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Identifying appropriate animal models is critical in developing translatable in vitro
and in vivo systems for therapeutic drug development and investigating disease
pathophysiology. These animal models should have direct biological and translational
relevance to the underlying disease they are supposed to mimic. Aging dogs
not only naturally develop a cognitive decline in many aspects including learning
and memory deficits, but they also exhibit human-like individual variability in the
aging process. Neurodegenerative processes that can be observed in both human
and canine brains include the progressive accumulation of β-amyloid (Aβ) found
as diffuse plaques in the prefrontal cortex (PFC), including the gyrus proreus
(i.e., medial orbital PFC), as well as the hippocampus and the cerebral vasculature.
Tau pathology, a marker of neurodegeneration and dementia progression, was
also found in canine hippocampal synapses. Various epidemiological data show
that human patients with neurodegenerative diseases have concurrent intestinal
lesions, and histopathological changes in the gastrointestinal (GI) tract occurs
decades before neurodegenerative changes. Gut microbiome alterations have also
been reported in many neurodegenerative diseases including Alzheimer’s (AD)
and Parkinson’s diseases, as well as inflammatory central nervous system (CNS)
diseases. Interestingly, the dog gut microbiome more closely resembles human gut
microbiome in composition and functional overlap compared to rodent models. This
article reviews the physiology of the gut-brain axis (GBA) and its involvement with
neurodegenerative diseases in humans. Additionally, we outline the advantages and
weaknesses of current in vitro and in vivo models and discuss future research
directions investigating major human neurodegenerative diseases such as AD and
Parkinson’s diseases using dogs.
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INTRODUCTION

The gut-brain axis (GBA) is a highly complex interactive network
between the gut and the brain, composed of endocrinological,
immunological and neural mediators, as summarized in Figure 1
(Rhee et al., 2009). The GBA is largely mediated by the central
nervous system (CNS), the enteric nervous system (ENS), and
the intestinal microbiota (Grenham et al., 2011). The extrinsic
nerves of the gastrointestinal (GI) tract connect the gut to the
brain through vagal and spinal afferent fibers, while the brain
sends efferent sympathetic and parasympathetic fibers to the GI
tract (Grenham et al., 2011; Browning and Travagli, 2014; Foster
et al., 2017). The hypothalamic pituitary adrenal (HPA)-axis is
known as themainmodulator of the physiological stress response
but it also modulates alimentary function during digestion
(Tsigos and Chrousos, 2002) to facilitate gluconeogenesis. The
hypothalamus releases corticotrophin-releasing factor (CRF) and
different proteins within this family (e.g., CRF, urocortin 1–3)
are also known to affect GI tract function, i.e., intestinal motility
(Kihara et al., 2001), permeability (Zheng et al., 2013), and
inflammation (Dinan et al., 2006). Specifically, changes in the
GI motility induced by urocortin administration were noted
in conscious rats, and this study also suggested that the vagal
pathway could regulate the central action of urocortin (Kihara
et al., 2001). Rats experiencing psychological stress showed
decreased level of intestinal epithelial tight junction (TJ) proteins
concurrent with increased intestinal permeability in the colon
(Zheng et al., 2013). In addition, among patients with irritable
bowel syndrome (IBS), the levels of proinflammatory cytokines
including interleukin (IL)-6 and IL-8 were elevated as a result of
adrenocorticotropic hormone (ACTH) stimulation (i.e., cortisol
release; Dinan et al., 2006).

Various studies suggest that intestinal health has a significant
impact on neurodegeneration despite the anatomical distance
between the gut and the brain (Houser and Tansey, 2017;
Zhang et al., 2018). Specifically, dysregulation of GBA cross-talk
has been associated with metabolic syndrome (de Lartigue
et al., 2011; Grasset et al., 2017) psychiatric disorders such as
depression, anxiety, autism, as well as neurodegenerative diseases
such as Parkinson’s disease (PD), and Alzheimer’s disease (AD;
Sampson et al., 2016; Zhang et al., 2018). In reverse, these
neurologic disorders are often times linked to altered intestinal
health characterized by changes in the intestinal microbiota
composition, which may disrupt the interplay between the gut
and the brain (Esteve et al., 2011; O’Mahony et al., 2011).
Many studies suggest that the intestinal microbiota contributes
not only to modulating the communication and function of
the GBA but also to modulating immune response through
stimulation of cytokines and chemokines (Moloney et al.,
2014). Similarly, the GBA interacts with intestinal cells and
the ENS, as well as the CNS through neuroendocrine and
metabolic pathways (Carabotti et al., 2015). Furthermore, ENS
function can be influenced by the gut microbiota when they
locally produce neurotransmitters, including γ-aminobutyric
acid (GABA), amino-acid derivatives (e.g., serotonin, melatonin,
and histamine) and fatty-acid derivatives (e.g., acetylcholine; Iyer
et al., 2004) or biologically active catecholamines (i.e., dopamine

and norepinephrine) in the gut lumen (Asano et al., 2012).
The ENS is also targeted by bacterial metabolites such as
short-chain fatty acids (SCFAs), including acetic acid, butyric
acid, and propionic acid, which stimulate the sympathetic
nervous system (Grider and Piland, 2007; Kimura et al.,
2011), with downstream effects on learning and memory
(Vecsey et al., 2007; Stefanko et al., 2009).

