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Background: Bladder urothelial carcinoma (BLCA) is the most common type of bladder
cancer. In this study, the correlation between the metabolic status and the outcome of
patients with BLCA was evaluated using data from the Cancer Genome Atlas and Gene
Expression Omnibus datasets.

Methods: The clinical and transcriptomic data of patients with BLCA were downloaded
from the Cancer Genome Atlas and cBioPortal datasets, and energy metabolism-related
gene sets were obtained from the Molecular Signature Database. A consensus clustering
algorithm was then conducted to classify the patients into two clusters. Tumor prognosis,
clinicopathological features, mutations, functional analysis, ferroptosis status analysis,
immune infiltration, immune checkpoint-related gene expression level, chemotherapy
resistance, and tumor stem cells were analyzed between clusters. An energy
metabolism-related signature was further developed and verified using data from
cBioPortal datasets.

Results: Two clusters (C1 and C2) were identified using a consensus clustering algorithm
based on an energy metabolism-related signature. The patients with subtype C1 hadmore
metabolism-related pathways, different ferroptosis status, higher cancer stem cell scores,
higher chemotherapy resistance, and better prognosis. Subtype C2 was characterized by
an increased number of advanced BLCA cases and immune-related pathways. Higher
immune and stromal scores were also observed for the C2 subtype. A signature containing
16 energy metabolism-related genes was then identified, which can accurately predict the
prognosis of patients with BLCA.

Conclusion: We found that the energy metabolism-associated subtypes of BLCA are
closely related to the immune microenvironment, immune checkpoint-related gene
expression, ferroptosis status, CSCs, chemotherapy resistance, prognosis, and
progression of BLCA patients. The established energy metabolism-related gene
signature was able to predict survival in patients with BLCA.
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INTRODUCTION

Bladder cancer (BC) is one of the most prevalent cancers,
accounting for approximately 200,000 deaths per year
worldwide, with preponderance in men compared with
women (4:1) (Bray et al., 2018). More than 90% of BC cases
are transitional cell carcinomas, also known as bladder urothelial
carcinoma (BUC or BLCA), accounting for the majority of
primary BC cases (Potts et al., 2017). BC can be divided into
muscle invasive bladder cancer (MIBC) and non-muscle invasive
bladder cancer (NMIBC) based on whether it invades the muscle
layer of the bladder (Babjuk et al., 2017). At the time of initial
diagnosis, NMIBC accounts for approximately 75% of BC cases
(Hollenbeck et al., 2007). In NMIBC patients, carcinoma in situ
(CIS), high-grade T1, and high-grade Ta tumors are considered to
have a high risk of tumor recurrence and disease progression. In
the clinical management of BLCA, the prognosis of tumors often
depends on the histopathology and stage of cancer (Kamat et al.,
2016; Babjuk et al., 2017), which provides a simple risk
stratification but cannot explain the different prognoses and
outcomes of patients with the same histopathology and tumor
stage. Thus, it is imperative to determine new biomarkers
correlated with the prognosis of patients with BLCA at an
early stage.

Alterations in the energy metabolism of cancer cells compared
with normal cells are an emerging hallmark of most cancers
(Hanahan and Weinberg, 2011; Fumarola et al., 2018). In the
different types of energy metabolism reprogramming that cancer
cells may rely on, glycolysis is the most common pathway that
many cancer cells may utilize, even in the presence of oxygen, to
generate ATP to maintain the reduction–oxidation balance and
macromolecular biosynthesis, which is required to support the
growth, division, and migration of cancer cells (Vander Heiden
and DeBerardinis, 2017). This phenomenon of glycolysis in the
presence of oxygen is also known as the Warburg effect (Dang
and Semenza, 1999). While the metabolic phenotype of some
tumor cells is mainly glycolytic, some other tumors have a
predominantly oxidative phosphorylation (OXPHOS)
metabolic phenotype (Sonveaux et al., 2008). There is growing
evidence that metabolic reprogramming of cancer cells is
heterogeneous. Furthermore, it has been reported that tumor
cells can also absorb free fatty acids and ketones secreted by
adjacent catabolic cells, which provide energy for mitochondrial
OXPHOS (Bonuccelli et al., 2010; Nieman et al., 2011). In
addition, a previous study reported that glutamine-driven
mitochondrial OXPHOS, rather than glycolysis, takes up most
of the ATP production under hypoxic conditions (Fan et al.,
2013). Concerns regarding the possibility that cancer-related
energy metabolic reprogramming may provide new targeted
therapies are emerging, which may have fewer side effects and
higher antitumor efficiency than conventional cytotoxic
chemotherapy (Tennant et al., 2010; DeBerardinis and
Chandel, 2016; Luengo et al., 2017).

