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Abstract

Background: Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative
life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith
of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth.

Methodology and Principal Findings: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane
localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10
and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4?7H2O concentrations observed
with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high
MgSO4?7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of
magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to
be relatively tolerant of high levels of MgSO4?7H2O in soil solution. Differentially expressed genes in Col-0 treated for
45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins,
kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were
differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The
importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were
differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment.

Conclusions/Significance: The results provide a solid basis for the understanding of the metabolic response of plants to
elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the
development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate,
and by elucidating a small subset (500 vs. .10,000) of candidate genes for mutation or metabolic engineering that will
enhance tolerance to magnesium sulfate soils.
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Introduction

Long duration human missions to Mars must rely on more than

just stored supplies and physico-chemical means to regenerate air

and clean water. The Advanced Life Support (ALS) scenarios

envisioned for extended manned missions will depend upon the

efficient use of local planetary resources and the recycling of limited

materials such as water, pressurized atmosphere, and organic

matter, while producing food to augment supplies [1]. The use of in

situ regolith for plant growth in a future bioregenerative life support

system on Mars may have several advantages over hydroponic

systems [2,3]. These include the immediate bioavailability of plant

essential ions, low-tech mechanical support for plants, and easy

access to in situ materials once on the surface. However, plant

growth may be reduced or inhibited by phytotoxic substances in the

regolith, such as high levels of soluble magnesium sulfate minerals.

Hydrated forms of magnesium sulfate such as MgSO4?7H2O

(epsomite) and MgSO4?H2O (kieserite) have been detected in

several regions by the Mars Express Satellite [4,5,6]. Analyses by the

Mars Exploration Rover landers at Meridiani Planum and Gusev

crater have also indicated the presence of high levels of magnesium

sulfate minerals (up to 10 wt%) in outcrops and soils [7,8,9].
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High levels of hydrated sulfate minerals in regolith on Mars

used in bioregenerative life support systems will lead to exposure of

plant roots to supra-optimal concentrations of both Mg2+ and

SO4
22 ions in the soil solution. Plants may have evolved to cope

with relatively high levels of elements in the soil environment by

limiting internal accumulation or tolerating high internal concen-

trations [10]. In a potential bioregenerative life support system on

Mars, an excess of a particular element in the crew’s diet could

affect the availability of other required elements. This study

therefore first determined whether knockout mutant lines for genes

encoding certain transporters responsible for uptake of Mg2+ and

SO4
22 ions in roots could enhance plant tolerance to high levels of

magnesium sulfate in the growth medium and then moved to a

molecular analysis of the responses to Mg2+ and SO4
22 in order to

increase the potential pool of candidate genes.

Various efforts have previously illustrated that the disabling of

transporter genes can indeed improve tolerance to certain

elements. For example, a line of transgenic wheat plants expressing

an antisense construct of the high affinity K+ transporter

TaHKT2;1 showed reduced sodium uptake by roots and

enhanced growth relative to unstressed plants compared to a

control line at high levels of NaCl in the growth medium [11].

Several plasma membrane localized proteins in the outer cell

layers of Arabidopsis roots are known to be responsible for

magnesium or sulfate ion uptake. Two specific genes, AtMRS2-10

and AtSULTR1;2, were chosen for this study, in part because of

their localization and because of availability of knockout lines.

AtMRS2-10 ( = AtMGT1) functionally complemented a bacterial

mutant lacking Mg2+ transport capability and AtMRS2-10-GFP–

expressing plants showed fluorescence in the periphery of root

cells, suggesting a plasma membrane association [12]. AtMRS2-10

is, to date, the only member of the AtMRS2 family that is known to

be associated to the plasma membrane of root cells in addition to

having Mg2+ ion transport capability. Therefore, a knockout

mutant line of the AtMRS2-10 gene (mrs 2-10) was characterized

for this study based on the SALK_100361.41.30.x T-DNA

insertion line [13]. AtSULTR1;2 is a constitutively expressed

sulfate transporter gene whose product AtSULTR1;2 is localized

in root hair, epidermal and cortical cells where it ensures sulfate

uptake into plants under sulfur-replete conditions [14]. A knockout

mutant line of the AtSULTR1;2 gene (sel1-10) was shown to take up

80% less sulfate than wildtype when grown for 12 days on agar

with optimal levels (1.7 mM MgSO4?7H2O) of sulfate [15].