GBA IN NEURODEGENERATIVE DISEASES

Dysfunction of the GBA has been associated with psychiatric
disorders including depression and anxiety, as well as
neurodegenerative disorders including PD and AD (Sampson
et al., 2016; Jiang et al., 2017). The following section will focus
on recent findings of GBA involvement in PD and AD and their
clinical features, as summarized in Figure 2.

Alzheimer’s Disease
AD is a progressive neurodegenerative disease characterized by
senile plaques consisting of misfolded β-amyloid (Aβ) fibrils and
oligomers (Iadanza et al., 2018), as well as hyperphosphorylated
tau protein in the various regions of the brain including cerebral
cortex, locus coeruleus, and hippocampus (Llorens et al., 2017).
Although such protein aggregation in the brain as well as
non-neural tissues (i.e., the blood vessels, skin, subcutaneous
tissue, and intestine) is a histological feature of AD, such
deposition could simply be a consequence of various (epi)
genetic alterations triggered by environmental exposures such
as sociological, or medical nutritional stress (Lemche, 2018).
In fact, synthetic Aß42 peptide aggregation has been reported
in Caenorhabditis elegans aging models (Patel et al., 2017). Aβ

fibrillar accumulation can coincide with clinical signs of cognitive
dysfunction (Attems et al., 2005; Herzig et al., 2006; Pistollato
et al., 2016), however, it is noteworthy that there is a high degree
of variation in the extent of Aβ accumulation among patients
with cognitive decline (Monsell et al., 2015). Although almost
100 years have passed since the very first diagnosis of AD, the
exact pathogenesis of the disease is still largely unknown (Iadanza
et al., 2018). Likewise, no effective therapy for modulation of AD
is currently available.

One hypothesis for the involvement of the GBA in the
pathophysiology of neurodegenerative diseases is microbial
dysbiosis, which occurs as a result of antibiotic exposure
(Vangay et al., 2015), dietary changes (Muegge et al., 2011),
probiotics (Delzenne et al., 2011), or a variety of other
disease conditions (Tilg and Moschen, 2014; Rosenfeld, 2015).
Specifically, various studies have shown an association between
gut microbiome dysbiosis and the aggregation of Aβ peptides
in intestinal epithelial cells (Galloway et al., 2007, 2009)
and the CNS (Nam et al., 2017; Lin et al., 2016) after
high-fat diet feeding. Different components of the microbiota,
such as bacteria, can excrete an immunogenic mixture of
functional lipopolysaccharides (LPS), amyloid species, and
exudates from their outer membranes into the local intestinal
environment (Oli et al., 2012; Schwartz and Boles, 2013).
Amyloid species and LPS are usually soluble, although they
can polymerize and form insoluble fibrous protein aggregates,
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FIGURE 1 | Molecular pathways involved in gut-brain axis (GBA). Suggested signaling pathways and cross-talk between the intestinal microbiota, the intestinal
barrier, immune modulators, and neural (brain, vagus, and ENS) systems. The intestinal microbiota can affect the levels of circulating local cytokines, cause “leaky
gut” with increase GI permeability, and ultimately affect brain function (Moloney et al., 2014; Carabotti et al., 2015). Intestinal bacterial metabolites such as SCFA,
GABA, and serotonin precursors are neuroactive and can affect ENS and the brain (Grider and Piland, 2007; Kimura et al., 2011). Abbreviations: ENS, enteric
nervous system; SCFAs, short-chain fatty acids; GABA, γ-aminobutyric acid; LPS, lipopolysaccharide; GI, gastrointestinal.

leading to stimulation of oxidative stress and cross-seeding of
further protein aggregation (Morales et al., 2013; Friedland,
2015; Iadanza et al., 2018). For example, the endotoxin
from Escherichia coli was shown to enhance the Aβ fibril
formation in an in vitro model (Asti and Gioglio, 2014).
Also, co-incubation of Aβ peptide with LPS was shown to
potentiate amyloids fibrillogenesis (Asti and Gioglio, 2014),

and systemic injection of LPS in a transgenic AD mouse
model resulted in severe amyloid deposition and tau pathology
(Aziz et al., 2013; Mitew et al., 2013; Paula-Lima et al.,
2013; Saulnier et al., 2013). Moreover, recent studies suggest
that the structural overlap between bacterial amyloid proteins
to human Aβ could induce molecular mimicry, an immune
response against the self-antigens stimulated by a foreign

