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A B S T R A C T   

The Langevin equation (LE) is used to evaluate mode coupling in multimode step-index polymer 
optical fiber (SI POF) that is both unstrained and strained. The numerical solution of the LE 
matches the numerical solution of the power flow equation (PFE). Strain-induced mode coupling 
is noticeably stronger in strained fiber than in unstrained fiber of the same types. Therefore, 
compared to similar lengths for unstrained fibers, the coupling length of the equilibrium mode 
distribution (EMD) is attained and the length of fiber required to produce a steady-state distri-
bution (SSD) are both much shorter for strained fibers. We have demonstrated that the mode 
coupling in strained and unstrained multimode SI POFs that comes from the random perturba-
tions (RPs) of the fiber can be successfully treated by the LE. The study’s findings can be used to 
improve communication and sensory systems that use multimode SI POFs under different bending 
circumstances. Additionally, it is crucial to be able to compute the modal distribution of the SI 
POFs used in the optical fiber sensory system at a specific length and under various bending 
scenarios.   

1. Introduction 

The preferred transmission medium in long-distance communication systems for decades has been silica optical fibers [1,2]. A 
multimode POF, on the other hand, is often considered for high-performance short data lines (less than 100 m) [3,4]. Since POFs pair 
light effectively because of their wide diameter and high NA, many POF applications in power delivery systems [5,6], sensors [7,8], 
and short-range communication links [9,10] have been investigated. Applications for POF have a market with room for expansion in 
huge, complex constructions, moving vehicles, or locations where the network is periodically rebuilt [11,12]. 

Intrinsic fiber’s RP effects, such as minute bends, abnormalities at the core and cladding interface, and modifications in the 
refractive index (RI) distribution, are the cause of mode coupling. In practice, RPs in POFs are realized by heating, bending, radiating, 
corrugating and etching. Mode coupling improves bandwidth and reduces modal dispersion [13]. For example, a stronger mode 
coupling can be achieved by using a mode scrambler near the input fiber end [14]. The output field pattern would vary with fiber 
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length from the one that was initially provided at the input fiber end until EMD was achieved. Mode coupling in optical fibers has been 
the subject of much theoretical and practical study as a result of these features. It has been studied using the PFE for different launching 
conditions and NA [14–18]. Mode coupling has been observed to increase as a result of bending strain [19,20]. We refer to the POFs in 
this study as “strained POFs” and compare their behavior to that of “unstrained POFs” because significant long-duration bending has 
changed the coupling properties. We describe how mode coupling in both strained and unstrained SI POFs was successfully addressed 
using the LE [21]. The mathematical formulation of the stochastic mode coupling problem is provided by the LE. 

2. The PFE and the Fokker-Planck equation 

The Gloge’s time-independent PFE is shown as below [15]: 

∂P(θ, z)
∂z

= − α(θ)P(θ, z) +
D
θ

∂
∂θ

(

θ
∂P(θ, z)

∂θ

)

(1)  

where P(θ,z) is the angular power distribution, θ is the propagation angle, z is the light traveling distance along the fiber, D is the 
constant coupling coefficient [14–18] and α(θ) is the modal attenuation. Due to α(θ) is negligible when θ≈ θc, equation (1) becomes the 
following diffusion equation [18]: 

∂P(θ, z)
∂z

=
D
θ

∂P(θ, z)
∂θ

+ D
∂2P(θ, z)

∂θ2 (2) 

Thus, the internal energy redistribution process of the multimode optical fiber resembles diffusion. The solutions to stochastic 
differential equations (SDEs) represent systems with RPs and function as models for diffusion, as is well known [21]. As mode coupling 
in multimode optical fibers occurs from inherent RPs, an SDE could be used to explain it. To do this, equation (2) is approximately 
represented as: 

∂P(θ, z)
∂z

= − V
∂P(θ, z)

∂θ
+ D

∂2P(θ, z)
∂θ2 (3)  

where V is constant drift coefficient [14,16–18]. If consider P(θ,z) as a probability distribution, equation (3) is therefore revealed to be 
the Fokker-Planck equation (FPE) [21]. The drift coefficient V is given as: 

V =(1 /M)
∑M

r=1
Vr (4) 

In equation (4), Vr is the r-th’s mode drift coefficient. 

