this
multivariate dynamic process, we mix the LVs in an extreme
nonlinear form, and artificially add faults to the process by
changing the LVs. We use PCA, ICA, and ISFA to monitor the
process, respectively.
The traditional PCA not only assumes that the sequence is

independent between the current moment and the historical
moment for the same LV but also assumes that different LVs are
independent of each other. However, such assumptions are
difficult to satisfy in the actual industrial processes, because the
data in the industrial process have not only cross-correlation but
also autocorrelation. The assumption of traditional ICA for
extracting LVs from observation data is that the observation data
are the linear combination of LVs. Such assumptions are also
often difficult to satisfy in real industrial processes. In this
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multivariate dynamic process, the assumptions of neither
traditional PCA nor the traditional ICA are satisfied.
The PCA used here is the well-known traditional PCA, the

process monitoring statistics used by PCA are Hotelling’sT2 and
SPE, and the number of selected principal components (PCs) is
4. There are several methods for extracting statistically
independent LVs of the ICA. In this case, we use the most
mature and widely used FastICA proposed by ref 7, and the
number of selected independent components (ICs) is 2. We set
T = 2 and R = 5 in ISFA optimization; the reason for R = 5 is to
keep the same dimension as the observation data; and the
number of selected ISFs is 2. The confidence level for all three
methods is 95%.
The number of samples in the test set is 500; the faults setting

are as follows:
Fault 1: A step change for the latent variable sig1 by 0.4 is

introduced at sample 50. This is a relatively incipient fault, and
the fault information will be hidden in the noise.
Fault 2: Add 0.05(t − 50) to the latent variable sig1, where t

equals 50 to 149. The latent variable linearly increases from the
50th to the 149th moment.
The process monitoring results of PCA and ICA for fault 1 are

shown in Figure 2. The green curve in the figure represents the
process monitoring statistics of the samples under normal
operations, the blue curve represents the process monitoring
statistics of the fault samples, and the red dotted lines represent
the control limits. It can be clearly seen from Figure 2 that
whether it is PCA or ICA, there are many blue fault samples
below and they fluctuate up and down repeatedly near the
control limits; fault 1 cannot be detected accurately. This is
because the artificially added fault 1 is a step change of sig1;
compared with the sig1 itself, it only changes by 20%, the
magnitude is small, and the fault information is easily covered by
noise after a series of changes. The FDR of T2 in PCA is 52.55%,
and the FDR of SPE is 20.84%. The FDR of I2 in ICA is 23.50%,
and the FDR of Ie

2 in ICA is 52.33%. This shows that the main
fault information is contained in the residual subspace, and ICA
cannot effectively extract representative LVs in this multivariate
nonlinear process. The process monitoring results of PCA and
ICA for fault 2 are shown in Figure 3. The T2 can only detect the
fault stably after the LV linearly increases to a significant change.
The SPE fluctuates up and down near control limits during the
fault occurrence. Compared with PCA, ICA can provide better
detection results for fault 2, but there are still some fault samples
that blow the line of control limits. After complex nonlinear
mixing, the fault information is easily hidden by noise.
Meanwhile, the observation data that come from the nonlinear
mixing of LVs do not satisfy the preconditions of ICA.
Therefore, when sig1 changes little, it is difficult for both ICA
and PCA to detect faults in time. Only when the value of sig1
increases linearly to a larger value can PCA and ICA identify the
fault more stably. Because ICA uses statistical independence to
extract LVs, PCA uses correlation and the non-Gaussian data are
more suitable for ICA. Therefore, ICA can provide more
accurate monitoring results than PCA. The FDR of T2 and SPE
in PCA are 19.73% and 13.08%, respectively. The FDR of I2 and
Ie
2 in ICA are 67% and 78%, respectively.
The monitoring results of the ISFA for fault 1 are shown in

Figure 4. The nonlinear expansion part in the experiment
chooses a cubic polynomial because nonlinear expansion will
increase the dimension of the data and cause a lot of information
redundancy; the singular value less than 0.001 is regarded as
noise and redundant information and will be discarded.