Frontiers in Aging Neuroscience | www.frontiersin.org 3 June 2019 | Volume 11 | Article 130

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ambrosini et al. GBA Investigation Utilizing Canine Models

FIGURE 2 | The contrasts of clinical presentations on the GBA in health and neurodegenerative diseases. A stable intestinal microbiota is essential for healthy gut
physiology and contributes to appropriate signaling along the GBA, promoting healthy physiologic status as well as central nervous system (CNS) status (left).
Intestinal dysbiosis can negatively influence gut physiology and lead to abnormal GBA signaling (Friedland, 2015), resulting in accumulation of misfolded amyloid
species (Galloway et al., 2007; de Lartigue et al., 2011). This can ultimately alter CNS functions and anatomy (Wu et al., 2017) as shown with magnetic resonance
imaging (MRI) volumetric scans (upper middle). In the diseased CNS and gut state (right), cortical atrophy with the widening of the subarachnoid space (∗),
enlargement of the lateral ventricles (LV), hippocampus atrophy (HC), and brainstem (BS) volume reduction are seen with clinical and cognitive dysfunction (Johnson
et al., 2012; Lee et al., 2015).

antigen sharing structural similarities, and ultimately causing
greater inflammatory responses to cerebral Aβ due to altered
gut microbiota (Delzenne et al., 2011; Muegge et al., 2011;
Rosenfeld, 2015).

Another hypothesis for the pathogenesis of misfolded protein
aggregation is the ‘‘Prion Concept.’’ This hypothesis states
that many neurodegenerative diseases exhibit accumulation
of fibrillary, misfolded proteins similar to the propagation
of prionopathies in the CNS (Goedert, 2015). Prionopathy
also involves the GBA and the local immune system, where
prions accumulate in dendritic cells in the Peyer’s patches and
other lymphoid follicles once entering the intestinal epithelium
layer (Ano et al., 2009). Interestingly, earlier studies in a
senescence-accelerated mouse model identified systemic senile
amyloid proteins in Peyer’s patches (Yoshioka et al., 1990). By
interacting with dendritic cells, the misfolded protein might
be transported to the ENS, and ultimately spread to the
CNS compartment (Ano et al., 2009). A significant amount
of functional amyloid protein was shown to be generated by
certain bacteria, such as E. coli, Bacillus subtilis, Salmonella
enterica, Salmonella typhimurium, and Staphylococcus aureus,
and may contribute to the pathology of AD through the
accumulation of misfolded Aβ oligomers and fibrils (Hufnagel
et al., 2013; Schwartz and Boles, 2013). Some bacterial

species, such as Lactobacillus spp. and Bifidobacterium spp.
(both gram-positive bacteria) are known to possess the ability
to metabolize glutamate, a well-known primary excitatory
neurotransmitter, to produce GABA, a well-known primary
inhibitory neurotransmitter (Paula-Lima et al., 2013). These
observations suggest that alteration of the gut microbiota can
compromise the endogenous production of GABA (Saulnier
et al., 2013). In turn, alteration of GABA signaling in the
brain has been linked to cognitive impairment, AD, anxiety,
and depression (Aziz et al., 2013; Hornig, 2013; Mitew et al.,
2013; Paula-Lima et al., 2013). Alternatively, gut bacteria can
affect peripheral nerve functions through the production of
neuromodulatory metabolites such as short-chain fatty acid
(SCFAs; Kimura et al., 2011). SCFAs, i.e., acetic acid, butyric
acid, and propionic acid, are produced by bacterial fermentation
of dietary fiber in the colon (Kimura et al., 2011). SCFAs can
stimulate the sympathetic nervous system to release serotonin,
ultimately influencing the CNS cognitive processes such as
learning and memory (Grider and Piland, 2007). Catabolism
of SCFAs to ketone bodies may also provide an alternative
source of ATP to the brain, which could be beneficial given that
progressive glucose dysmetabolism has been reported in patients
with AD (Sokoloff, 1973). Importantly, lower levels of SCFAs
have also been shown to negatively affect immune responses,
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epithelial cell growth, and possibly affect the function of both
the central and peripheral nervous systems (Kimura et al., 2011;
Bienenstock et al., 2015).

Parkinson’s Disease
Patients with PD present with classic motor symptoms, such
as asymmetric resting tremor, that are caused by progressive
dopaminergic neuronal death in the substantia nigra pars
compacta and loss of dopaminergic signaling (Houser and
Tansey, 2017). The pathophysiology of neurodegeneration in
PD has not been established. However, abundant evidence
suggests that neuroinflammation and glial cell activation could
play a significant role in PD etiopathogenesis (Rocha et al.,
2015). Proinflammatory signalingmolecules, including cytokines
(i.e., IL-1β, IL-6, and TNF-α; Mogi et al., 1996) or enzymes
[i.e., nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2);
Prigione et al., 2009], and oxidative stress are considered major
contributing factors to neurodegeneration and cell death in PD.