In this study, the energy metabolic profile and clinical value in
patients with BLCA were investigated using the Cancer Genome
Atlas (TCGA) and cBioPortal online sequencing data. Based on
the consensus clustering analysis of the gene expression profile,

patients could be classified into two robust clusters with
significant differences in molecular features and tumor
prognosis. Furthermore, an energy metabolism-related
signature was developed to assess the prognosis of patients
with BLCA in the TCGA dataset, which was then verified
using data from the cBioPortal database. We found a
significant association between the prognosis of patients with
BLCA and the energy metabolism-related signature, which
could serve as an independent clinicopathological prognostic
factor. In summary, our study revealed a strong correlation
between energy metabolism status and clinical prognosis of
patients with BLCA.

METHODS

Dataset Collection
Data from bladder cancer patients containing clinicopathological
and transcriptomic information were downloaded from the
Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.
cancer.gov/). Moreover, a validation cohort (n = 296) was derived
from the cBioPortal online database (http://www.cbioportal.org/
), and it validated the results (Gao et al., 2013).

Gene Sets Containing and Consensus
Clustering
The Molecular Signature Database (MSigDB, http://www.broad.
mit.edu/gsea/msigdb/) was utilized to contain two energy
metabolism-related gene sets (energy-requiring part of
metabolism and reactome energy metabolism) (Subramanian
et al., 2005; Zhou et al., 2018). After removing overlapping
genes, an energy metabolism-related gene set containing 590
genes was obtained (Supplementary Datasheet S1). The
“ConsensusClusterPlus” R package was then used to perform
consensus clustering analysis, and the maximum number of
clusters was set at 6. The “pheatmap” R package was utilized
to visualize the results of the most differentially expressed energy
metabolism-related genes in the form of a heatmap. Survival
curves were generated using the R packages “survival.”
Comparisons of clinicopathological characteristics were
performed using chi-square tests or Fisher’s exact tests for
categorical variables and Student’s t-tests for continuous
variables.

Differentially Expressed Gene Identification
and Enrichment Analysis
The differentially expressed genes (DEGs) between groups
characterized by consensus clustering were explored and
visualized in volcano plots using the “ggplot” R package. The
thresholds of the fold-change value and adjusted p value were set
at 1.5 and 0.05, respectively. The top 50 upregulated and
downregulated DEGs with the most differential changes are
shown in the form of a heatmap. Furthermore, we used the
“ClusterProfiler” R package to conduct enrichment analysis to
better understand the underlying functions of the potential
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targets. GO functions were analyzed for the DEGs between
groups identified by energy metabolism-related genes, and the
KEGG pathway and gene set enrichment analysis (GSEA) were

enriched. In addition, the correlation between metabolic status
and CSCs was evaluated using the OCLR algorithm constructed
by Malta et al. (Teo and Rosenberg, 2018).

FIGURE 1 | Consensus clustering analysis to identify the genomic subtype of BLCA based on an energy metabolism-related gene set. (A) Consensus clustering
matrix of 408 samples from the TCGA dataset for k = 2. (B) Heatmap of energy metabolism-related gene expression in different clusters. Red represents high gene
expression, and blue represents low expression. (C) TheKaplan–Meier curve of overall survival of BLCApatients in two clusters. (D) Tumor stage distribution of BLCApatients
in two clusters with different metabolic statuses. The frequency of KDM6A (E), FGFR3 (F), and RB1 (G) mutations in two clusters with different metabolic statuses.
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Immune Infiltration and Ferroptosis Status
Analysis
Based on the cohorts grouped by consensus clustering, immune
infiltration estimation was then conducted using the xCell and
CIBERSORT algorithms in the “immunedeconv” R package and
visualized in the form of a heatmap and boxplot. Furthermore,
eight immune checkpoint-relevant genes (CD274, CTLA4,
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and
SIGLEC15) were selected and then explored in the different
groups, and the “ggplot2” and “pheatmap” R packages were
utilized to visualize the expression of these genes in the two
groups. The Wilcox test was used for the analysis of significance
between groups, and p < 0.05 was regarded as statistically
significant. The ferroptosis status analysis was achieved
through the “ggplot2” and “pheatmap” R packages.