Compared with PCA and ICA, the FDRs of ISFA are
significantly improved. The FDRs of I2 and Ie

2 in ISFA are
52.99% and 82.71%, respectively. Compared with PCA and ICA,
the accuracy rate given by ISFA is improved by about 30%. Fault
1 is a step change that has a minor change range and is easily
concealed by noise. ISFA can amplify the small change several
times and differentiate it from the data under normal operations.
The monitoring results of ISFA for fault 2 are shown in Figure 5.
The FDRs of I2 and Ie

2 in ISFA are 87% and 98%, respectively.
Compared with PCA and ICA, the accuracy of fault detection
has been significantly improved. Since the number of PCs
selected is 4, the number of ICs selected is 2 and the number of
ISFs selected is 2.When fewer LVs are selected, ISFA can still get
higher accuracy in two cases than the other two methods. This
shows that, in this multivariable nonlinear process, ISFA has a
stronger ability to extract representative LVs, and the statistics
constructed using these extracted LVs can more accurately
monitor the variations of the entire process. Note that the
magnitudes of the process monitoring statistics are too large due
to nonlinear expansion. To facilitate observation, the ordinates

Figure 2. Monitoring results of the numerical example designed for
fault 1 using (a) PCA and (b) ICA.
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of Figure 4 and Figure 5 have taken their corresponding
logarithms.
The FARs of the three methods for fault 1 and fault 2 in this

numerical example are shown in Table 1. It can be seen from

Table 1 that the FARs of our proposed method for fault 1 are
slightly higher than PCA by 2% and slightly lower than ICA.
However, the FDRs of our proposed method is much higher
than PCA and ICA. Compared to the 30% increase in FDRs, the
2% increase in FAR can be ignored. The FARs of our proposed
method for fault 2 are higher than PCA and ICA. Although the
FARs of our proposed method are about 10% higher than that of
PCA and ICA in fault 2, FDRs are about 20% higher than that of
PCA and ICA, which still reflect the superiority of our proposed
method.
In summary, the observation data in this case are composed of

a nonlinear mixture of LVs and ISFA is significantly better than
PCA and ICA in the FDRs of two different types of faults. The
experimental results support the theoretical analysis.

5.2. TE Process. The Tennessee−Eastman process is an
open and challenging chemical model simulation platform
developed by Eastman Chemical Co. in the United States based
on the actual chemical reaction process.42 TE process data have
the characteristics of strong correlation, nonlinearity, non-
Gaussian, and so on that modern industrial data have and are
widely used in process monitoring and fault diagnosis for testing
complex industrial processes.43−45 In this part, the TE process
data are used to compare the monitoring performance of the
proposed method with ICA and dynamic ICA.
We use approximations of negentropy46 to quantify the

variables of the TE process. The negentropy of a variable with a
Gaussian distribution is zero.46 A non-Gaussian variable has its
negentropy larger than 0.01. Hence, the variables of TE process
are indeed non-Gaussian according to Figure 6.

Figure 3. Monitoring results of the numerical example designed for
fault 2 using (a) PCA and (b) ICA.

Figure 4. Monitoring results of the numerical example designed for
fault 1 using ISFA.

Figure 5. Monitoring results of the numerical example designed for
fault 2 using ISFA.

Table 1. False Alarm Rates (%) of Each Method for
Numerical Example

PCA ICA ISFA

fault T2 (%) SPE (%) I2 (%) Ie
2 (%) I2 (%) Ie

2 (%)

1 2.04 0.00 4.08 6.12 0.00 4.08
2 2.04 4.08 2.75 5.00 8.00 16.50
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The plant-wide control structure of the TE process is shown
in Figure 7. TE process data consist of 53 observed variables,
including 12 manipulated variables XMV(1−12), 22 process
measurements XMEAS(1−22), and 19 composition measure-
ments. The sampling interval of the TE process is 3 min, the
training set samples are obtained under 25 h of running
simulation, and the training set consists of 500 samples under
normal operations. The test set samples are obtained under 48 h
of running simulation, and the faults are introduced in the eighth
hour. A total of 960 observation samples are collected in the test
set, and the first 160 observations are nonfault data. There are 21
faults in the TE process. The detailed introduction and resource
download of the TE process can be found on the Web site
http://depts.washington.edu/control/LARRY/TE/download.
html. Since the 19 compositionmeasurements are challenging to
detect in real time in the actual chemical process, the
manipulated variable XMV(12) stirring speed is not actually
manipulated. This experiment uses 11 manipulated variables