Knockout lines of genes encoding vacuolar H+/Ca2+ transport-

ers CAX1 and CAX3 were also analyzed to present perspective of

other, non-plasma membrane, cellular transporter locations. The

cax1-1 and cax1/cax3 lines were previously shown to be more

tolerant of high Mg2+ levels in the form of MgCl2 when grown on

agar [16,17]. In a separate study, a CAX1 knockout mutant was

identified through a mutant screen on nutrient solutions reflecting

low Ca:Mg ratios characteristic of serpentine soils [18]. When high

MgSO4?7H2O concentrations are applied, the Ca:Mg ratio of the

nutrient solution decreases, which therefore makes the cax1-1 and

cax1/cax3 mutants candidates for high magnesium sulfate

tolerance. This study determined whether enhanced tolerance to

low Ca:Mg ratios is maintained when cax1-1 and cax1/cax3

mutants are exposed to elevated SO4
22 in addition to elevated

Mg2+ in soil medium.

These candidate genes for enhanced magnesium sulfate

tolerance that are presented above were selected based on

previous literature describing the results of individual gene or

gene family analyses. Genome-wide transcriptome analyses of

plants exposed to elevated concentrations of magnesium, sulfate,

or magnesium sulfate in the growth medium have not been

reported to date. In order to increase the number of candidate

genes that could play a role in enhancing growth performance of

plants exposed to this abiotic stress, root transcriptome remodeling

in Col-0 was analyzed after short-term (45 min.) hydroponic

exposure to a non-lethal, high concentration of MgSO4?7H2O.

This early time point was chosen to capture part of the primary

stress responses. The differential expression of transporter genes

was analyzed after 90 min. and 180 min. in addition to 45 min.,

as this group in particular may represent a metabolic strategy for

tolerance to an elevated magnesium sulfate environment. The root

transcriptome of the transporter gene knockout mutant cax1-1 was

furthermore contrasted with that of Col-0 after both genotypes

were exposed to MgSO4?7H2O treatment for 180 min. Based on

their previously identified tolerance to high MgCl2 and low Ca:Mg

ratios, cax1 mutants are likely to show enhanced growth compared

to wildtype when exposed to high magnesium sulfate levels.

Furthermore, ionome analyses of cax1 mutants showed that they

have significantly reduced levels of Mg2+ in their leaves compared

to wildtype [18].The cax1/cax3 double knockout mutant, while

having the potential to show tolerance to elevated MgSO4?7H2O

based on its tolerance to MgCl2 and its reduced shoot levels of

Mg2+, showed significant differences in concentration of multiple

elements, and grew more slowly than wildtype under regular

nutrient conditions [17]. Since cax1-1 mutants did not display

negative effects on growth under regular nutrient conditions, cax1-

1 rather than cax1/cax3 was included in the root transcriptome

analysis. Genes differentially regulated between cax1-1 and Col-0

grown under stress conditions could reveal those molecular

processes possibly leading to significant differences in growth

performance at the whole plant level. A hydroponic medium was

chosen to mimic root exposure to a specific soil solution in order to

directly link transcriptome responses to the level of bioavailable

ions that roots may experience in a hypothetical root zone of a

regolith profile on Mars [19]. The treatment concentration of

MgSO4?7H2O was based on the low Ca:Mg ratio that can occur

in serpentine soils on Earth. Because of their high amount of

bioavailable magnesium, Serpentine soils can be seen as a partial

analogue for regolith high in magnesium sulfate on Mars [20].

Materials and Methods

Mrs2-10 T-DNA Insertion Line Characterization
A homozygous knockout T-DNA insertion line for AtMRS2-10

(At1g80900) was identified by PCR and RT-PCR using the

original SALK_100361.41.30.x line (Fig. 1a,b). For PCR,

oligonucleotide primers MRS2-10_LP (59-CAGGATCAAAG-

CATCGTTCTC-39) and MRS2-10_RP (59-TAGGAGCTCA-

GAAGACGCAAC-39) were designed using software available on

the Salk Institute website (http://signal.salk.edu/tdnaprimers.

html). In addition, the T-DNA specific primer LBb1 (59-

GCGTGGACCGCTTGCTGCAACT-39) was included as de-

signed and recommended by the Salk Institute. Combinations of

the primers were used to identify plants for which the T-DNA

insertion was present in both AtMRS2-10 alleles. Genomic DNA

was extracted from T-DNA insertion mutant leaves using the

Shorty method. For this method, 500 uL Shorty Buffer (0.2 M

Tris-HCL pH 9.0, 0.4 M LiCl, 25 mM EDTA, and 1% SDS) was

added to ground leaf tissue (,0.25 cm2) in a microcentrifuge tube.