One of the leading hypotheses for the pathogenesis of PD is
the abnormal accumulation of α-synuclein (αSYN; Wong and
Krainc, 2017). This protein is present in various cell types in the
body, and PD patients show increased expression of αSYN at
presynaptic terminals of neurons and neurite projections (Wong
and Krainc, 2017). This protein is highly soluble and regulates
the presynaptic release of important neurotransmitters such as
dopamine (Wong and Krainc, 2017). The αSYN protein is also
expressed within the ENS and can be detected in intestinal
submucosal neuronal structures from neurologically healthy
individuals (Böttner et al., 2012; Shannon et al., 2012; Gold et al.,
2013). However, through interactions with environmental factors
and other proteins and small molecules (Hasegawa et al., 2002;
Breydo et al., 2012), αSYN follows a β-sheet structure formation
and loses its physiologic membrane-binding capacity, leading
to the aggregation of misfolded proteins forming so-called
Lewy neurites and Lewy bodies in dopaminergic neurons
of substantia nigra and noradrenergic neurons of the locus
coeruleus (Hasegawa et al., 2002). Aggregates of misfolded
αSYN proteins decrease mitochondrial complex I activity, thus
reducing the physiologic functions of mitochondria, which
ultimately leads to oxidative stress in the neuron (Jenner, 2003;
Prigione et al., 2009). Individuals with mutations in the αSYN
gene SNCA or duplication of the wild-type SNCA allele are
known to develop early-onset, rapidly-progressive PD (Klein and
Westenberger, 2012). The spread of αSYN proteins from the
ENS to the CNS by transsynaptic cell-to-cell transmission in
both sympathetic and parasympathetic nervous systems (Danzer
et al., 2012) is the foundation for the ‘‘Prion Concept’’ in PD
pathophysiology (Brundin et al., 2016). Multiple studies have
demonstrated the presence of αSYN aggregates in intestinal
biopsies from clinically normal individuals who would develop
PD later in their lives (Braak et al., 2006; Shannon et al.,
2012; Hilton et al., 2014). This finding indicates that intestinal
αSYN precedes sufficient CNS neurodegeneration to produce
motor dysfunctions (Houser and Tansey, 2017). Various clinical
GI signs or the characteristic PD ENS pathology often occur
before brain functions are actually affected, with constipation
being the most common GI complaint in PD (Sakakibara

et al., 2003). This is likely due to an increased intestinal transit
time both in the small and large intestines of PD patients
(Sakakibara et al., 2003). In fact, it has been shown that
constipation can be a pre-motor symptom of PD years before
the patients present with the clinical signs consistent with CNS
degeneration (Gao et al., 2011; Lesser, 2002). In addition, an
increased intestinal permeability was shown in PD patients
compared to healthy controls (Schwiertz et al., 2018). Other
studies suggest that there is an increased risk of developing
dementia (Chen et al., 2016) or PD (Lai et al., 2014) in patients
with IBS.

Similar to the trend in AD research, the relationships
between the intestinal microbiota and PD pathophysiology and
their association with disturbed GI motility have been studied
extensively and some of the reported differences include a
decrease in fecal numbers of Prevotella spp. and Clostridium spp.
in PD patients (Tan et al., 2014; Scheperjans et al., 2015). These
intestinal bacteria are a major source of SCFAs, particularly
butyrate, folate (vitamin B9), and thiamine (vitamin B1), which
are critical for the long-termmaintenance of the epithelial barrier
function (Tan et al., 2014; Scheperjans et al., 2015). Interestingly,
chronic exposure to these SCFAs has been associated with clinical
improvement in patients with PD [i.e., decreased dopaminergic
degeneration and disruption of blood-brain barrier (BBB)] and
clinical symptoms (Luong and Nguyen, 2013; Scheperjans et al.,
2015; Liu et al., 2017), possibly due to ketogenesis. Finally, there
are a few anecdotal reports suggesting a role for the Tobacco
Mosaic virus (TMV; Friedland, 2015) in the pathophysiology of
PD, but these preliminary findings need to be consolidated by
additional studies on the topic.

