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Abstract: Myeloid hematological malignancies are clonal bone marrow neoplasms, comprising of
acute myeloid leukemia (AML), the myelodysplastic syndromes (MDS), chronic myelomonocytic
leukemia (CMML), the myeloproliferative neoplasms (MPN) and systemic mastocytosis (SM).
The field of epigenetic regulation of normal and malignant hematopoiesis is rapidly growing. In recent
years, heterozygous somatic mutations in genes encoding epigenetic regulators have been found in all
subtypes of myeloid malignancies, supporting the rationale for treatment with epigenetic modifiers.
Histone deacetylase inhibitors (HDACi) are epigenetic modifiers that, in vitro, have been shown to
induce growth arrest, apoptotic or autophagic cell death, and terminal differentiation of myeloid
tumor cells. These effects were observed both at the bulk tumor level and in the most immature
CD34+38− cell compartments containing the leukemic stem cells. Thus, there is a strong rationale
supporting HDACi therapy in myeloid malignancies. However, despite initial promising results
in phase I trials, HDACi in monotherapy as well as in combination with other drugs, have failed
to improve responses or survival. This review provides an overview of the rationale for HDACi in
myeloid malignancies, clinical results and speculations on why clinical trials have thus far not met
the expectations, and how this may be improved in the future.

Keywords: myelodysplastic syndromes; acute myeloid leukemia; chronic myelomonocytic leukemia;
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1. Introduction to Myeloid Hematological Diseases and Their Treatment

The myelodysplastic syndromes (MDS) are a heterogenous group of clonal myeloid hematological
diseases, with a median age of onset of 70 years and a survival of 0.5–8 years, and a 30% risk of
transformation to acute myeloid leukemia (AML) [1]. MDS is curable only by allogeneic stem cell
transplant, for which only a minority of patients are eligible. The only approved therapy for higher
risk MDS is treatment with hypomethylating agents, where two drugs are available, azacitidine and
decitabine. Approximately 50–60% of patients respond to therapy [2]. Azacitidine and decitabine are
considered to be DNA demethylating agents, as preclinical studies in cell lines have shown a quick
and profound global DNA demethylation, as well as site specific promoter demethylation of e.g.,
P15/INK4B [3–5]. However, in vivo and ex vivo studies of MDS patient CD34+ progenitor cells do not
show a clear DNA demethylation in response to azacitidine, and thus the in vivo mechanism of action
of the drugs remains unclear [6,7].

The Philadelphia chromosome negative myeloproliferative neoplasms (MPN) comprises of
polycythemia vera (PV), essential thrombocytemia (ET), and myelofibrosis (MF) [1]. The rare
diseases chronic neutrophil leukemia and chronic eosinophil leukemia will not be discussed further
in this review, nor will the Philadelphia chromosome positive chronic myeloid leukemia (CML).
The, Janus kinase 2 (JAK2) V617F mutation occurs in around 95% of PV, and 50% of ET and MF, causing
auto-phosphorylation of cytokine receptors and increased JAK-STAT pathway activation [8]. Although
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the MPNs share a common driver mutation, there are major clinical differences as ET has a largely
normal life expectancy, PV has a long life expectancy, whereas MF has a significantly shortened life
expectancy [9]. In higher risk disease, oral cytoreductive treatment hydroxycarbamide is used, and for
MF, and now also for PV, the JAK2 inhibitor Ruxolitinib may be applied. Allogeneic stem cell transplant
may be an option for younger, high risk MF patients [10].

Chronic myelomonocytic leukemia (CMML) is the largest group of MDS/MPN overlap
syndromes [1], where proliferative CMML disease is treated like MPN and dysplastic CMML is
treated like MDS [11], however responses to azacitidine or decitabine are never long lasting, and there
is an imminent need for new treatment options in CMML.

Systemic mastocytosis (SM) is a rare myeloid malignancy [1]. Over 90% of patients carry the
D816V activating point mutation in the KIT gene. There are two clinical phenotypes, indolent SM with
a normal life expectancy and aggressive SM with a poor prognosis [12]. In the aggressive SM group,
several therapies have been tested, most recently the pan tyrosine kinase inhibitor Midostaurin [12,13],
however to date, no therapy except allogeneic stem cell transplantation has been shown to improve
survival, and as the median age at disease onset is around age 70, only a handful of patients are eligible
for transplant [14].