Gene Signature Identification
The TCGA–BLCA dataset was analyzed to determine whether the
energy metabolism-related genes were correlated with the overall
survival of the patients via univariate Cox proportional hazards
regression analysis. Simultaneously, DEGs between bladder
cancer and normal tissue were determined using the online
tool Gene Expression Profiling Interactive Analysis 2.0.
(GEPIA2; http://gepia2.cancer-pku.cn/#index) (Tang et al.,
2019). A Venn diagram was constructed to select the optimal
energy metabolism-related gene set with the R package “ggplot2.”
Furthermore, the least absolute shrinkage and selection operator
(LASSO) Cox regression algorithm was conducted through the
“glmnet” R package. The nomogram and calibration curves were
constructed by using the “rms” and “survival” R packages.

RESULTS

Data Collection and Consensus Clustering
To explore the role of energy metabolism status in BLCA, we
obtained a cohort of 408 patients using RNA sequencing data and
clinicopathological information from the TCGA database. Two
energy metabolism-related gene sets were then obtained, and
after removing overlapping genes, an energy metabolism-related
gene set containing 590 genes was obtained (Supplementary
Datasheet S1).

The association between energy metabolism status and
prognosis of patients with BLCA was further investigated. The
consensus clustering algorithm, empirical cumulative
distribution function (CDF) plot, and consensus clustering
matrix indicated that patients could be grouped into two
groups (Figure 1A, Supplementary Figure S1). Figure 1B
presents the clustering heatmap of the top variable expression
genes with SD >0.1 in these two clusters grouped by the energy
metabolism-related gene set. Survival curves revealed that
patients in cluster 1 had a significantly longer overall survival
[OS hazards ratio (HR): 0.608, 95% confidence interval (CI):
0.453–0.817, p < 0.001, Figure 1C] and better progression-free
survival (PFS, HR: 0.691, 95% CI: 0.513–0.931, p = 0.0151,
Supplementary Figure S1) than those in cluster 2.

The clinicopathological features of the two clusters were
explored to investigate the differences between the clusters.
Survival status and race were significantly different between
the two clusters (Table 1). In addition, patients in cluster 1
tended to have no metastasis, relatively earlier tumor stage
(Figure 1D), and relatively lower histologic grade, whereas
more metastasis, higher tumor stage, and higher tumor grade
were observed in patients from cluster 2. The top 20 most
frequently mutated genes in each cluster were then compared,
and we found that the frequency of KDM6A (p = 0.001,
Figure 1E) and FGFR3 (p < 0.001, Figure 1F) mutations were
higher in C1, whereas the frequency of RB1 mutations (p < 0.001,
Figure 1G) in C2 was higher.

Enrichment Analysis
To explore the underlying mechanism of the difference between
the two clusters, DEGs between the two clusters were identified.
As shown in Figure 2A, the volcano plot indicated the
upregulated genes (SNX31, VSIG2, DHRS2, HMGCS2, etc.)
and downregulated genes (KRT6B, KRT6A, KRT14, etc.) in
cluster 1 as compared to cluster 2. The top 50 upregulated
and downregulated genes were then displayed in the form of a
heatmap (Figure 2B).

Moreover, with the thresholds of the fold-change value and
adjusted p value setting at 1.5 and 0.05, up- and downregulated
genes were selected for functional enrichment analysis. KEGG
analysis of the most relevant signaling pathways in cluster 1 was
mainly associated with the energy metabolism (Figure 2C). The
results of GO analysis showed the same trend, and the most
enriched terms in the biological process (BP), molAUCecular
function (MF), and cellular component (CC) were strongly
correlated with the energy metabolism (Figure 2C), mainly

TABLE 1 | Clinicopathological feathers between the two clusters identified by
energy metabolic-related gene set.