EXPERIMENTAL APPROACHES TO
INVESTIGATING THE GBA

Both static and dynamic in vitro models have been utilized
to advance the understanding of the role of the GBA in
neurodegenerative diseases. In addition, novel primary intestinal
stem cell (ISC) culture systems have been utilized to mimic both
physiologic and pathophysiologic intestinal conditions in vitro
contributing to defining gut-cross talk with local environment
(Gonzalez et al., 2013; Sato and Clevers, 2013; Chandra et al.,
2018). The benefits and disadvantages of two current in vitro
models are summarized in Figure 3. Importantly, cognitive
dysfunction is highly prevalent not only in AD patients but also
in approximately one-third of patients with PD (herein referred
to as ‘‘non-motor symptom’’ of PD; Chaudhuri et al., 2006). In
the ‘‘In Vitro Models’’ section and ‘‘In Vivo Animal Models’’
section, our main focus will be on AD. However, findings from
these in vivo models for investigating mechanisms of cognitive
impairment would be relevant to PD as well. The similarities and
differences of clinical and histological observations in humans,
dogs, and rodents are further summarized in Figure 4.

In vitro Models
Static Systems
Development of translatable in vitro models is critical for
elucidating disease pathophysiology and developing effective
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FIGURE 3 | Schematic of organoid 3D culture development and integration into Transwell and Microfluidic systems. First, the intestinal biopsy is obtained via
endoscopically or surgically, then villi and crypts are isolated with intestinal stem cells (ISCs) and Paneth-like cells. When cultured in an extracellular matrix with
appropriate microenvironment factors, long-term culture of 3D canine enteroids/colonoids (ENT/COL) is accomplished. Second, a single cell suspension from such
3D culture system will be integrated with Transwell (left) and microfluidic (right) systems. On the transwell insert, 3D ENT/COL is cultured on top of the porous
membrane with culture medium in the apical (blue) side and then submerged in culture medium in the basolateral (red) wells. A schematic of a Gut-on-a-chip (GOAC)
microdevice allows a closed system with microtubing. Arrows indicate the direction of the flow of culture medium in the apical (blue) and basolateral (red)
microchannels.
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FIGURE 4 | Comparative features of neurodegenerative changes and anatomy in different mammalian species. Similarities and differences in the development of
neurodegenerative diseases, such as Alzheimer’s disease (AD), in human, dog, and mouse are listed.

therapies for neurodegenerative diseases. Currently, only about
7% of investigational compounds tested in phase III clinical
trials progress on to the market in neurology (Kola and Landis,
2004). This is worse than the average of 11% success rate of
drugs marketed for all disease categories (Kola and Landis, 2004;
Adjei et al., 2009). The BBB, a unique interface between the
peripheral vascular system and the CNS, is a unique feature of
the GBA (Rubin et al., 1991). The critical roles of BBB include
supplying nutrients to the CNS, allowing the removal of waste
products (such as urea or potassium), and preventing blood-
borne pathogens and toxic products from entering into the brain
(Alcendor et al., 2012). The BBB consists of TJs between capillary
endothelial cells without fenestrations, and therefore allows the
BBB to maintain a low level of pinocytosis, which preserves the
structural integrity of BBB (Alcendor et al., 2013).

Attempts to develop an in vitro model to recapitulate the
complexity of the BBB have included brain microvascular
endothelial cells and astrocytes in a Transwell culture (Ahmed
et al., in press). Leveraging its similarity with conventional
2-dimensional (2D) culture systems and its relative simplicity,
the Transwell BBB system has been widely used in a research
setting (Rubin et al., 1991). However, the maintenance of TJ
function requires the application of the shear forces which
traditional static Transwell systems are not able to offer
(Santaguida et al., 2006). These critical shortcomings, including
lower transepithelial electrical resistance (TEER) and higher
endothelial permeability than reported in vivo, typically lead
to an overestimation of drug permeability across the BBB
(Santaguida et al., 2006).

Additionally, current in vitro models does not replicate
the close physiological cross-talk between pericytes and the
capillary endothelium that comprise the neurovascular unit
(Jamieson et al., 2017). Successful integration of intraluminal
flow for the in vitro culture of astrocytes has resulted in
more physiological endothelial cell polarity and strengthening of
TJs (Cucullo et al., 2011).

Attempts were made to study the GBA using a Transwell
culture system as well (Haller et al., 2000). However, this system

included only a few components of the GBA, and it is important
to note that Caco-2 cells, an immortalized cell line derived from
human colorectal adenocarcinoma, are used to model the enteric
epithelial cells in this system. Given these collective limitations, as
well as the lack of integration of microbiome/ENS in the in vitro
system, the results derived from these studies may not be readily
indicative of translational efficacy.

