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Abstract

Summary: Defining the precise location of structural variations (SVs) at single-nucleotide breakpoint resolution is a
challenging problem due to large gaps in alignment. Previously, Alignment with Gap Excision (AGE) enabled us to
define breakpoints of SVs at single-nucleotide resolution; however, AGE requires a vast amount of memory when
aligning a pair of long sequences. To address this, we developed a memory-efficient implementation—LongAGE—
based on the classical Hirschberg algorithm. We demonstrate an application of LongAGE for resolving breakpoints
of SVs embedded into segmental duplications on Pacific Biosciences (PacBio) reads that can be longer than 10 kb.
Furthermore, we observed different breakpoints for a deletion and a duplication in the same locus, providing direct
evidence that such multi-allelic copy number variants (mCNVs) arise from two or more independent ancestral
mutations.

Availability and implementation: LongAGE is implemented in Cþþ and available on Github at https://github.com/
Coaxecva/LongAGE.

Contact: abyzov.alexej@mayo.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent single-molecule sequencing technologies generate very long
reads, enabling the capture of multiple variant types including struc-
tural and copy number variations (SVs/CNVs). However, precise

alignment around SVs is a challenge, because of large gaps in align-
ment (Abyzov et al., 2015; Lam et al., 2010; Sedlazeck et al., 2018).
Previously, Alignment with Gap Excision (AGE) was described as a
precise method that uses dynamic programming to solve the prob-
lem (Abyzov and Gerstein, 2011). While not designed to be used for
aligning against a reference genome, its primary purpose is realign-
ing reads around the sites of suspected SVs/CNVs. Thus, its applica-
tion is limited to the alignment of short reads/contigs to relatively

small genomic regions. However, it requires vast memory usage, be-
cause its implementation uses matrices.

Here, we introduce LongAGE, a memory-efficient implementa-
tion of AGE. LongAGE leverages linear space alignment algorithms
based on the idea first presented to solve the longest common subse-

quence problem (Hirschberg, 1975) and several other such algo-
rithms for sequence alignments (Chao et al., 1994). LongAGE vastly
improves memory usage compared to AGE; that allows users to

realign long reads (PacBio/Oxford Nanopore) or contigs on a regu-
lar compute node, desktop or laptop.

2 Materials and methods

2.1 Memory-efficient implementation
Given two sequences to be aligned of length N, M: X ¼ x1x2x3 . . . xN

and Y ¼ y1y2y3 . . . yM, with x ¼ maxðM;NÞ. Let P0 ¼ 0; Pi ¼
Pi�1�/ðan;bsÞ denote the optimal score for the left flank (n�; s�) and
Qx ¼ 0; Qj ¼ Qjþ1�/ðav; bwÞ denote the optimal score for the right
flank (v�;w�), where / is defined to be the maximum sum of values
(aligning x to y, or either x or y to a gap ‘-’) of up-to the aligned pairs.
The AGE algorithm is summarized as follows:

maxi;j fPi þQjg
s:t: 0 � i < j � x

P0 ¼ 0 and Qx ¼ 0:

(1)

Recall that the AGE algorithm uses matrices to compute the best
score (BS) of aligning n and m nucleotides at the 50-ends and N�n
and M�m nucleotides at the 30-ends is MLðn;mÞ
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þMRðnþ 1;mþ 1Þ, where ML is the maximum in the leading sub-
matrix ½0;n� � ½0;m� and MR is the maximum in the trailing subma-
trix ½nþ 1;N þ 1� � ½mþ 1;Mþ 1�:

BS ¼ maxðMLðn;mÞ þMRðnþ 1;mþ 1ÞÞ: (2)

We reckon that ML and MR are values of Pi and Qj, respectively.
To reduce memory usage, we can use a single array (a, b) for each
matrix:

Pi ¼ max
0 � n � n
0 � s � m

fas þ /ðxn; ysÞg; (3)

Qj ¼ max
nþ 1 � v � N þ 1
mþ 1 � w � Mþ 1

fbw þ /ðxv; ywÞg: (4)

Our main implementation is summarized in two steps:

• Compute the maxima scores using the linear-space algorithms

using the detail implementation outlined by Chao et al. (1994).
• Reconstruct pairwise alignments based on the maxima scores

(the second round of the same procedure of finding the maxima

scores).