Characteristics C1 (n = 228) C2 (n = 180) p Value

Survive <0.001
Alive 148 (64.9%) 81 (45%)
Dead 80 (35.1%) 99 (55%)

Gender 0.098
Female 52 (22.8%) 55 (30.6%)
Male 176 (77.2%) 125 (69.4%)

Race <0.001
Asian 38 (16.7%) 6 (3.3%)
Black 13 (5.7%) 10 (5.6%)
White 166 (72.8%) 158 (87.8%)

Metastasis 0.001
M0 129 (56.6%) 67 (37.2%)
M1 6 (2.6%) 5 (2.8%)
MX 92 (40.4%) 106 (58.9%)

Stage <0.001
I 2 (0.9%) 0
II 91 (39.9%) 39 (21.7%)
III 64 (28.1%) 76 (42.2%)
IV 69 (30.3%) 65 (36.1%)

Histologic grade <0.001
High 205 (89.9%) 179 (99.4%)
Low 21 (9.2%) 0
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FIGURE 2 | Identification of DEGs between the two clusters grouped by energymetabolism-related gene set and functional enrichment analysis. (A) Volcano plot of
DEGs between two clusters with different metabolic statuses. The red and blue points represent up- and downregulated genes with statistical significance, respectively.
(B) Heatmap of the top 50 up- and downregulated genes with the most differential changes. (C)GO/KEGG analysis of DEGs that were upregulated in cluster 1. (D)GO/
KEGG analysis of DEGs that were downregulated in cluster 1. DEG: differentially expressed genes.
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FIGURE 3 | Ferroptosis status analysis and GSEA results. (A) GSEA of DEGs that were upregulated in cluster 1 and cluster 2. (B) GSEA results of lipid oxidation
metabolism terms. (C) Heatmap of ferroptosis-related gene expression in two different metabolic status clusters. (D) Ferroptosis-related gene interaction network. The
red and blue lines represent the positive and negative correlation, respectively. The thickness of the line represents the correlation between the two genes. The larger
circle indicates a more significant prognostic log rank p value. (E) Expression difference of ferroptosis-related genes between the two clusters. GSEA: gene set
enrichment analysis. DEG: differentially expressed genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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enriched in small-molecule catabolic processes, lipid catabolic
processes, and fatty acid metabolic processes. However, the GO/
KEGG analysis of the downregulated genes in cluster 1, indicating
that they were upregulated in cluster 2, showed different results.
GO analysis of cluster 2 was mainly enriched in immune terms,
including T-cell activation, leukocyte cell–cell adhesion, negative
regulation of immune system process, regulation of leukocyte
cell–cell adhesion, and regulation of T-cell activation. In the
KEGG pathways, the results showed that the DEGs were
mainly enriched in cytokine–cytokine receptor interactions,
chemokine signaling pathways, and immune-related pathways,
including those involving phagosomes, Th17 cell differentiation,
and Th1 and Th2 cell differentiation. GSEA results of cluster 1
also showed metabolism-associated terms, while cluster 2 was
mainly enriched in immune terms (Figure 3A, Supplementary
Figure S2). These results indicated that cluster 1 could be
characterized by the activation of oncometabolic processes,
while cluster 2 may be characterized by the upregulation of
tumor-related immunogenicity.

Ferroptosis Status Analysis
Ferroptosis, driven by excessive lipid peroxidation, is an iron-
dependent regulated cell death that is related to the development
and treatment response of various types of tumors (Chen et al.,
2021). The enrichment results of the GSEA indicated that the two
clusters were different in terms of fatty acid beta oxidation,
eicosanoid metabolism via lipoxygenases lox, and oxidation by
cytochrome p450 (Figure 3B). These lipid oxidation metabolism
characteristics, which were correlated to ferroptosis, suggested
that the ferroptosis status of the two clusters may differ. Analysis
of ferroptosis-related genes between the two groups revealed that
many ferroptosis-related genes were differentially expressed
between the two clusters (Figures 3C,E), and the expression
levels of some genes (including ACSL5, ACSL1, GSS, SLC7A11,
SCL39A8, SLC39A14, and PRNP) were significantly associated
with the prognosis of patients with BLCA (Supplementary
Figure S3). In addition, the correlation between the
ferroptosis-related genes was more obvious in cluster 1 and
was dominated by a positive correlation, while the correlation
between different genes in the ferroptosis-related gene network of
C2 was weaker (Figure 3D). SLC7A11 was significantly
downregulated in cluster 1, and the prognostic effect of
SLC7A11 in cluster 1 was more significant than that in cluster
2. Similarly, SAT1 was significantly upregulated in cluster 2, and
the prognostic effect in cluster 2 was more significant. This
finding suggested that the metabolism status of BLCA patients
was significantly associated with the expression of selected
ferroptosis-related genes, some of which were correlated with
the prognosis of BLCA.