Importantly, our group recently established canine primary
enteroid and colonoid (ENT/COL) culture systems (Kingsbury
et al., 2017; Mochel et al., 2017). This is a canine ISC
culture system which closely mimics the physiologic structure
and function of in vivo intestines from both healthy and
diseased individuals (Chandra et al., 2018), and allows for
the investigation of pathophysiology and treatment effects. Of
note, canine cognitive dysfunction (CCD) is a well-studied
clinical analog of AD (Kol et al., 2015; Schütt et al., 2015;
Hoffman et al., 2018; Wang et al., 2018). Since dogs and
humans share an anatomically and physiologically very similar
GI tract and harbor a taxonomically and functionally largely
overlapping microbiome, the dog provides unique features
as a spontaneous model of disease (Coelho et al., 2018;
Alessandri et al., 2019). Overall, this canine model may hold
promise with its translational relevance for exploration of
avenues of novel therapeutics for neurologic disease in the near
future (Mochel et al., 2017).

Dynamic Model Systems Using Microfluidics
Only recently, a novel ex vivo model offering dynamic shear
forces to mimic physiologic conditions called organ-on-a-chip
(organ-OAC) has emerged (Kimura et al., 2008; Sung et al.,
2011). This microfluidic device contains microtubing that allows
for continuous flow of media and is comprised of multiple
cell culture channels enabling co-culture of different cell types
(Kim and Ingber, 2013; Kim et al., 2016a). Specifically, the
Gut-on-a-chip (GOAC) models the complex human intestinal
anatomy into a two-microchannel device where volumetric
flow rate, mechanical deformations, and fluid shear stress
can be adjusted to reproduce the in vivo physiology of
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the gut (Kim and Ingber, 2013; Kim et al., 2016a). This
biomimetic approach allows for the growth of the villous
microarchitecture in Caco-2 cells, while proliferative cells from
the intestinal crypt spontaneously migrate toward the villous
tip similar to intestinal cells in vivo (Kim and Ingber, 2013).
Also, differentiation of intestinal epithelial cell lines into
four lineage-dependent subtypes (absorptive, mucus-secretory,
enteroendocrine, and Paneth) is observed in this microfluidic
system and presents a clear advantage over traditional 2D static
culture systems (Kim and Ingber, 2013). When Caco-2 cells
form 3-dimensional (3D) villi in the GOAC, they typically
show enhanced epithelial barrier integrity, increased mucus
production, and elevated drug-metabolizing P450 activity with
augmented surface area and glucose reuptake, which are all
relevant factors for modeling human intestinal physiology (Kim
and Ingber, 2013). The 3D microarchitecture and increased
mucus production are beneficial to grow live bacteria comprising
the human gut microbiota using controlled flow and shear
forces mimicking intestinal peristalsis (Kim et al., 2012; Kim
et al., 2016a; Shin and Kim, 2018). Steady-state culture
conditions inside the microchannels prevent the depletion
of nutrients and the overgrowth of microbes (Kim et al.,
2012). Critically, overgrowth of bacteria was seen only when
manipulation to the shear stress was applied in the GOAC,
which emulates the pathophysiological feature of the ileus
(Kim et al., 2016a). By leveraging the innovative features
of the GOAC, studies on the complex interactions between
the host intestinal epithelium and the gut microbiome were
also made possible (Kim et al., 2012; Kim et al., 2016b;
Shin and Kim, 2018). For example, interactions between the
intestinal epithelium, immune cell components, and intestinal
bacteria (including non-pathogenic, pathogenic, or probiotic
strains) were characterized by adding individual components
one-at-a-time in a spatiotemporal manner (Kim et al., 2016a;
Shin and Kim, 2018). This approach will enable researchers
to evaluate the role of gut microbiome-brain axis in the
development and progression of numerous intestinal diseases,
such as inflammatory bowel disease (IBD) or colorectal cancer
(CRC). Furthermore, the anoxic-oxic interface (AOI) of the
oxygen gradient inside a modified GOAC was successfully
recreated in a recent report, allowing for the co-culture of
strict anaerobic intestinal bacteria and members of the fecal
microbiome (Shin et al., 2019). This technology can be used
to investigate the cross-talk between the gut microbiome and
probiotics on intestinal health.

Recently, a BBB-OAC was established and showed
physiological barrier functions (Wang et al., 2017), using ENS
and enteroendocrine cells (EEC)-OAC combined to assess the
GBA microenvironment (Ahmed et al., in press). Advancement
in bioengineering techniques will allow incorporating multiple
compartments in one in vitro system such as a GBA-OAC
(Choe et al., 2017; Ahmed et al., in press; Lee and Sung, 2018).
Despite the great promise of the Organ Chip technology, the
transfer of cells from a macroscopic environment (e.g., well-
plates) to a microfluidic system requires significant revision
and optimization of cell culture protocols. Multiple factors
differentiate microfluidic from macroscopic cell cultures.

Microfluidic systems, for instance, harbor different culture
channel surfaces and require fewer media volume as compared
withmacroscopic cultures (Sung and Shuler, 2009). Despite these
limiting factors including the technology being labor-intensive,
GOACs are a fast-growing model system that holds greater
potential to investigate primary GI diseases. By extension, this
system may be able to model GBA microenvironment and brain
associations to better understand the role of enteric dysbiosis
and neurodegenerative diseases.