It is well known that CNVs and SVs can have homologous and
identical sequences around their breakpoints (Kidd et al., 2010).
Several optimal alignments exist with the same maxima scores be-
cause of identical sequences at SV breakpoints (Tran et al., 2016),
differences in alignments result from shifting along the identical
sequences. By common convention LongAGE returns the left-shifted
solution. LongAGE reduces the space usage from hðNMÞ to
hðmaxðN;MÞÞ, while increasing computation time by at most four
times.

2.2 Resolving breakpoints of mCNVs using long-reads
The steps were as follows:

Identify SVs of interest (Fig. 1A): Aligned Illumina HiSeq short-
reads (Zook et al., 2016) in BAM format are available for three trios
from the Genome in a Bottle (GIAB) Consortium. The coverage was
100� for the parents and 300� for the child. CNVs were discovered
in children using CNVnator (Abyzov et al., 2011) with default
options and 1 kb bins. We then genotyped CNVs in corresponding
parents using the same bin size. CNVnator returned estimated copy
number (CN) for each member of the trio. Applying the condition:
[0:5 � CN (in one parent) � 1:5] and [2:5 � CN (in the other

parent) � 3:5] and [1:5 � CN (in child) � 2:5] for each GIAB
trio, we obtained two candidate mCNVs. The candidate mCNV in
the Ashkenazim trio was likely a false positive as no PacBio reads
supported deletion and duplication in that region. The other mCNV
in the Chinese trio was around 20 kb in length and contained a dele-
tion in the father (HG006) and a duplication in the mother (HG007)
(Fig. 1B).

Analyze long-reads containing SVs (Fig. 1C): NGMLR
(Sedlazeck et al., 2018) was used to map the GIAB Mt Sinai PacBio
reads of the Chinese son (HG005) (Zook et al., 2016) to the Human
Reference GRCh38, where the option was “�x pacbio”. Using
SAMtools (Li et al., 2009), we extracted reads from regions of inter-
est, which are chromosomal coordinates where coordinate intervals
[L�40 kb, Rþ40 kb], where L and R refer to the left and right
breakpoint coordinates from read depth analysis. Extracted reads
were realigned to the reference genome around the breakpoints
using LongAGE with either “�indel” or “�tdup” which specify
alignment that is expected to have indels or duplications in the read
sequence, respectively. However, it should be noted that until re-
cently long-reads have had high error rates (Lau et al., 2016), hence
our use of a lower gap opening penalty “�go¼�1”.

Rectify SV breakpoints (Fig. 1C): Realigned reads were grouped
based on which haplotype (deletion or duplication) had better sup-
port. For the best alignment, we required that: (i) the breakpoints
from LongAGE’s alignment are within 1 kb of the estimated break-
points of mCNV; (ii) every flank of an aligned read should have a
minimum length of 1.5 kb or at least a fifth of the read length; (iii)
its score is at least 500 more than for the alignment in the alternative
mode (“�indel” for “�tdup” and vice versa). We assembled the
above-selected reads into two contigs using a long-read assembler
wtdbg2 (Ruan and Li, 2020) and then aligned those contigs with the
same parameters to precisely resolve the breakpoints.

More descriptions of best practice of using the tools can be found
in the Supplementary Material.

3 Results

To study the trade-off between memory usage and running time, we
created a synthetic dataset of SVs with lengths varying from 1 to
32 kb, and one of 1 Mbp length. Inspired by (Abyzov et al., 2015;
Lam et al., 2010), we randomly generated coordinates of a synthetic
deletion of a certain length, then created the pseudocontig of each
deletion allele by joining left and right flanks of 10 kb in length
total. We then aligned the created pseudocontig against the regions
in the reference from the 50-end of the left flank to 30-end of the right

Fig. 1. Defining breakpoints of mCNV on chromosome 19 in Chinese Trio from GIAB. (A) Read depth signals from top to bottom corresponding to father (HG006), mother

(HG007) and son (HG005). (B) Haplotypes with deletion and duplication are passed down from both parents to son. (C) Haplotypes with tandem duplication and deletion

were assembled by haplotype-assigned PacBio reads. Breakpoints of the deletion and duplications are different.
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flank. We perform alignment with AGE and LongAGE on each pair
of such pseudocontigs for all lengths of synthetic SVs.