Overall, 30% of MDS and CMML patients progress to acute myeloid leukemia (AML). AML is
defined by over 20% myeloblasts in the bone marrow, and may be primary (around 75% of all
AML cases), secondary (to e.g., MDS, MPN, around 15% of cases) or treatment related e.g., after
chemotherapy of hematological or other tumors (10% of cases). Subtypes of AML are well defined
according to cell of origin, specific cytogenetic or other aberrations outlined in the WHO diagnostic
criteria [1]. In general, patients that are not elderly and unfit, are given intensive chemotherapy
(including cytarabine and anthracyclines) to achieve complete remission, and thereafter chemotherapy
consolidation or consolidation with allogeneic stem cell transplant in case of high risk disease [15].
However, a large portion of patients are elderly and fragile, and for these patients lower intensity
treatment, often similar to regimens given to MDS-patients, can be considered if the AML is not highly
proliferative [16]. The 5-year overall survival in adult AML is around 20%.

2. Epigenetic Regulation of Normal and Malignant Hematopoiesis

Our understanding of how epigenetic regulation of hematopoiesis is orchestrated is rapidly
growing. Epigenetics include DNA methylation (Figure 1) as well as covalent, reversible histone
modifications (Figure 2) [17,18]. DNA methylation is associated with transcriptional repression via
formation of heterochromatin. This is achieved by methylation of the 5-cytosine by DNA methyl
transferase (DNMT) enzymes, where maintenance methylation is exerted by DNMT1, and de novo
methylation is exerted by DNMT3A and 3B (Figure 1). The gene encoding the DNMT3A enzyme is
commonly mutated in AML, leading to loss of function (Table 1). DNA demethylation is a multistep
process exerted by the TET enzymes that oxidize 5-methyl cytosine to cytosine (Figure 1). This oxidation
process requires α-keto-glutarate, which is produced from isocitrate by isocitrate dehydrogenases
1 and 2 (IDH1 and 2) (Figure 1). Mutations in IDH1 and 2 are common in AML, and TET2
mutations are common in all myeloid malignancies (Table 1). Table 1 summarizes the currently
known mutations in epigenetic regulators found in myeloid malignancies, and is compiled from the
pivotal studies of Papaemmanuil [19] and Haferlach [20] for MDS, and Ley for AML [21], as well as
reviews for CMML [22], MPN [23], SM [24], and references [17,18,25,26] for comparison of mutation
frequencies reported.
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Table 1. In all types of myeloid malignancies, genetic alterations in epigenetic modifiers are found, however the mutation frequency varies between diseases. For
references please see text.

Function Gene Loss/Gain of Function Activity Frequency in Myeloid Malignancies

DNA methylation DNMT3A loss De novo DNA methylation

AML 12–22%
MDS 5–10%
CMML 5%

MPN 7–15%
ASM 1%

DNA methylation TET2 loss
5-methyl-C to 5-hydroxy

methyl-C

AML 7–23%
MDS 20–25%
CMML 60%
MPN 4–13%

ASM 40%

DNA methylation IDH1/2 gain Cofactor for TET2

AML 10–30%
MDS 3%

CMML 1–10%
MPN 2.5–5%

Histone methylation EZH2 Loss
Trimethylation of H3K27, part

of PRC2 complex

AML rare
MDS 6%

CMML 5%
MPN 3–13%

ASM 3%

Histone methylation ASXL1 loss Associates with PRC1 and PRC2

AML 5%
MDS 15–20%

CMML 40–45%
MPN 2–23%

ASM 14%

Histone methylation SUZ12 loss Member of PRC2 MDS rare, <1%

Histone methylation EED loss Member of PRC2 MDS rare, <1%

Histone methylation KMT2A (MLL1) gain H3K4 lysine methyl transferase AML 5%
MDS/AML 5%

Histone methylation MECOM (EVI1) gain H3K9(me1) lysine methyl
transferase MDS/AML rare
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Table 1. Cont.

Function Gene Loss/Gain of Function Activity Frequency in Myeloid Malignancies

Histone methylation PRDM16 gain H3K9(me1) lysine methyl
transferase MDS/AML rare

Histone methylation SETD2 loss H3K36 lysine methyl
transferase AML 5%

Histone methylation JARID2 Recruits PRC2 to target sAML(from MDS, MPN) 6.5%
MDS, MPN 0.2%

Histone methylation UTX (=KDM6A) loss
Counteracts PRC2 by removing

di and trimethylated H3K27

AML 3%
MDS 2.5%
CMML 8%

MDS/MPN 4.8%

Histone acetylation CREBBP (CBP) gain Lysine acetyl transferase AML rare

Histone acetylation P300 (EP300) gain Lysine acetyl transferase AML rare

Histone deacetylation HDAC2 loss Lysine deacetylase AML rare

Histone deacetylation HDAC3 loss Lysine deacetylase AML rare
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Figure 1. DNA methylation and demethylation. DNMT3A is commonly mutated in acute myeloid 
leukemia (AML), IDH1, 2 mutations are found in AML, and TET2 is frequently mutated in all myeloid 
malignancies. Azacitidine and decitabine are DNA demethylating agents, inhibiting DNA methyl 
transferases (DNMTs). 