3. The Langevin equation 

The FPE (3) transformed into the following form of the LE [21]: 

dθ
dz

= h + gΓ(z) (5)  

where gΓ(z) is the Gaussian distributed random Langevin force with the strength g. Equation (5) is SDE due to it contains the random 
force, such that we have [9]: 

〈Γ(z)〉 = 0
〈Γ(z)Γ(z′)〉 = 2δ(z − z′)

(6) 

Using equation (6) and adhering to the Ito rule [21], one gets V=h and D= g2. Finally, the LE is given as: 

dθ
dz

=V +
̅̅̅̅
D

√
Γ(z) (7) 

The first term on the right-hand side of (7) has behavior that is entirely deterministic. The distribution is shifted in the direction of 
= 0 as a result. The impacts of the stochastic nature and internal noise of the fiber’s intrinsic perturbations are shown in the second 
term. It is describes broadening the θ distribution. It should be observed that when the boundary condition in equation (7) is satisfied, 
equation (7) reduces to equation (8), when the boundary condition in equation (2) D(∂P/∂θ)=0 at θ = 0 is satisfied: 

dθ
dz

=
̅̅̅̅
D

√
Γ(z) (8) 

The angle θn+1 at optical fiber length zn+1 could be determined by solving the LE (7), which is re-written as: 

θn+1 = θn + Vk +
̅̅̅̅̅̅
Dk

√
ωn (9)  

where n=0, …,N-1 and ω0,…,ωN− 1 are independent Gaussian random numbers such that < ωn >= 0 and < ωnωn′ >= 2δnm. 
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According to equation (8), equation (9) for θn = 0, becomes: 

θn+1 =
̅̅̅̅̅̅
Dk

√
ωn (10) 

Thus, one obtains θN = θ(zf ). By computing a large number of representations of ωn, and average them over intervals Δθ for 0 ≤ θ ≤

θc, one obtains < θ(zf ) >. It is important to note that optical fiber perturbations are known to be random. In contrast to the deter-
ministic PFE (2) and FPE (3), the LE explicitly describes the stochastic process of energy redistribution in optical fiber. In this work, in 
our knowledge for the first time, a mode coupling process in strained POFs is investigated using the LE. 

4. Numerical results and discussion 

Here, we investigated the multimode SI POF that was experimentally tested by Losada et al. [19] under both strained and un-
strained conditions. This POF was from Toray: PFU-CD1001-22E (PFU), and it had a 1-mm-diameter polymethylmethacrylate core, 
numerical aperture NA = 0.46, and RI of the core n1 = 1.492. The number of modes that propagate along this fiber at λ = 633 nm is: 
N = 2π2a2(NA)2/λ2 ≈ 2.6× 106. This large number of modes, which is required for the adoption of the approach proposed in this 
paper, may be represented by a modal continuum. 

Parts of the POF were bent at regular intervals to produce consistent bending strain, as illustrated in Fig. 1, and their mode coupling 
characteristics were assessed while other segments were kept unaltered for comparison [19]. Coupling coefficient values D = 7.3×
10− 4 rad2/m for the unstrained and D = 1.3 × 10− 2 rad2/m for the strained PFU POF, have been previously reported [19] – which have 
been adopted in this work. For the explicit finite-difference (EFD) approach to be stable, step lengths of Δθ = 0.05◦ and Δz = 0.0002 m 
were utilized to solve the PFE (2). With a constant step-length k = 0.0005 m, the LE is solved using Monte-Carlo sampling of 5× 105 

representations of the ωn in equations (9) and (10) in the intervals of Δθ = 0.05◦. 
Figs. 2 and 3 depict the power distribution for different POF lengths as calculated numerically using the LE (5) and the PFE (2) for 

unstrained PFU POF. From Figs. 4 and 5, one can compare the power distribution for varied POF lengths as determined by the solutions 
of the LE (5) and the PFE (2) for strained PFU POF, respectively. We present results for launch angles θ0 = 0,5, 10, and 15◦. The 
numerical solutions of the LE and PFE can be seen to be in good agreement. For short POF shown in Fig. 2(a) and 3(a) 4(a) and 5(a), 
low-order modes’ distributions have shifted towards θ = 0◦. Longer POF lengths allow for the coupling of higher-order modes as Fig. 2 
(b), 3(b) and 4(b) and 5(b) shown. For the unstrained PFU POF, the EMD is achieved at coupling length Lc = 18 m, where the highest- 
order modes shift their distribution to θ = 0◦ as Fig. 2(c) and 3(c) shown. Fig. 4(c) and 5(c) indicate that coupling length of Lc = 0.9 m 
characterizes the strained PFU POF. The SSD is reached at length zs = 49 m in Fig. 2(d) and 3(d) for the unstrained PFU POF and in 
Fig. 4(d) and 5(d) at length zs = 2.5 m for the strained PFU POF. The coupling coefficient D for strained POFs is more than an order of 
magnitude larger than for an unstrained POF. This leads to much shorter characteristic lengths Lc and zs for equivalent strained POFs. 