Immune Infiltration Analysis
Based on the enrichment analysis results that upregulated genes
in cluster 2 were correlated with tumor immune function in
BLCA, the immune infiltration status of the two clusters was then
examined. A heatmap of immune cell infiltration suggested that
the tumor immune microenvironment was significantly different
between the two clusters (Figure 4A). Cluster 2 had higher

infiltration levels of T-cell CD4+ Th1, T-cell CD4+ Th2, T-cell
CD4+memory, T-cell regulatory, T-cell CD4+ naïve, granulocyte-
monocyte progenitor, macrophage, M1 macrophage, M2
macrophage, myeloid dendritic cell, activated myeloid
dendritic cells, monocytes, mast cells, plasmacytoid dendritic
cells, T-cell CD8+, T-cell CD8+ effector memory, T-cell CD8+

central memory, B-cell plasma, B-cell naïve, B cell, and B-cell
memory. In addition, high infiltration levels of CD4+ central
memory T cells, eosinophils, and CD8+ naïve T cells were
observed in cluster 2. Boxplots showed similar results using
the CIBERSORT algorithm (Figure 4B). The Spearman
correlation analysis also revealed a significant association
between energy metabolism-related gene set risk scores and
the infiltration of CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and myeloid dendritic cells (Supplementary
Figure S4). This result is consistent with the conclusion of the
enrichment analysis, indicating that patients with BLCA from
cluster 2 had higher immune cell infiltration and that the energy
metabolism-related gene set had a potential correlation with the
tumor immune microenvironment.

Furthermore, we investigated the expression of immune
checkpoint (IC)-related genes between the two clusters. In
cluster 2, we found a relatively higher expression of IC-related
genes, including CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, and TIGIT (Figures 4C,D). However, SIGLEC15
expression was higher in cluster 1. Thus, energy metabolism-
related genes were significantly correlated with biomarkers of
immune checkpoints and may play an important role in
immunological therapy for BLCA.

Cancer Stem Cells and Drug Sensitivity
Analysis
Based on the gene expression profile containing 11,774 CSC-
associated genes, analysis of CSCs was conducted, and patients in
cluster 1 had a higher CSC score, indicating a significant
correlation between energy metabolic status and CSCs
(Figure 4E). Next, drug sensitivity was evaluated between the
two clusters. Figures 4F,G show that energy metabolic status was
significantly associated with the IC50 scores of doxorubicin and
gemcitabine for BLCA.

Energy Metabolism-Related Gene
Signature Identification
Considering the close correlation between the prognosis of
patients with BLCA and energy metabolism status, we suggest
developing an energy metabolism-related gene signature for
prognosis prediction. Based on DEGs between cluster 1 and
cluster 2, Venn diagrams were constructed and showed that
162 of 590 metabolism-related genes were differentially
expressed between clusters (Supplementary Figure S5). Then,
67 of 162 metabolism-related genes were further identified with a
significant relevance to the OS of patients with BLCA (p < 0.1). To
ensure the feasibility and stability of the clinical prognostic value
of these 67 genes, LASSO analysis was conducted, and we
obtained 16 energy–metabolism-correlated genes associated
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with the prognosis of patients with BLCA, including FBP1,
AOC2, SLC16A8, IDUA, CYP2C8, GPC2, HS3ST1, UGT2B7,
GSTM1, CSPG4, ACY3, SLC16A3, TPST1, CES1, HSPG2, and
CYP1B1 (Figures 5A,B). Therefore, based on the Cox coefficient,
the energy metabolism-related gene-based prognostic signature
(EMRGPS) was calculated as follows: risk score= (−0.055 × FBP1
expression) + (−0.0085 × AOC2 expression) + (−0.0567 ×
SLC16A8 expression) + (−0.0351 × IDUA expression) +
(−0.0444 × CYP2C8 expression) + (−0.0627 × GPC2