The tube was then spun for 5 min. at high speed in a

microcentrifuge. Supernatant (350 uL) was transferred to a new

tube containing isopropanol (350 uL). The two volumes were

mixed by inversion and the tube was spun for 10 min. at top speed

in a microcentrifuge. After this, the liquid was discarded and the

pellet was air-dried before being resuspended in 100 uL TE buffer.

Arabidopsis in Mars-Like MgSO4
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Genomic DNA was extracted from Col-0 leaves using the DNeasy

Plant Mini Kit (Qiagen). PCR was carried out using JumpStart

Taq DNA polymerase (Sigma). PCR products were separated in

agarose gels and stained with SYBR Safe DNA gel stain

(Invitrogen). A confirmed homozygous T-DNA insertion mutant

was backcrossed to Col-0 three times before allowing self-

fertilization. Homozygous plants backcrossed 36 were identified

by PCR and used for seed generation. For RT-PCR, RNA was

extracted from leaves of Col-0 and a homozygous T-DNA

insertion line for AtMRS2-10 (At80900) with the RNeasy Plant

Mini Kit (Qiagen). Gene specific oligonucleotide primers MRS2-

10_LP1 (59-AGGGTTACTTTGTCGGAGA-39) and MRS2-

10_RP1 (59-TACACGGGGTTTTATCTTG-39) were designed

based on Arabidopsis genomic DNA sequence information

(NCBI). Alpha-(a)-Tubulin was used as a constitutive control with

primers according to Yoshimoto (2002). RT-PCR was carried out

using the OneStep RT-PCR kit (Qiagen). PCR products were

separated in agarose gels and stained with SYBR Safe DNA gel

stain (Invitrogen). An ionome analysis of the backcrossed

homozygous AtMRS2-10 knockout mutants (mrs2-10) was per-

formed as part of the Purdue Ionomics project and results are

available online through the Purdue Ionomics Information

Management System (http://www.ionomicshub.org/home/

PiiMS) [21].

Plant Growth Experiments on Soil Medium
Seeds from the Ws, Col-0, mrs2-10, sel1-10 [15], cax1-1 [16]

and cax1/cax3 [17] lines were sterilized by soaking them for

15 minutes in a 40% (v/v) bleach solution with a drop of Tween

20 (polyoxyethylenesorbitanmonolaureate). The seeds were then

washed six times with sterilized (autoclaved) water. To control for

environmental variation when comparing plant growth per

concentration, each tray was divided in 8 sections of 6 wells

each, with either a mutant line or its associated wildtype

background line planted in one section, in alternating fashion.

This method resulted in 4 sections per seed line per tray. The

seeds were evenly planted (5 seeds per tray well) on the soil

medium (sphagnum peat moss, vermiculite and perlite) that was

wetted with nutrient solution. The basic and control nutrient

solution consisted of 2.2 g/L Murashige and Skoog salts (Sigma-

Aldrich) and 0.5 g/L MES buffer (Sigma-Aldrich). For the

treatments, MgSO4?7H2O (Sigma-Aldrich) was added to the

basic solution at 20, 60, 80 or 100 mM concentration. The pH of

the solutions was adjusted to 5.70–5.75 with KOH. The trays

with soil were covered with plastic wrap to maintain sufficient

humidity and placed in a cold room at 4uC for three days. After

stratification, the trays were moved to a growth room at 23uC
where they were randomly placed on the growth benches. There,

the seeds germinated, the plastic wrap was removed after 3–5

days, and the surviving plants were thinned to two plants per well

(maximum of 12 plants per section) after one week to maintain

sufficient spacing. The plants were sub-irrigated twice a week,

alternatively with tap water and the appropriate nutrient solution.