Histone modifications occur on the n-terminal protruding tail of predominantly histone H3 and 
H4, and consist of lysine residues being acetylated or methylated, and serine residues can be 
phosphorylated (Figure 2). In addition, arginine may be methylated however this will not be further 
discussed as it is outside the scope of this paper. Histone acetylation occurs via a family of lysine 
acetyl transferases (KAT), formerly called histone acetyl transferases (HAT), and histone lysine 
methyl transferases (KMT) methylate histones. KAT and KMT enzymes along with protein arginine 
methyl transferases are called epigenetic writers, and HDAC, histone lysine demethylases (KDM) 
and phosphatases are called epigenetic erasers (Figure 3), reviewed in reference [27]. In addition, 
there are readers that read the epigenetic code. These are bromodomain containing proteins like the 
BET family, chromodomain, PHD finger and WD 40 repeats (Figure 3). Inhibitors to both writers, 
e.g., DOT1L [28,29] and readers e.g., BET inhibitor JQ1 [30] are in development and early clinical 
trials for myeloid malignancies 

Figure 1. DNA methylation and demethylation. DNMT3A is commonly mutated in acute myeloid
leukemia (AML), IDH1, 2 mutations are found in AML, and TET2 is frequently mutated in all myeloid
malignancies. Azacitidine and decitabine are DNA demethylating agents, inhibiting DNA methyl
transferases (DNMTs).

Histone modifications occur on the n-terminal protruding tail of predominantly histone H3
and H4, and consist of lysine residues being acetylated or methylated, and serine residues can
be phosphorylated (Figure 2). In addition, arginine may be methylated however this will not be
further discussed as it is outside the scope of this paper. Histone acetylation occurs via a family of
lysine acetyl transferases (KAT), formerly called histone acetyl transferases (HAT), and histone lysine
methyl transferases (KMT) methylate histones. KAT and KMT enzymes along with protein arginine
methyl transferases are called epigenetic writers, and HDAC, histone lysine demethylases (KDM)
and phosphatases are called epigenetic erasers (Figure 3), reviewed in reference [27]. In addition,
there are readers that read the epigenetic code. These are bromodomain containing proteins like the
BET family, chromodomain, PHD finger and WD 40 repeats (Figure 3). Inhibitors to both writers,
e.g., DOT1L [28,29] and readers e.g., BET inhibitor JQ1 [30] are in development and early clinical trials
for myeloid malignancies
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inhibitor Q1 and DOT1L inhibitors, of which the latter are in clinical phase I trials. 
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KATs modulate the process of hematopoiesis both via altering the epigenetic status of chromatin 
via histone lysine acetylation [18], and via regulation of non-histone protein acetylation [31]. 
Mutations in KATs, e.g., CBP and p300 have been described in myeloid malignancies, although they 
are rare events (Table 1, Figure 4). KAT6A (MOZ/myst3, part of the MYST family of KATs) is 
important in regulating hematopoietic stem cells, and is a target of translocations causing AML. 
Recently, Baell et al. elegantly showed that KAT6A/B (MOZ/myst 3 and myst 4) inhibitors arrest 
tumor growth and induce senescence in AML cells, in vitro and in vivo [32]. UTX (KDM6A) acetylates 
H3K27ac thus mediating active chromatin, and UTX mutations are found in AML (Table 1) [33]. 

Figure 2. Histone modifications on the N terminal tail of histone H3 and H4. For simplicity, only
methylation, acetylation and phosphorylation are depicted, however modifications also include
arginine methylation and ubiquitination marks.
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Figure 3. Epigenetic writers are histone acetyl transferases HAT (KAT), histone lysine methyl
transferase (KMT) and PRMTs (protein arginine methyl transferases), readers are bromodomain
proteins like BET family proteins, and erasers are histone deacetylase inhibitors (HDACi),
KDM (lysine/histone demethylases) and phosphatases. Inhibitors or writers, readers and erasers are
being developed and are in clinical trials for myeloid malignancies, for example HDACi, bromodomain
BET inhibitor Q1 and DOT1L inhibitors, of which the latter are in clinical phase I trials.