XMV(1−11) and 22 process variables XMEAS(23−41), a total
of 33 variables as input variables.
The training data are all preprocessed by zero mean. In this

experiment, the number of ICs selected by ICA is 9, the number
of ICs selected by dynamic ICA is 22, and the time delay isT = 2.
To provide a more reasonable comparison result, the number of
ISFs selected by the proposed ISFA is 22, the time delay T = 2 is
the same as the dynamic ICA, and R = 33 maintains the same
dimension as the original input variables.
It is worth noting that it is easy to have data dimension

explosion and highly redundant information after nonlinear
expanding. While increasing the computational cost, highly
redundant information will also adversely affect the final result.
The purpose of the nonlinear expansion is to linearly solve
nonlinear problems in a higher dimension space. For industrial
data such as the TE process, ISFA omits the nonlinear expansion
at the data preprocessing because the data have the character-
istics of nonlinearity and strong correlation. The confidence
level of each statistic of the three methods is selected as 99%.
The FDRs for 21 types of faults are shown in Table 2. The

highest FDRs for the same type of faults are marked in bold. It
can be seen from Table 2, except for faults 10 and 16, the FDRs
of the proposed method are higher than the other two
comparison methods. The FDR of ISFA for fault 10 is higher
than that of dynamic ICA, only 2.63% lower than ICA; the FDR
of ISFA for fault 16 is higher than dynamic ICA, only 0.13%
lower than ICA. In general, the performance of ISFA in this case
is better than traditional ICA and dynamic ICA. When the same
number of LVs are selected to construct process monitoring
statistics, the FDRs of ISFA are higher than that of dynamic ICA.
It further supports the conclusion that ISFA has a stronger
ability to extract appropriate LVs than the other two methods
and that the statistics established on the extracted LVs can more
accurately monitor the variations in the entire process.
Next, two representative faults of different types will be

selected, and the superiority of ISFA for process monitoring will
be analyzed in detail. Fault 11 is random variation in reactor

Figure 6. Approximations of negentropy for 52 variables of TE process.

Figure 7. Plant-wide control structure of the TE process.
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cooling water inlet temperature. The variations in the temper-
ature of the reactor cooling water inlet will cause the reactor
temperature XMEAS(9) to vary. At this time, it is necessary to
increase the reactor cooling water flow rate XMV(10) to make
the reactor temperature return to normal operations. Compared
with fault 4 (i.e., reactor cooling water inlet temperature) having
a step disturbance, random variations are more challenging to be
accurately detected.
The monitoring results of ICA and dynamic ICA on fault 11

are shown in Figure 8, and the monitoring results of ISFA on
fault 11 are shown in Figure 9. The FDRs of I2 and Ie

2 in ICA are
45.12% and 72.12%, respectively. The FDR of I2 is lower than
that of Ie

2, and the process monitoring statistics of the fault
samples fluctuate rapidly and repeatedly near the control limit.
This shows that the information of fault 11 is mainly contained
in the residual subspace of the ICA. The FDRs of I2 and Ie

2 in
dICA are 55% and 16.88%, respectively. The FDRs of the two
process monitoring statistics are lower than that of ICA. This is
because after dICA expands the dimensions of the data, it causes
redundancy of information, which makes the effective
information contained in the data less and ultimately leads to
low detection results. The FDR of I2 in ISFA is 81.88%, which is
significantly better than those of ICA and dICA. This shows that
the fault information of fault 11 is mainly contained in the
dominating subspace of ISFA, and ISFA has a stronger ability to
extract appropriate LVs for the TE process.
Fault 19 is an unknown fault; the monitoring results of ICA

and dynamic ICA on fault 19 are shown in Figure 10, and the
monitoring results of ISFA on fault 19 are shown in Figure 11.
The process monitoring statistic Ie

2 in ICA and I2 and Ie
2 in ISFA

can distinguish between normal data samples and fault data
samples well. The FDRs of other process monitoring statistics
are very low, and the values of process monitoring statistics
fluctuate repeatedly around the control limit. The FDRs of I2