The plants were analyzed at week 4 and the experiment was

repeated three times.

Growth Performance Measurements and Statistical
Analysis

Fresh weight biomass of plants grown on soil was measured by

grouping and weighing whole shoots of plants per tray section.

Leaf chlorophyll content of plants grown on soil medium was

measured with a Minolta SPAD-502 meter. One leaf measure-

ment per plant per tray well was taken. Biomass or chlorophyll

levels of wildtype and knockout mutant Arabidopsis lines were

evaluated in a mixed analysis of variance (ANOVA) model using

SAS 9.2 and JMP Genomics 7 software. Genotype and

concentration were included in the ANOVA model as fixed

effects, while batch (replication set) was included as a random

effect. Unbiased estimates of biomass or chlorophyll levels (least-

square means) were generated for each effect (genotype,

concentration, or genotype and concentration) per experiment.

The estimated levels of biomass or chlorophyll were then

compared using a series of t-tests, generating estimated differences

and corresponding p-values. Differences with associated p-

values,0.05 were considered significant. Results of the ANOVA

analysis are presented in Table S1.

Figure 1. Homozygous knockout mutant line mrs2-10. (a) A homozygous T-DNA insertion mutant for AtMRS2-10 (At1g80900) was identified by
PCR based on the SALK_100361.41.30.x line. (b) RNA extracted from mrs2-10 and Col-0 leaves was tested for the presence of MRS2-10 mRNA with
gene-specific primers. Alpha-(a)-Tubulin (TUB) was used as a constitutive control.
doi:10.1371/journal.pone.0012348.g001

Arabidopsis in Mars-Like MgSO4

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12348



Hydroponic Root Growth
The hydroponic set-up for Arabidopsis that was used in this

study is based on two previously described systems [22,23]. Glass

containers (2.6 L) were covered with opaque black plastic sheeting

along the glass, and with opaque plastic lids across the top. In each

opaque plastic lid, 18 holes (d = 1.43 cm) were made at regular

intervals with a hole puncher. A 2-cm-long Rockwool (Grodan)

plug (d = 1.59 cm) was placed in each hole. Containers were filled

with a nutrient solution adjusted to pH 5.7 by KOH that was

replaced once a week. It consisted of distilled water, 0.25 g/L

MES buffer, and 1/32x MS salts during week 1 and 2, while the

concentration of MS salts increased to 1/16x during week 3.

Arabidopsis seeds were sterilized and stratified before planting

about ten seeds per Rockwool plug. Col-0 seeds were planted on

18 containers while cax1-1 seeds were planted on 6. Containers

were covered with transparent plastic wrap during the first 3–5

days of germination. Holes were made in the plastic wrap after 1–3

days depending on the general atmospheric humidity. The

containers were randomly placed over 3 benches (8 containers/

bench). Air was supplied to the roots by one 3W air pump per 8

containers; each container had an airstone made from glass beads.

After one week, seedlings were thinned to one seedling per

Rockwool plug, so that every container supported 18 plants

(Fig. 2a). At day 21, Col-0 and cax1-1 roots were exposed to the

basic nutrient solution (0.25 g/L MES, 1/16x MS, pH 5.7) with

an additional 2.08 mM magnesium sulfate (total Ca:Mg ra-

tio = 1:15). Col-0 was exposed for 45 min., 90 min., or 180 min.,

while cax1-1 was exposed for 180 min. only. The Col-0 control set

received no extra magnesium sulfate and was harvested at 45 min.

together with the first Col-0 treatment set. Four replicate

containers were harvested for the control and each of the

treatment sets (Fig. 2b). Roots were cut below the Rockwool plug

and pooled per container before being flash frozen in liquid

nitrogen and stored at 280uC.

Microarray Procedures, Statistical Analysis and Data
display

RNA was extracted from root samples with the RNeasy Plant

Mini Kit (Qiagen). Samples were weighed while still frozen and

reagents were adjusted to the total measured weight for the

grinding and lysing step. Two replicate extractions were completed

per sample with lysate volumes corresponding to 100 mg frozen

wet weight each. The remainder of a sample was stored at 280uC
as cleared lysate according to the Qiagen protocol. The quality

and quantity of the extracted RNA was checked with denaturing

agarose gels stained with ethidium bromide and the NanoDrop

1000 Spectrophotometer (Thermo Scientific). RNA from each

sample was amplified and labeled with cy3 dye by using Agilent

Quick Amp labeling kit, one color. A total of 20 samples were

hybridized to five 4644k Arabidopsis microarray slides (Agilent),

which were then washed and scanned before data was extracted.