3. Dysregulation of Histone Acetylation and Methylation in Myeloid Malignancies

KATs modulate the process of hematopoiesis both via altering the epigenetic status of chromatin
via histone lysine acetylation [18], and via regulation of non-histone protein acetylation [31]. Mutations
in KATs, e.g., CBP and p300 have been described in myeloid malignancies, although they are rare
events (Table 1, Figure 4). KAT6A (MOZ/myst3, part of the MYST family of KATs) is important in
regulating hematopoietic stem cells, and is a target of translocations causing AML. Recently, Baell et al.
elegantly showed that KAT6A/B (MOZ/myst 3 and myst 4) inhibitors arrest tumor growth and induce
senescence in AML cells, in vitro and in vivo [32]. UTX (KDM6A) acetylates H3K27ac thus mediating
active chromatin, and UTX mutations are found in AML (Table 1) [33].

In AML subtype MLL-PTD (MLL mixed lineage leukemia), a mutation causes a partial tandem
duplication (PTD) that confers excessive tri-methylation of H3K4 (Figure 4). MLL, which is a KMT,
may also have over 50 different translocation partners, one of which is MLL-AF9 that recruits DOT1L
to methylate H3K79me2 (Figure 4). The myb oncogene requires myb–p300 interaction for leukemic
transformation of AML oncogenes AML-ETO and MLL-AF9 [34], thus there are many implications of
histone methylation in leukemia.

Mutations in the TP53 gene encoding the P53 tumor suppressor occurs in approximately 10% of
AML and MDS patients, and is associated with a dismal prognosis. The TP53 gene requires coactivator
CBP/p300 acetylation for full transcriptional activation, where the KAT p300 acetylates p53. P53 is
normally de-acetylated by HDAC1. In addition, in AML with inv(16) or t(16;16), p53 activity is inhibited
via interactions between the inv(16) fusion protein CBFβ-SMMHC with HDAC8, where HDAC8
aberrantly deacetylates p53, which promotes leukemia. Inhibition of HDAC8 restores p53 and induces
apoptosis selectively in leukemic inv(16)+ CD34+ cells but spares normal CD34+cells [35].
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affected in hematological malignancies. In brackets are listed non-histone targets of HAT (KAT) and
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The HDAC3 containing NCoR complex can be recruited by the oncogenic fusion proteins
AML-ETO and PML-RARα, and HDAC1 knockdown increases survival in PML-RARα mediated
APL. To add to the complexity of HDAC function, a specific HDAC may have different roles over time
in leukemia development. The most well studied example is acute promyelocytic leukemia (APL),
where a translocation t(15;17) generates the PML-RARα fusion protein. Normally, RAR (retinoic acid
receptor) is a transcription factor and when retinoic acid is absent, RAR associates with HDAC1/2
containing complex SMRT/N-CoR and represses transcription. Retinoic acid causes release of the
corepressor complex and leads to transcription. In APL cells, retinoic acid does not release the
corepressor complex, resulting in a differentiation block. However, pharmacological doses of retinoic
acid, as used in the clinic, degrade the fusion protein and the cells differentiate. Thus, HDAC
play an important role in APL, however their role varies over time as HDAC1/2 knockdown in
early leukemogenesis expands the leukemia, whereas in leukemic phase, knockdown of the same
HDAC1/2 cause differentiation and apoptosis of APL cells, and increased survival of APL mice [36].
The polycomb repressive complex 2 (PRC2) silences H3K27 to H3K27me3, and several genes encoding
components of the PRC2; EZH2, SUZ12, JARID2 and also mutations in ASXL1 coding for the
PRC2 associated protein ASXL1, have been found to be mutated in myeloid malignancies (Table 1,
Figure 4) [17–23,25,26].

HDAC enzymes (KDACs) are commonly mutated in solid tumors, with 30% of endometrial
tumors having HDAC mutations, however only 2% of patients with AML have HDAC mutations [36].
A thorough investigation of HDAC gene expression in MDS and AML showed that in myeloid
malignancies, HDAC expression is heterogenous, with no clear pattern of over- or under-expression of
any HDAC [37]. However, in the CD34+ progenitor compartment of patients with MF, there is
an increase in HDAC levels [38]. Interestingly, HDACs actually preceded the histone proteins
phylogenetically, clearly indicating that HDACs primarily target non-histone protein substrates [39],
and many of these non-histone proteins are the products of tumor suppressor genes, oncogenes or
transcription factors important for hematopoiesis (Figure 4) [31], and as they are deacetylated by
HDACs, they are targets of HDACi treatment.