Table 1 summarizes run time and memory usage of AGE and
LongAGE by Valgrind (Seward et al., 2008) on all pairs of synthe-
sized sequences. In LongAGE, memory usage grows linearly, while
computation time is 2.6 to 3:7� longer than AGE, which is expected
under Hirschberg’s method. Given 192 GB of memory on a Gold
6148 Processor workstation, AGE failed to align sequences of
1 Mbp due to the lack of memory allocation. LongAGE completed
in less than 20 min and only needed a maximum of 114 megabytes
for the task.

Thousands of deletion and duplication polymorphisms larger
than 1 kb in human genomes, called copy number variations
(CNVs), can impact phenotypes by causing gene dosage and struc-
ture to vary among individuals (Usher and McCarroll, 2015). Many
CNVs are multiallelic (mCNVs) where their structural alleles have
been rearranged multiple times in their ancestors. The origin of such
events is not fully understood due to difficulties in resolving their
breakpoints with short reads, as the breakpoints are often embedded
in segmental duplications. To demonstrate the applicability of
LongAGE, we resolved breakpoints of reciprocal deletion and dupli-
cation with long homologies around breakpoints in the Chinese Trio
sequenced by the GIAB Consortium. Such events have been previ-
ously described by (Abyzov et al., 2011) and were hypothesized to
occur from a single non-allelic homologous recombination (NAHR)
mentioned by (Abyzov et al., 2015; Lam et al., 2010).

First, we identified a copy number neutral region on the Human
Genome GRCh38 of mCNV (chr19:54 219 999–54 241 000) with
possible deletion and duplication haplotypes in a child using
Illumina HiSeq short-read data (Zook et al., 2016) (Fig. 1A). Then,
assuming the two (deletion and duplication) haplotypes are present
in the child (Fig. 1B), we locally realigned PacBio long-reads with
LongAGE using both INDEL (for alignment with deletion) and
TDUP (for alignment with tandem duplication) modes. Next, by
comparing alignments in each mode, we selected reads likely to be
supported by deletion and tandem duplication. Breakpoints can be
imprecise due to sequencing errors/homologies, yet roughly match
those identified from read depth analysis. We obtained 26 deletion-
supporting reads, and 20 duplication-supporting reads
(Supplementary Table S1). We then assembled these reads into two
contigs, and we aligned them to the reference (by LongAGE in ap-
propriate mode) with a high percent identity of over 98%. We
observed that deletion breakpoints are left-shifted compared to du-
plication breakpoints for 1538 and 1541 bp for the left breakpoint
and the right breakpoint, respectively (Fig. 1C). Such a shift suggests
that the deletion and duplication occurred ancestrally from two dif-
ferent events.

4 Conclusion

We have presented LongAGE, a memory-efficient implementation
of AGE. Even when aligning megabase-long sequences, LongAGE’s
memory footprint is less than hundreds of megabytes, while it is at
most four times slower than AGE in terms of running time. The tool
facilitates the resolution and standardization of SV breakpoints in
highly repetitive regions at a single base pair. It is capable of refining

read alignment once a read has been heuristically mapped to a par-
ticular genomic location that is expected to contain an SV.
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Table 1. Memory usage in megabytes and run time in seconds of AGE and LongAGE in controlled experiments on aligning two sequences

with various variant lengths

Tools 1 kb 2 kb 4 kb 8 kb 16 kb 32 kb 1 Mbp

Memory usage (megabytes)

AGE 550.83 600.85 700.90 901.04 1301.21 2101.68 �
LongAGE 2.71 2.92 3.13 3.55 3.62 5.55 113.29

Running time (s)

AGE 5.05 5.55 6.57 8.37 12.03 19.27 �
LongAGE 18.92 20.72 22.80 23.77 32.06 50.63 1159.61

Note: Benchmarks were made on an Intel Xeon(R) Gold 6148 Processor (27.5M Cache, 2.40 GHz) with 192 GB of memory.
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