Table 2. Fault Detection Rates (%) of Each Method for TE
Process

ICA dICA ISFA

fault I2 (%) Ie
2 (%) I2 (%) Ie

2 (%) I2 (%) Ie
2 (%)

1 99.50 99.75 99.50 99.12 99.88 99.88
2 98.00 98.25 97.38 93.25 99.25 95.50
3 0.00 6.25 0.00 0.00 16.75 3.38
4 48.75 100.00 99.62 0.25 100.00 99.38
5 100.00 100.00 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00 100.00
7 97.62 100.00 100.00 82.88 100.00 100.00
8 94.25 98.12 91.88 64.25 98.62 95.00
9 0.00 3.75 0.00 0.00 13.62 1.63
10 61.38 89.75 78.62 61.38 87.12 85.38
11 45.12 72.12 55.00 16.88 81.88 68.12
12 98.12 99.88 99.88 97.25 99.75 99.88
13 94.50 95.25 95.00 88.62 95.62 94.25
14 99.88 99.88 99.75 29.38 100.00 98.38
15 0.00 13.62 1.38 0.00 24.38 4.13
16 57.38 92.38 77.75 73.75 92.25 87.88
17 86.25 96.38 94.50 80.88 94.50 96.50
18 89.38 90.00 90.00 89.38 91.50 89.62
19 41.75 90.38 66.38 17.88 92.75 79.75
20 69.50 90.25 67.38 58.50 90.38 88.62
21 37.50 61.00 22.38 11.62 63.88 51.88

av 67.57 80.81 73.16 55.49 82.96 78.05

Figure 8. Monitoring results of the TE process for fault 11 using (a)
ICA and (b) dICA.

Figure 9.Monitoring results of the TE process for fault 11 using ISFA.
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and Ie
2 in ISFA are is 92.75% and 79.75%, respectively. The

comprehensive FDRs of ISFA are higher than that of I2 in ICA,

which is 90.38%. The FDRs of I2 and Ie
2 in ISFA show that most

of the fault information is contained in the dominating subspace
of ISFA. It is further proved that when the number of LVs
extracted is the same, ISFA can extract LVs that contain more
process information and the extracted LVs can better describe
the characteristics of the process.
The average FARs of the three methods for 21 types of faults

in the TE process are shown in Table 3. Compared with ICA, the

FAR of the monitoring statistic I2 of our proposed method is
increased by 5.98%, and the FDR is increased by 15.39%. The
FAR of the monitoring statistic Ie

2 of our proposed method is
increased by 0.30%, and the FDR is decreased by 2.76%. On the
monitoring statistic Ie

2, the method we proposed failed to
achieve better monitoring results than ICA. According to our
analysis, there may be two reasons, which follow. On the one
hand, the TE process data may not have the complex
nonlinearities considered by our proposed method. This can
be proved from the results of the numerical example. The
performance of our proposedmethod has been greatly improved
in numerical example. On the other hand, the feature extraction
ability of our proposed method is stronger than that of ICA.
Therefore, most of the useful process information is extracted
into the dominating subspace, and the residual subspace
contains less process information. Therefore, for the monitoring
statistic Ie

2, the performance is slightly worse than that of ICA.
Compared with dynamic ICA, the FAR of the monitoring
statistic I2 of our proposed method is increased by 5.98%, and
the FDR is increased by 9.80%. The FAR of the monitoring
statistic Ie

2 of our proposed method is increased by 1.82%, and
the FDR is increased by 22.50%. Although FARs have increased
compared with dICA, considering the two indicators of FARs
and FDRs, our proposed method outperforms dICA in the TE
process.
The performance of ISFA for process monitoring is

significantly better than those of ICA and dICA. In addition,
even for faults 3, 9, and 15, the FDRs of ISFA has increased by
10% compared to those of ICA and dICA.
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Table 3. False Alarm Rates (%) of Each Method for TE
Process

method monitoring statistics false alarm rate (%)

ICA I2 0
Ie
2 1.52

dICA I2 0
Ie
2 0

ISFA I2 5.98
Ie
2 1.82
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