It should be noted that we have determined the drift coefficients V=(–0.291 ± 0.005) and (− 0.015 ± 0.005) rad/m for the strained 
and unstrained PFU POF, respectively, by averaging Vr (r = 1, 2, 3) for modes with launch angles θ0 = 5,10 and 15◦ in equation (4). 

The LE does not have the same issue as the FPE and PFE, which require a very fine mesh in the FD approach to get highly accurate 
numerical solution (high memory consumption). Speed of execution, memory consumption and complexity are used to measure the 
effectiveness of the LE integration algorithm and the EFD algorithm for obtaining the numerical solution of the PFE. Execution times 
for the LE and the PFE on the Intel(R) Core(TM) i3 CPU 540 @ 3.07 GHz computer for the longest investigated fiber length of 49 m are 
1.2 min and 1.7 min, respectively. When expressed in terms of a 2-dim array, the memory requirements for the LE and the PFE are 656 
× 3.1 × 105 and 656 × 3.1 × 106, respectively. Compared to the solution of the LE, the EFD solution of the PFE is more difficult. 

To summarize, we have shown that the LE can be used to effectively treat a light transmission in multimode SI POFs that are both 
strained and unstrained. Unlike to the FPE and the PFE, the stability of the numerical solutions for the LE does not require special 
consideration. The results of this study can be used to predict the signal transmission performance of strained and unstrained SI POFs in 
communication or sensing systems [22,23]. For instance, varying bending circumstances result in varying fiber strain, varying mode 
coupling coefficient D, and subsequently varying modal distribution. Utilizing a POF as a strain sensor is possible using this POF 
feature. A similar approach has been used in investigation of mode coupling in unaltered low NA POFs [24] and microstructured POFs 
[25]. 

Fig. 1. An illustration of the experimental setup for creating bending strain [7].  
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5. Conclusions 

In this paper, we investigated a transmission properties of strained and unstrained multimode SI POFs using the LE. When 
compared to unstrained POF of the same type, strained POF exhibits substantially stronger mode coupling. As a result, strained POFs 
have much shorter coupling lengths than unstrained POFs and require a shorter POF length to form an SSD. The LE explicitly rec-
ognizes the stochastic nature of the various inherent perturbation strengths of the strained and unstrained SI POFs. We have 
demonstrated that a mode coupling process in multimode SI POFs, both strained and unstrained, may be successfully addressed by the 
LE. The results of this study can be applied to sensory and communication systems that employ multimode SI POFs at various bending 
conditions. 

Fig. 2. Power distribution normalized at various points along the unstrained PFU POF calculated by solving the LE (5) for four Gaussian input 
angles θ0 = 0◦ (red line), 5◦ (yellow line), 10◦ (green line) and 15◦ (blue line) for: (a) z = 4 m; (b) z = 10 m; (c) z = 18 m and (d) z = 49 m. 

Fig. 3. Power distribution normalized at various points along the unstrained PFU POF calculated by solving the PFE (2) for four Gaussian input 
angles θ0 = 0◦ (red dots), 5◦ (yellow dots), 10◦ (green dots) and 15◦ (blue dots) for: (a) z = 4 m; (b) z = 10 m; (c) z = 18 m and (d) z = 49 m. 
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Fig. 4. Power distribution normalized at various points along the strained PFU POF calculated by solving the LE (5) for four Gaussian input angles 
θ0 = 0◦ (red line), 5◦ (yellow line), 10◦ (green line) and 15◦ (blue line) for: (a) z = 0.2 m; (b) z = 0.5 m; (c) z = 0.9 m and (d) z = 2.5 m. 

Fig. 5. Power distribution normalized at various points along the strained PFU POF was calculated by solving the PFE (2) for four Gaussian input 
angles θ0 = 0◦ (red dots), 5◦ (yellow dots), 10◦ (green dots), and 15◦ (blue dots) for: (a) z = 0.2 m; (b) z = 0.5 m; (c) z = 0.9 m and (d) z = 2.5 m 
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[13] M.Á. Losada, M. Mazo, A. López, C. Muzás, J. Mateo, Experimental assessment of the transmission performance of step index polymer optical fibers using a green 

laser diode, Polymers 13 (2021) 3397. 
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[25] S. Savović, L. Li, I. Savović, A. Djordjevich, R. Min, Treatment of mode coupling in step-index multimode microstructured polymer optical fibers by the Langevin 

equation, Polymers 14 (2022) 1243. 
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