expression) + (−0.0885 × HS3ST1 expression) + (−0.0096 ×
UGT2B7 expression) + (0.0197 × GSTM1 expression) + (0.026
× CSPG4 expression) + (−0.1969 × ACY3 expression) + (0.0445 ×
SLC16A3 expression) + (0.117 × TPST1 expression) + (0.0421 ×
CES1 expression) + (0.0264 × HSPG2 expression) + (0.0051 ×
CYP1B1 expression).

Based on the median value of the risk score, patients with
BLCA could be categorized into low-risk and high-risk groups
(Figure 5C). The Kaplan–Meier curve indicated that patients in

FIGURE 4 | Analysis of immune cell infiltration between two clusters. (A) Immune cell score heatmap by xCell algorithm. Red represents high expression/score,
whereas blue represents low expression/score. (B) Boxplot of immune infiltration status in two clusters by the CIBERSORT algorithm. Heatmap (C) and boxplot (D) of
immune checkpoint-related gene expression between two clusters. Cancer stem cell scores (E) and chemotherapy resistance to doxorubicin (F) and gemcitabine (G) of
the two clusters. *p < 0.05, **p < 0.01, ***p < 0.001.
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the high-risk group had a significantly poorer OS than those in
the low-risk group (Figure 5D, p < 0.001), and the AUCs for 1-,
3-, and 5-year OS were 0.714, 0.739, and 0.693, respectively
(Figure 5E). Furthermore, to ensure the prediction value of
EMRGPS, an independent cohort from the cBioPortal online
database served as a validation set to verify our results. Survival
curves showed similar results, and significantly worse OS was

observed in the low-risk group than in the high-risk group in
patients from the cBioPortal online database (Figure 6E). The
AUCs for 1-, 3-, and 5-year OS in the validation cohort were
0.637, 0.626, and 0.629, respectively (Figure 6F). The association
between signature risk scores and clinicopathological
characteristics of the validation cohort was presented in the
form of a Sankey diagram (Figure 6G).

FIGURE 5 | Prognostic signature was established based on four prognostic energy metabolism-related genes. (A) LASSO coefficient profiles of the genes
associated with the metabolism of BLCA. (B) Partial likelihood deviance is plotted versus log(λ). (C) The risk score of each sample based on the energy metabolism-
related gene set. Patients were divided into low-risk and high-risk groups according to the median value of the risk score. The high/low expression levels of 16 genes
which were involved in the prognostic signature are shown in red/blue in each sample. (D) The Kaplan–Meier curve of overall survival differences stratified by
signature risk score. (E) The ROC curves of the signature for overall survival at 1, 3, and 5 years. LASSO: least absolute shrinkage and selection operator. ROC: receiver
operating characteristic.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8147359

Zhang et al. Metabolic Status in BLCA

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 6 |Construction of a nomogram and the independent signature validation. (A)Nomogram for predicting 1-, 3-, or 5-year OS in patients with BLCA. (B) The
calibration plots for predicting 1-year OS. (C) The calibration plots for predicting 3-year OS. (D) The calibration plots for predicting 5-year OS. (E) Validation of the
signature in overall survival based on data from the cBioPortal online database. (F) The ROC curves of the signature validation for overall survival at 1, 3, and 5 years. (G)
Sankey diagram showing the association between signature risk scores and clinicopathological characteristics based on data from the cBioPortal database. OS:
overall survival. ROC: receiver operating characteristic.
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To better predict the prognostic value of EMRGPS in patients
with BLCA, a nomogram using available clinicopathological
parameters and the risk score of the signature was constructed
(Figure 6A). Moreover, calibration curves using 1-, 3-, and 5-year
survival rates were developed to estimate the accuracy of the
nomogram (Figures 6B–D). The multivariate and univariate Cox
regression analyses of EMRGPS and other clinicopathological
characteristics for OS are presented in Table 2. The signature risk
score was an independent factor for the prognosis of patients with
BLCA (HR: 2.443, 95% CI: 1.758–3.395, p < 0.001). Furthermore,
the survival analysis (Supplementary Figure S6) and the
different expression patterns (Figure 7A) of the 16 genes

involved in EMRGPS between normal and tumor tissues were
explored in the TCGA cohort (Figure 7). Of the 16 metabolism-
related genes, we found that AOC2, IDUA, GPC2, CSPG4,
TPST1, and CYP1B1 were differentially expressed between
tumor and normal tissue at the protein level according to the
Human Protein Atlas (HPA) cohort (Figure 7B).