Int. J. Mol. Sci. 2018, 19, 3091 8 of 18

4. Preclinical Experience of HDACi in Myeloid Malignancies

In general, HDACi treatment alters the expression of 5–10% of transcribed genes, depending on
cell type. The specific antitumor activity of HDACi varies between tumor types, and the antitumor
activity on a specific tumor type may vary between different HDACi. The general mechanisms for
HDACi induced cell death include apoptosis or autophagy, increasing ROS production and decreasing
scavengers, increasing DNA damage and decreasing DNA repair, decreasing oncoprotein expression
and stability and stimulating immunogenic cell death [27,40,41]. In myeloid malignancies, HDACi
treatment induces cell death, growth arrest or differentiation, activating chromosome degradation,
altering angiogenesis, inactivating chaperone complexes, and inducing expression of cell cycle
inhibitors e.g., p21, and of pro-apoptotic genes [42–47]. The DNA damage induced by HDACi
can be repaired by normal cells but not by transformed cells [48].

Induction of apoptosis is the major route for HDACi induced cell death, and it may be via either the
intrinsic (mitochondria) or extrinsic (death receptor) pathway. The specific changes in gene expression
leading to apoptosis in myeloid malignancies varies between the different HDACi, but frequently,
extrinsic pathway via TRAIL is used. In AML, HDACi MS275 treatment induces the expression of
TRAIL by activating the TNFS10 gene that encodes TRAIL, triggering death signal via the extrinsic
pathway, and additionally RNA interference against TRAIL blocked downstream caspase activation
and inhibited MS275 mediated apoptosis, suggesting that at least in AML cells, MS275 mechanism of
action is via TRAIL [44]. In K562 leukemic cells, VPA reduces the expression of c-FLP and Bcl.2/Bcl-xL
anti-apoptotic factors, as well as sensitized cells to TRAIL/Apo2L mediated apoptosis, thus acting
on both the intrinsic and extrinsic apoptotic pathways [49]. In APL and AML1-ETO mouse models
in vivo and human cell lines in vitro, HDACi valproic acid upregulates TRAIL, DR5, FasL and Fas in
leukemic cells but not normal progenitors, thus for the sensitivity of HDACi to leukemia a transformed
phenotype is required [42].

In a recent study of several AML cell lines as well as CD33+ progenitor cells from AML and MDS
patients, vorinostat induced gene expressions of COX2, p15, cFOS, genes that are downregulated in
MDS and AML, and suppressed overexpressed genes cyclin D1 and c-MYC [50]. This led to cell cycle
arrest, terminal differentiation and or apoptosis, via mechanisms including modulation of SP1 [50].
Recently, HDACi entinostat has been shown to restore the decreased orphan nuclear receptor Nur77
expression in AML cell lines and in AML patient leukemia cells, especially in the leukemic stem/very
early CD34+/38− progenitors, and induce apoptosis, presenting a novel mechanism of action of
HDACi and suggesting that Nur77 may be a biomarker for HDACi apoptotic effect [51]. Thus, HDACi
have multiple and broad effects, and likely the mechanism of HDACi induced tumor cell death may
be depending on the molecular defects of the target cell, as well as of the specific HDACi used [43].

In AML/ETO, single agent valproic acid inhibits not only the mature leukemic cells but
also immature progenitors by targeting the AML1/ETO-HDAC complex SMRT/N-CoR, inducing
differentiation [52]. In MPN, preclinical data strongly supports the effect of HDACi inhibiting
proliferation and inducing apoptosis in JAK2 mutated cells, normalizing splenomegaly and blood
counts in JAK2 mutant knock-in mice [53] and promoting proteasome mediated JAK2 degradation
by disrupting HSP90 chaperone function. Treatment of JAK2 mutated CD34+ progenitor cells with
panobinostat induces apoptosis and inhibits JAK2 expression and activity, subsequently reducing
pSTAT3, pSTAT5, pAKT and pGATA1, and partially inhibiting the binding between HSP90 and JAK2,
suggesting that acetylation of HSP90 could mediate JAK2 degradation [54]. The same study showed
a synergistic effect of addition of JAK2 inhibitor to panobinostat.