Microarray handling and data extraction was done at the

Interdisciplinary Center for Biotechnology Research (ICBR) at

the University of Florida according to the One-Color Microarray-

Based Gene Expression Analysis (Quick Amp Labeling) Protocol

(version 5.7). Median signal intensities were quantile normalized

using R software. Log2 transformed normalized data were

evaluated using a mixed analysis of variance (ANOVA) model

Figure 2. Overview of hydroponic Arabidopsis growth and root harvest. (a) Set-up for the microarray experiment. (b) Example of
Arabidopsis roots after 21 days of growth, and of root harvest per container for the microarray and Q-PCR experiments.
doi:10.1371/journal.pone.0012348.g002
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[24,25] implemented in SAS 9.2 that included the fixed effect of

each genotype and time of tissue harvest. Unbiased, least square

means estimates of transcript abundance were generated and gene

expression measured in each treatment was then compared to a

control using a series of t-tests; Col-0 sets treated for 45 min.,

90 min., or 180 min were compared to the Col-0 set exposed to a

control solution for 45 min., and these three comparisons are

referred to in the text, tables and figures as Time 45, Time 90, and

Time 180 respectively (Fig. 3). In addition, the cax1-1 set treated

for 180 min. was compared to the Col-0 set treated for 180 min.

(Fig. 3). The p-values generated in these comparisons were

corrected for multiple testing by controlling the False Discovery

Rate (FDR) with the Q-value procedure in the Q-value 1.0

package (default settings) of the R software [26]. A default q-value

threshold of 0.05 was used to declare a significant difference in

gene expression between treatment and control. The results of the

ANOVA analysis are presented in Table S2. Lists of genes with

statistically significant changes in expression were further orga-

nized, analyzed and displayed in tables and figures using JMP

Genomics 7, R software, GeneVenn, GOstat, Cluster 3.0, Java

TreeView 1.1.4r5, the National Center for Biotechnology

Information (NCBI) BLAST tool, and the Arabidopsis Informa-

tion Resource (TAIR) Motif analysis tool.

Quantitative Real-time PCR
Wildtype Arabidopsis plants (Col-0) were grown hydroponically

for 21 days as described above. At day 21, four containers received

a replacement of the basic nutrient solution (0.25 g/L MES, 1/

16x MS, pH5.7), while another four containers received the basic

solution with an additional 2.08 mM magnesium sulfate (total

Ca:Mg ratio = 1:15). Roots of treatment and control plants were

exposed for 180 min. before being harvested per container. RNA

was extracted and checked for quality and quantity as described

above. RNA from these independently grown plants exposed or

unexposed for 180 min., as well as RNA from plants exposed for

180 min. and unexposed for 45 min. in the microarray experi-

ment, were used for the quantitative PCR (Q-PCR) analyses. Q-

PCR was performed using TaqMan reverse transcription reagents

and Power SYBR Green PCR Master Mix (Applied Biosystems).

1 ug of total RNA was reverse transcribed per sample for a total of

three control and three treatment samples. Primers were designed

for 5 genes using Primer Express (Applied Biosystems) (Table 1).

At2g32170 was chosen as a stably expressing reference gene

appropriate for abiotic stress treatment [27]. Each template/

primer pair combination was run in triplicate. The relative

increase or decrease of mRNA abundance between the two sample

sets was calculated by using the Pfaffl method, and statistical

analysis of the results was done with the REST 2008 2.0.7

software.

Results

Plant Growth Performance
The growth performance of transporter gene knockout mutant

lines and their respective wildtype backgrounds grown for four

weeks on soil treated with MgSO4?7H2O in solution (0–100 mM)

was compared on the basis of shoot fresh weight (FW) biomass and

leaf chlorophyll levels. Figure 4 shows the growth habit of mrs2-10

and sel1-10 plants compared to wildtype in the left hand panels,

and of cax1-1 and cax1/cax3 compared to wildtype in the right-

hand panels. Statistical analysis of the FW shoot biomass of

wildtype Arabidopsis (Ws, Col-0) with ANOVA confirmed the

significant phytotoxic effects of increasing concentrations of

dissolved MgSO4?7H2O on wildtype plant growth (Table S1).