DISCUSSION

The phenomenon of cancer cells shifting their metabolic
pathways from oxidative phosphorylation to glycolysis for the

TABLE 2 | Multivariate and univariate Cox regression analyses of EMRGPS and other clinicopathologic characteristics for OS in the TCGA cohort.

Overall survival Univariate analysis Multivariate analysis

HR 95% CI p Value HR 95% CI p Value

TCGA cohort
Age 1.033 1.017–1.049 <0.001 1.029 1.013–1.045 <0.001
Gender (female vs. male) 1.196 0.856–1.670 0.295
Race 0.264
White Reference
Asian 0.624 0.318–1.227 0.171
Black 1.258 0.713–2.220 0.427
Tumor stage (III–IV vs. I–II) 2.123 1.463–3.081 <0.001 1.819 1.250–2.646 0.002
Grade (low vs. high) 0.346 0.085–1.397 0.136
Risk Score (high vs. low) 2.712 1.959–3.757 <0.001 2.443 1.758–3.395 <0.001

Feathers with p value <0.1 were involved in multivariate Cox regression analyses. EMRGPS: energy metabolism-related gene-based prognostic signature.

FIGURE 7 | Box plot of the expression difference of 16 genes involved in the prognostic signature between normal and BLCA tissue (A). The expression difference
of AOC2, IDUA, GPC2, CSPG4, TPST1, and CYP1B1 between tumor and normal tissue at the protein level according to the Human Protein Atlas (HPA) cohort. (B). *p <
0.05, **p < 0.01, ***p < 0.001.
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production of sufficient adenosine triphosphate (ATP) and
necessary macromolecular biosynthesis, also known as the
Warburg effect, was first described in the 1920s (Weinhouse,
1956). Since its initial establishment, much effort has been made
to better understand the potential mechanisms of cancer
metabolic reprogramming. Growing evidence has shown that
agents targeting cellular energetics in multiple pathways are
involved in alterations in cancer metabolism (Jain et al., 2012).
In this study, the association between energy metabolic status and
the prognosis of patients with BLCAwas evaluated based on RNA
sequencing data from TCGA and cBioPortal online databases. A
significant correlation between clinicopathological features and
energy metabolism was observed, indicating that energy
metabolism and BLCA are closely linked.

Functional enrichment analysis revealed a strong association
between energy metabolic status and immune and inflammatory
responses, suggesting an interface between energy metabolic
status and the tumor immune microenvironment. Several
recent studies have reported numerous alterations in the
metabolic status of bladder cancer, indicating that tumor
metabolic status may play a role in the tumor immune
microenvironment (Woolbright et al., 2018). It was found that
the immune system could be affected by lactic acid accumulated
from the aerobic glycolysis process of tumor cells, which includes
the enhancement of cytokine transcription and inhibition of the
differentiation of monocytes into dendritic cells (Becker et al.,
2013; Ghesquière et al., 2014). Oresta et al. found that
mitochondrial metabolism is reprogrammed to control the
induction of immunogenic cell death and the efficacy of
chemotherapy for bladder cancer by increasing OXPHOS
(Oresta et al., 2021). Our study showed a similar result, in
which a significant correlation between metabolic status and
resistance to chemotherapy, including doxorubicin and
gemcitabine, was observed. Wang et al. reported that the
inhibition of pyruvate kinase M2, a glycolytic enzyme for the
Warburg effect, could significantly reduce chemoresistance to
cisplatin in bladder cancer (Wang et al., 2017).We also found that
energy metabolism was significantly correlated with most ICI
biomarkers, which acted as biomarkers and immune checkpoint
inhibitors or participated in the tumorigenesis and progression of
BLCA. Checkpoint inhibitors have recently been approved as
second-line treatments, which may alter the pattern of bladder
cancer treatment (Teo and Rosenberg, 2018). This result indicates
that energy metabolic status may affect the tumor
microenvironment through immune cell infiltration and
therefore mediate carcinogenesis of BLCA, and may play an
important role in the sensitivity and resistance of immune
therapy. A recent study found that mutations in peroxisome
proliferator-activated receptor gamma (PPARγ), a transcription
factor connecting glucose and fatty metabolism, led to immune
suppression, such as inhibiting the infiltration of CD8+ T cells in
the tumor microenvironment, which may play an important role
in checkpoint inhibition in BLCA (Korpal et al., 2017).