HDACi therapy in SM was first assessed in a canine model of SM [55]. Our group has shown that
several first and second generation HDACi dose dependently inhibit growth and induce apoptosis in
KIT D816V mutated SM cell lines, and that vorinostat selectively kills KIT D816V mutated primary
patient mast cells whereas normal mast cells are unaffected [56]. To support epigenetics in the
pathogenesis of SM, a recent study shows a deficiency of lysine methylation in aggressive SM [57].
However, to date there have been no clinical trials of HDACi in SM.
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5. Preclinical Rationale for Combination Therapy Including HDACi

There is a large body of preclinical evidence showing synergistic effects of various first and second
generation HDACi in combination with azacitidine or decitabine in MDS and AML cell lines or ex vivo
cultured patient cells. These include enhanced growth arrest, inhibition of DNA synthesis and loss of
clonogenic potential, and synergistic effects in re-expressing silenced genes [58–60]. When combining
panobinostat and decitabine in vitro, there were synergistic effects in attenuating DNMT1 and EZH2,
de-repression of JunB and enhanced leukemic cell death [61]. Primary AML patient CD34+ cells were
more sensitive than normal CD34+ cells to the treatment, indicating a specific anti-leukemic effect and
that normal progenitors are spared. In a molecular study of clinical samples from the clinical trial
of Tan et al., using azacitidine and panobinostat for MDS and AML [62], Liu et al. analyzed mRNA
of Nur77, p15 and p21 in the clinical patient samples, and found that restored levels of Nur77 and
p21 correlated with clinical responses to the combination therapy [59], in concordance with other
studies suggesting Nur77 as a biomarker of HDACi mediated apoptosis also in the leukemic stem cell
compartment [51]. In MPN, HDACi have been shown to synergize with JAK2 inhibitors in inducing
apoptosis in JAK2 mutated cells [54].

6. Results from Clinical Studies of HDACi Monotherapy and Combination Therapy
for Myeloid Malignancies

Single agent first and second generation HDACi have been tested in several small phase I
and II studies for MDS and AML, showing low overall response rates and 0–10% partial or complete
remissions, reviewed by Morabito et al. and by Stahl et al. [63,64], with the conclusion that combination
treatment is needed to achieve a clinical effect. However, despite preclinical support for synergistic
effects of combination therapy since the pivotal study of Cameron et al. in 1999, showing synergy of
demethylaton and HDAC inhibition in re-expressing silenced genes in cancer [58], and several studies
since references [59–62], and early phase I studies showed promising results, both for vorinostat in
combination with decitabine [65] and panobinostat in combination with azacitidine [62,66], thus far,
the randomized phase II clinical trials of various doses and various HDACi drugs in combination with
azacitidine or decitabine for MDS, CMML and AML have not been able to show an improved clinical
outcome. The recent phase II studies in MDS, CMML and AML are summarized in Table 2. In addition,
a meta-analysis of these trials has been recently published [67]. Of note, there are currently 156 clinical
trials of HDACi mono- or combination therapy registered at clinicaltrials.gov, using a plethora of
HDACi agents (Table 3).

clinicaltrials.gov
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Table 2. Phase I/II trials with combination treatment of HDACi and hypomethylating agents, in AML and MDS, sometimes including CMML. OS = overall survival,
ORR = overall response rate, CR = complete remission. In the studies by Uy et al., and Tan et al., there was no control arm thus a comparison of efficacy to monotherapy
could not be made. Out of five evaluable studies, none showed an advantage of combination therapy. 1 Azacitidine 75 mg/m2 Day 1–5/28, 2 panobinostat 3 days/w 7
doses/28 days, phase II 30 mg oral daily Day 1–7/28, 3 decitabine 20 mg/m2 iv Day 1–5, 4 valproic acid 50 mg/kg oral Day 1–7/28, 5 azacitidine 75 mg/m2 Day
1–7/28, 6 vorinostat 300 mg twice daily Day 3–9/28, 7 panobinostat 20–40 mg Day 3, 5, 8, 10, 12, 15, in phase IIb 40 mg, 8 pracinostat 60 mg or placebo oral every 2 days
Day 1–21/28, 9 azacitidine 50 mg/m2 10 days, 10 entinostt 4 mg/m2 Day 3, 10/28, 11 panobinostat three times/week during two weeks/4, phase I dose escalation to
50 mg, phase II 40 mg.