Subsequent ANOVA analyses assessed whether selected mutant

Figure 3. Overview of the microarray experiment. The experi-
ment included 20 arrays in total, each with a single cy3-labeled sample
hybridized to it. Each sample set consisted of 4 biological replicates.
Gene expression was compared among the sets as indicated by the
arrows; Col-0 sets treated for 45 min., 90 min., or 180 min. were
compared to the Col-0 set exposed to a control solution for 45 min.,
and these three comparisons are referred to in the text, tables and
figures as Time 45, Time 90, and Time 180 respectively. The comparison
of cax1-1 with Col-0 treated for 180 min. is not referred to in
abbreviated form.
doi:10.1371/journal.pone.0012348.g003

Table 1. Genes and related primer sequences selected for Q-
PCR analysis.

Gene ID Primer sequence

At2g32170 (reference gene) FW: 59-GTTAAATCATGACCATGGCAGTGT-39

RV: 59-CTACATCAACCAGAGGAACATGTGT-39

At2g38170 (CAX1) FW: 59-GCGACTCAGATTGGCTTATTCG-39

RV: 59-GATCCATATTAATTCCCAAAATCCA-39

At1g80900 (MRS2-10) FW: 59-TTCTCTGTCTGCGCCAGTTTC-39

RV: 59-GGCTCCTTACAATGCTCAAGCT-39

At3g15990 (SULTR3;4) FW: 59-GGTGAAGCTGTGGCTGATCTC-39

RV: 59-GCTCCATCTTCAGAAACAGTCTCTCT-39

At1g80830 (NRAMP1) FW: 59-ACAGGATCTGGACGGTCTCAA-39

RV: 59-GATGAGTGGAGAATTGGAGAAGCT-39

doi:10.1371/journal.pone.0012348.t001
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lines could alleviate the growth-limiting effects seen in wildtype.

Results showed that FW shoot biomass and leaf chlorophyll

content of mrs2-10 and sel1-10 lines were indistinguishable from

that of wildtype at the tested concentrations (Fig. 5a–d, Table S1).

Ionome analysis of the mrs2-10 mutant exposed to regular nutrient

conditions furthermore did not reveal a statistically different leaf

Mg content compared to Col-0 (http://www.ionomicshub.org/

home/PiiMS). Although there was little difference between the

mrs2-10 and sel1-10 lines and their respective wild-type back-

grounds, the cax1-1 and cax1/cax3 lines showed relative improve-

ment in their ability to grow on MgSO4?7H2O enriched soil. Cax1-

1 plants had significantly higher FW shoot biomass and leaf

chlorophyll content than Col-0 grown at 80 and 100 mM

MgSO4?7H2O (Fig. 5e,g, Table S1). The increase in cax1-1 shoot

biomass over that of Col-0 was 89% and 149% at 80 and 100 mM

respectively. The CAX1 knockout mutation did not fully eliminate

the effects of high magnesium sulfate on plant growth perfor-

mance; the absolute FW shoot biomass of cax1-1 grown on soil for

four weeks was still low (20%) compared to untreated Col-0

(Fig 5e). Cax1/cax3 plants showed significantly higher leaf

chlorophyll content than Col-0 grown at 80, and 100 mM, but

the average FW shoot biomass increases of 26.8% and 33.2%, at

80 and 100 mM, were not found to be statistically significant

(Fig. 5f,h, Table S1). The significant differences in FW shoot

biomass and leaf chlorophyll content between cax1/cax3 and Col-0

grown at 0 mM MgSO4?7H2O were described in detail by Cheng

et al. (2005). In this study, 0 mM was only included as a point of

reference for the high concentrations of MgSO4?7H2O.