Using the OCLR algorithm constructed by Malta et al. (Malta
et al., 2018), we found that BLCA metabolic status was
significantly correlated with CSCs. CSCs are a population of
undifferentiated cells exhibiting stem-like features, with high

tumorigenic capacity to recreate the heterogeneity of the
primary tumor and serve as a major culprit for recurrence in
bladder cancer (Chan et al., 2010; van der Horst et al., 2012).
Previous studies have reported that CSCs are resistant to
conventional therapies, including chemotherapy, radiation, and
immunotherapy (Bao et al., 2006; Li et al., 2008; Radvanyi, 2013).
The potential mechanism of CSCs with energy metabolic status in
patients with BLCA requires further investigation.

Due to the strong association between energy metabolic status
and clinicopathological characteristics in patients with BLCA, a
signature was established to stratify patients into high- or low-risk
of poor prognosis. Von Rundstedt et al. reported a 30-gene
metabolic signature that was significant in predicting survival
in patients with BLCA (von Rundstedt et al., 2016). In this study,
with the application of a combination of lasso regression, a
signature of 16 genes showed a powerful effect on survival
prediction. Of the 16 metabolism-related genes, we found
AOC2, IDUA, GPC2, CSPG4, TPST1, and CYP1B1 to be
differentially expressed between tumor and normal tissues at
the protein level. The AOC2 gene encodes retina-specific amine
oxidase, which oxidizes aromatic monoamines such as
p-tyramine, tryptamine, and 2-phenylethylamine. Its
physiological role is still unclear, but a previous study
suggested that AOC2 plays a role in hereditary retinal diseases
(Lopes de Carvalho et al., 2019). IDUA encodes an enzyme that is
correlated to the degradation of two glycosaminoglycans, and
mutations in this gene lead to the autosomal recessive disease
mucopolysaccharidosis type I (Ghosh et al., 2017). GPC2 belongs
to a six-member human glypican family of proteins and is highly
expressed in neuroblastoma (Li et al., 2017). CSPG4 represents an
integral membrane chondroitin sulfate proteoglycan, which is
highly expressed in human malignant melanoma cells (Uranowska
et al., 2021). TPST1 encodes an integral membrane glycoprotein
of the trans-Golgi network, catalyzing the tyrosine O-sulfation
of soluble and membrane proteins that pass through this
compartment. TPST1 encodes an integral membrane
glycoprotein of the trans-Golgi network, catalyzing the tyrosine
O-sulfation of soluble and membrane proteins that pass through
this compartment. A previous study reported that TPST1 is highly
expressed in breast carcinoma, oral squamous cell carcinoma, and
soft tissue sarcoma (Jiang et al., 2015). This gene encodes amember
of the cytochrome P450 superfamily of enzymes. Cytochrome P450
proteins are monooxygenases that catalyze many reactions
involved in drug metabolism and synthesis of cholesterol,
steroids, and other lipids (Dong et al., 2021).

The main limitation of this study is that most analyses were
conducted at the mRNA level; further analysis at the protein level
is imperative. Moreover, our results were mainly based on the
TCGA and cBioPortal datasets. Although the large number of
cases from these databases may decrease the risk of bias, another
independent cohort is needed to validate our results and
minimize the bias.

In conclusion, we found that energy metabolic status is closely
related to the immune microenvironment, IC-related genes,
CSCs, chemotherapy resistance, prognosis, and recurrence in
patients with BLCA. The energy metabolism-related gene
signature was then developed to predict the survival of
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patients with BLCA. In the era of precision medicine, this
signature could provide an effective tool to meet the clinical
requirements of BLCA management to some extent.
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