Study, Trial Number
and Reference Disease, Phase Additive Clinical Effect

of HDACi Drugs Clinical Response Molecular Markers Analyzed

Tan [62],
ACTRN12610000924055,
Open label, phase Ib/II

Higher risk MDS, AML.
n = 39 NA Azacitidine 1,

Panobinostat 2

ORR 31% in AML, 50% in MDS.
Median OS 8 months in AML,

16 months in MDS.

Total PBMC histone H3 and H4
acetylation higher in responders.

NUR77 and p21 markers of
treatment efficacy [59]

Issa [68], NCT00414310,
Randomized, Phase II

Higher risk MDS, AML.
n = 149 NO Decitabine 3,

valproic acid 4
No improvement in CR or OS

with adding valproic acid. NO

Sekeres [69],
NCT01522976,

Randomized, Phase II

Higher risk MDS, CMML.
n = 184 NO Azacitidine 5,

Vorinostat 6

ORR 38% monotherapy, 27%
combination (p = 0.16).
Study not powered for

calculating OS.

NGS. ORR was higher in
DNMT3A mutated patients. ORR

lower for SRSF2 and ASXL1.
Response duration low in TET2

and TP53 mutated patients.

Garcia-Manero [70],
NCT00946647,

Randomized phase Ib/II

MDS, CMML AML with
20–30% blasts.

n = 113
NO Panobinostat 7,

Azacitidine 5

CR 27.5% in the combination arm,
14.3% in monotherapy. No

difference in OS or time
to progression.

NGS data on 24 myeloid
mutations, no clear correlation

between mutation pattern
and response.

Garcia-Manero [71],
NCT01873703,

Randomized phase II,
double blinded

MDS (up to 30% blasts).
n = 102 NO Azacitidine 5,

Pracinostat 8

CR 18% in the combination
group, 33% in monotherapy

group (p = 0.07).
No difference in OS
(16 vs. 19 months).

NO

Prebet [72], NCT00313586,
Prebet [73], Open label

phase II

MDS, CMML, MDS/AML.
n = 149 NO Azacitidine 9,

entinostat 10
OS 18 months for monotherapy,

13 for combination.

No correlation between overall
methylation decrease and clinical
response, or with treatment arm.

Possible correlation of SOCS1
methylation and response.

Uy [74], NCT00691938,
Open label observational

phase I/II

AML, MDS.
n = 52 NA Decitabine 3,

panobinostat 11

ORR 11/37 AML and 7/14 MDS,
total 36% ORR. Median OS

6.4 months.

Extensive sequencing, complex
patterns. Mutations persist
during complete remission.
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Table 3. HCACi that are listed at clinicaltrials.gov, with at least one listed phase I clinical trial.

Drug Type Compound Name Selectivity Clinical Status Used in Myeloid Disease

Hydroxamates MK0653 (SAHA) Vorinostat Pan HDACi Phase II/III.
Approved.

Yes.
Single and combination

LBH589 Panobinostat Pan HDACi Phase II/III.
Approved.

Yes.
Single and combination

PXD101 Belinostat Pan HDACi Phase I/ II/III.
Approved.

Yes.
Combination therapy

JNJ-26481585 Quisinostat HDAC1,3,5,8 Phase I/II MDS and AML.
Single therapy

ITF2357 Givinostat Class I and II Phase I/II MPN.
Single and combination

SB939 Pracinostat Class I, II, IV Phase II Yes.
Single and combination

SHP141 Remetinostat Phase II/III No

4SC201 Resminostat Pan HDACi Phase I/II No

4SC202 Domatinostat HDAC1,2,3
Phase I/II

Approved in melanoma
(combination)

Yes.
Single therapy

ACY1215 Ricolinostat HDAC6 Phase I/II No

Cyclic tetrapeptides FK228 Romidepsin Class I Phase I/II/III.
Approved.

Yes.
Single and combination

Benzamides MS275 Entinostat HDAC1,2,3 Phase I/II Yes
Combination therapy

MGCD0103 Mocetinostat Class I Phase I/II Yes
Single and combination

Fatty acids Valproic acid Valproate Class I and IIa Phase I/ II Yes
Combination therapy

Sodium Butyrate Butyrate Class I and IIa Phase I/II Mostly non cancer diseases

clinicaltrials.gov
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A review of valproic acid effects on AML cells conclude that single agent valproic acid may
stabilize disease in the many old and fragile AML patients that are unfit for more intensive therapy,
however as of yet, no randomized studies have been conducted [75]. However, there is an ongoing
prospective randomized multicenter phase II trial of low dose decitabine alone or in combination with
valproic acid and all-trans-retinoic acid in patients with AML, ineligible for induction chemotherapy,
is also ongoing and an interim report has been published [76]. Thus, there may be therapeutic options
of epigenetic drugs also for the elderly, fragile patients that are not eligible for more intense therapy.