In vivo Animal Models
While transgenic rodent models have been utilized to address
targeted mechanistic questions relating to neuropathology and
altered behavior (Hall and Roberson, 2012, 201), it is important
to realize the inherent limitations of these in vivo models.
Since mouse studies are used in the initial stages of drug
discovery, the limitations in this animal model likely contribute
to the poor success rate of AD drug discovery over the last
10 years (Kola and Landis, 2004; Adjei et al., 2009). One
major limitation in studying the human GBA is a lack of
an accurate animal model system that successfully replicates
human ENS-microbiome interactions in health and disease.
Investigation into the role of GBA with therapeutic interventions
may require animal studies with tissues derived from animals
that develop naturally occurring disease, including the dog. Since
rodent diets differ substantially from that of humans, and diets
are an important environmental factor shaping composition of
themicrobiome, comparing the effect of diet between species that
harbor different microbial compositions (and likely functions)
is difficult (Flint, 2011; Ravussin et al., 2012). For example,
mice preferentially consume grains and cereals which contain
relatively low ascorbic acid but have evolved their ability to
synthesize this essential cofactor while humans have lost the
ability to do so (Perlman, 2016) since they are omnivores.
Different cytochrome P450 enzymes exist in mice compared
to those in humans, thus each species has unique xenobiotic
metabolism pathways that contribute to detoxification in each
species (Martignoni et al., 2006; Anderson et al., 2009). These
differing means of detoxification may be another reason why
toxicology testing in mice has poor translatability to human
toxicity (Olson et al., 2000).

Another factor explaining why rodent models do not
mirror aspects of human pathophysiology is related to
the limited tendency of some of these induced models to
develop amyloidosis. As discussed before, AD is histologically
characterized by the presence of Aβ aggregates in the walls
of cerebral vessels (Attems, 2005; Herzig et al., 2006). Rodent
models do not produce human sequence Aβ naturally (Shepherd
et al., 2018), which limits their investigative utility as a
translational model. Transgenic mouse models overexpressing
mutant human amyloid precursor protein (APP) alone, or
combined with transgenic presenilin 1 (PS1) and presenilin 2
(PS2), do have secondary Aβ plaque formation in the brain,
histologically mimicking AD (Götz et al., 2008). However,
these transgenic mouse models naturally have molecular
and systemic resistance to Aβ pathology and therefore do
not develop the extensive neuronal loss and clinical signs
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seen in human AD patients (Martin et al., 2011). Lastly,
there are fundamental differences in the anatomic folding
of the cerebral cortex, with humans having a gyrencephalic
brain and rodents having a lissencephalic brain (Sun and
Hevner, 2014). A recent meta-analysis study demonstrates
that various transgenic mouse models of AD show different
characteristics compared to what have observed in the
human AD (Hargis and Blalock, 2017). Specifically, the
findings from spontaneous AD people were not consistent
with those in transgenic AD mouse models, while human
studies hold similar findings across different studies (Hargis
and Blalock, 2017). The study also found that among the major
transgenic AD mouse the findings were not similar to one
another (Hargis and Blalock, 2017).

Accumulated data shows that the dog provides a superior
model system to transgenic mouse models for investigating
the influence of aging in the development and treatment
of neurologic disease (Head, 2013). The dog is a more
translationally relevant species because of the environmental,
genomic, and intestinal physiologic features they share with
humans (Cummings et al., 1996). Dogs are an ideal aging
model since they show a parallel aging process to humans
as evidenced by beagles between 5 and 9 years old showing
cognitive dysfunction similar to humans between 40 and
60 years old (Patronek et al., 1997). In addition, brain vs.
body size compares favorably between humans and dogs as
compared with mice (Roth and Dicke, 2005), which is another
advantage of using the dog as a disease animal model for
neurologic diseases as canine brains undergo similar stress as
humans (Roth and Dicke, 2005). Canine spontaneous disease
models also offer additional predictive value for treatment
efficacy before transitioning to human clinical trials (Kol
et al., 2015; Schütt et al., 2016). Finally, dog genes have
adapted to a starch-rich diet during domestication similar to
humans, which suggests that studying such adaptations may
improve our understanding of human evolution and disease
(Axelsson et al., 2013).