A number of HDACi have been investigated in clinical trials in MPN, recently reviewed by Bose
and Verstovsek [77]. Overall, HDACi monotherapy is effective in MPN however not well tolerated
in ET and PV patients, where published studies show significant drop out due to toxicity, even if
HDACi monotherapy clearly is active and also decreases JAK2 mutation burden in PV and ET [78–80].
Some studies have reported toxicity and high dropout rate also in MF [81], however a recent follow
up study on panobinostat monotherapy in primary MF and post PV/ET MF showed a response
rate of 36% according to IWG-MRT criteria, with a median spleen volume reduction of 34% in eight
evaluable patients, of which one obtained a complete molecular response and six patients remained on
therapy for a median of 18 months [82]. Bose and Verstovsek conclude that that the combination of
HDACi with JAK2 inhibitor in MF is the most promising approach, however toxicity and long-term
tolerability may be future concerns [77]. Currently, three clinical phase I/II trials using HDACi in
combination with JAK2 inhibitor ruxolitinib are ongoing, NCT01693601 (the Prime study, panobinostat
and ruxolitinib, likely to end Feb 2019), NCT01433445 with panobinostat and ruxolitinib, currently in
expansion phase, and NCT02267278 with pracinostat and ruxolitinib). Overall, preclinical data for
combination therapy in MF is solid and there are great expectations on the ongoing combination trials
of HDACi and ruxolitinib in MF. For SM, there have been no clinical trials including HDACi therapy
until now.

7. Why Have the Clinical Studies Failed?

Four recent reviews on the combination trials of azacitidine or decitabine with HDACi conclude
that there may be still a future for the drug combination, despite the lack of beneficial results in phase II
trials [64,83–85]. As preclinical data on how to best combine the drugs is lacking, it may well be that the
clinical trials have administered the drugs with suboptimal timing. Simultaneous administration with
varying dose intervals has been used, perhaps inducing pharmacological antagonism as azacitidine
requires cell division and DNA replication to exert its effects, and HDACi inhibit cell division and
proliferation, thus potentially antagonizing the effect of azacitidine. Another issue that must be met
is how to choose the optimal HDACi for the specific target patient population, regarding selectivity
of inhibition of target proteins, and regarding the pattern of somatic mutations and chromosomal
abnormalities of each patient. Here, novel more selective HDACi are being developed, with focused
targets. In addition, the mechanism of action of HDACi in MDS and AML is unclear. In fact, despite
azacitidine and decitabine being widely used for over 10 years, the mechanism of action of these
drugs in vivo is still unknown, and we, as well as others, have failed to demonstrate demethylation of
MDS progenitor cells upon azacitidine treatment [6,7]. In addition, there are to date no established
biomarkers to assess azacitidine or decitabine effects, nor are there any established biomarkers for
monitoring HDACi effects. Thus, we have no readout for either of the drugs and thus no means of
elucidating which drug is failing, when we combine them in the clinical setting. Currently our only
readout is remission and survival, and possibly decrease of a mutated clone size, however we cannot
measure if the drug effects are counteracting each other as we have no biomarkers of treatment effect.
Thus, before attempting new clinical trials, we need to solve the issue of how to combine the drugs to
optimize synergy and decrease the risk of antagonism or inhibition, and in addition we imperatively
need to establish reliable biomarkers of drug effects.
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8. Summary

Despite a theoretical rationale and profound preclinical proof of HDACi efficacy in myeloid
malignancies, all phase II randomized clinical trials have failed, except for the combination of
HDACi with JAK2 inhibitor ruxolitinib in MF. However, optimizing combination treatment strategy,
e.g., sequential treatment and not simultaneous, will be a key issue to avoid pharmacological
antagonism, and requires further basic in vitro studies of optimizing drug scheduling and doses,
as well as biomarkers to follow in vivo drug effects. In addition, novel, more selective HDACi should
be preferred, avoiding off target effects. In conclusion, there may still be a role for HDACi in myeloid
malignancies, beyond the promising combination therapy of HDACi and ruxolitinib for MF.

I apologize to all authors that have made significant contributions to the field but was not cited in
the current review, due to practical space limitations.

Conflicts of Interest: The author declares that there is no conflict of interest that could be perceived as prejudicing
the impartiality of the research reported.
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