Canine Models as Natural Models for
Neurodegenerative Diseases: Similarities
and Differences
Many human chronic disorders with a mixed genetic-
environmental etiology (e.g., Diabetes Mellitus, IBD, CRC),
including AD and PD, have well-studied clinical analogs in
dogs (Kol et al., 2015; Schütt et al., 2016; Hoffman et al.,
2018). Particularly relevant to AD, aged dogs with CCD
spontaneously develop a progressive decline in cognitive
function associated with advanced imaging abnormalities
and histopathological features similar to AD (Davis and
Head, 2014). For example, CCD dogs display progressive
AD-like cortical atrophy (Rofina et al., 2006; Pugliese et al.,
2010) in areas of the hippocampus that may be accompanied
by ventricular enlargement (Su et al., 2005). Further, aged
dog brains show other neuropathological and degenerative
features similar to AD, including diffuse Aβ plaque deposition
(Cummings et al., 1996; Borràs et al., 1999) with cortical

amyloid angiopathy (CAA; Ishihara et al., 1991), neuronal loss
in temporal regions first affected by AD (Colle et al., 2000), and
dysfunction of neurotransmitter systems (Insua et al., 2012).
Other neuropathological abnormalities shared between dogs and
humans include hyperphosphorylated tau proteins in the brain
(Yu et al., 2011; Böttner et al., 2012; Smolek et al., 2016) and
increased plasma Aβ1–42 levels, one of the biomarkers of AD
(Schütt et al., 2015).

In addition to CCD as a model for AD, certain dog breeds
are considered spontaneous models for PD. Canine multiple
system degeneration (CMSD) is a fatal, inheritable movement
disorder first described in Kerry Blue Terriers (deLahunta
and Averill, 1976), then in Chinese Crested dogs (O’Brien
et al., 2005), and these breeds are considered as natural
models for PD. Dogs with CMSD are clinically normal until
3–6 months of age when they first develop the clinical signs
of cerebellar ataxia (O’Brien et al., 2005). This progresses to
akinesia (i.e., impairment in voluntary movement) and severe
postural instability ultimately leading to euthanasia by 1–2 years
of age due to a severe decline in quality of life (O’Brien et al.,
2005). The histological hallmark of CMSD includes the loss
of cerebellar Purkinje cells with degeneration of the olivary
nucleus, substantia nigra, and caudate nucleus (deLahunta and
Averill, 1976; Montgomery and Storts, 1983), areas of which are
relevant to PD etiopathogenesis. Interestingly, the CMSD locus
includes a segment that contains PARK2, the gene for parkin,
and mutations in human PARK2 is known to cause familial
PD, which has clinical and pathological similarities to CMSD
(O’Brien et al., 2005).

We acknowledge that there is no perfect animal model
for investigating neurodegenerative disorders, and it should
be recognized that the canine model also has limitations.
For example, it has been recently shown that dogs lack
aldehyde oxidases (AOXs) which catalyze the oxidation of
aldehydes or N-heterocycles (Terao et al., 2006). This fact
has physiological, pharmacological, and toxicological relevance
since AOXs represent an important metabolic pathway that
oxidizes numerous endogenous and exogenous substrates of
biologic importance (Garattini et al., 2003). Also, humans and
dogs have different CYP3A isoforms (i.e., canine CYP3A12 is
equivalent to human CYP3A4) which impact species-specific
differences in permeability, toxicity, and metabolism analysis
between in vitro and in vivo systems (Zhang et al., 2001). A
detailed assessment of drug transporters and metabolic enzymes
expression in vitro is key to establish the predictive performance
of these in systems recapitulating in vivo drug absorption and
metabolism. Also, it is possible that differences in activity and
substrate specificity/inhibitors and inducers are observed in the
dog; therefore, utilizing in vitro systems from multiple different
species would allow the supplementation of other in vitro
systems that do not fully mimic human physiology on their
own (Zhang et al., 2001).

CONCLUSION

Recent analyses suggest that one of the most expensive
therapeutic areas having poor success rate in terms
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of drug research and discovery (R&D) is neurology
(Kola and Landis, 2004). One barrier to achieving lower
attrition rates in neurology drug R&D is the lack of utilization
of appropriate naturally occurring models of disease, such as
CCD as a model for human AD. The dog is a particularly
relevant species since it shares multiple epidemiologic features
with humans, including similarities in diet and their intestinal
microbiomes. Furthermore, CCD dogs can be used as a
natural model for both AD, as well as PD, since clinical
trials can be performed in dogs to assess the efficacy of novel
treatments prior to human trials (i.e., reverse extrapolation).
Importantly, since organoids are derived from individuals
with different genotypes and environmental exposures,
they are a highly relevant model system for ex vivo studies,
and are of value in ‘‘precision medicine.’’ Integration of
organoid culture systems with GOAC technology will maintain
patient-specific genetic and epigenetic disease characteristics
influencing inter-patient drug screening during the early
exploratory R&D phase. We predict that it will be possible
to predict the outcome of novel therapeutics prior to human
trials by combining data from GOAC models and clinical
trials with dogs serving as a model for naturally occurring
neurodegenerative diseases.
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