Figure 4. Overview of the Arabidopsis growth experiment on soil. Mutant lines are grown alongside their respective wildtype backgrounds
on trays containing soil medium with different levels of dissolved MgSO4?7H2O. To control for environmental variation, each tray was divided in 8
sections, with a mutant line and its associated wildtype background line planted in alternating fashion. Yellow boxes highlight the sections with
mutant plants within each flat; the other sections contain wildtype plants. For the comparison between cax1/cax3 and Col-0, 60 mM was not tested.
The plants shown here are 3 weeks old and were harvested and analyzed after completing 4 weeks of growth. The experiment was repeated three
times.
doi:10.1371/journal.pone.0012348.g004
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Root Transcriptome
Root transcriptome remodeling was analyzed in Arabidopsis

after hydroponic exposure to a non-lethal, high concentration of

MgSO4?7H2O (Fig. 2, Fig. 3, Table S2). The number of genes

with statistically significant differences in expression between Col-0

exposed to MgSO4?7H2O and Col-0 exposed to control conditions

increased from 325 (Time 45) to 1516 (Time 90) and 3265 (Time

180) (Fig. 6). The number of genes with a significant difference in

expression of over 2-fold increased accordingly, from 100 to 248

and 445. Between cax1-1 and Col-0 exposed to MgSO4?7H2O for

180 min., only 4 unique transcripts showed a significant difference

in expression, and all were over a 2-fold change in abundance

(Fig. 6).

Primary MgSO4?7H2O stress response
The primary root transcriptome responses to MgSO4?7H2O

stress were analyzed in Col-0 treated for 45 min. versus Col-0

treated with a control solution for 45 min. (Time 45) to reveal

genes involved in the metabolic response to this environment as

candidate genes that could play a role in high magnesium sulfate

tolerance. The resulting set of 325 genes with significant

differences in expression was analyzed for over- and under-

represented GO molecular function categories. Significantly over-

represented categories were polygalacturonase activity, calcium

ion binding, and transcription factor activity (Table 2). Many of

the transcripts represented at Time 45 encode phytohormone

associated proteins, transcription factors, Ca2+-binding proteins,

kinases, phosphatases, disease resistance proteins, cell wall related

proteins, membrane-based transporters, as well as proteins of

unknown functional category. The better characterized of these

genes are listed by category in Table 3. For example,

phytohormone associated genes encoding enzymes involved in

ABA (9-cis-epoxycarotenoid dioxygenase), ethylene (1-aminocy-

clopropane-1-carboxylate synthase) and jasmonic acid (lipoxygen-

ase ) biosynthesis pathways show up-regulated expression. The

gene encoding C2H2 type zinc finger family transcription factor

ZAT7 is up-regulated, while the gene encoding transcription

factor WRKY70 is down-regulated at Time 45. The expression of

the gene encoding CBL-interacting protein kinase CIPK9 is up-

regulated. Genes encoding cell-wall and disease-resistance associ-

ated proteins are also well represented; fasciclin-like arabinoga-

lactan proteins, UDP-glucose 4-epimerase (RHD1), xyloglucan

endotransglucosylase (XTH9) and beta-expansin (EXPB1) show

down-regulated expression, while the expression of several genes

encoding alpha-expansin proteins is up-regulated at Time 45.

Well-characterized genes encoding membrane based transporters

that are differentially expressed include those encoding calcium

exchanger CAX1, calcium-transporting ATPase ACA2, cyclic

nucleotide-gated channels CNGC19 and CNGC1, potassium

transporter HAK5 and inorganic phosphate transporter PHT1.

The 500 bp upstream regions of the down-regulated and up-

regulated genes at Time 45 were statistically analyzed for over-

represented six-mer sequences (motifs), which may correspond to

cis-regulatory elements. Table 4 lists the ten motifs with the highest

significance (lowest p-values) for both the up-regulated and down-

regulated subsets of genes. The motif with the highest significance

in the subset of up-regulated genes is an ABRE coupling element

(ABRE-CE). The 325 differentially expressed genes at Time 45

were furthermore compared with a cluster of 197 genes that are

known to be differentially expressed in response to a broad range

of stress conditions, including cold, osmotic stress, salinity,

wounding, and biotic stresses [28]. The comparison showed that

at least 18 of the 325 genes differentially expressed at Time 45

appear to be universally responsive to stress conditions (Table 5).

These include for example genes encoding Ca2+-binding, kinase,

zinc finger, and disease resistance proteins.

Membrane transporters Col-0 time series
Of special interest is the differential expression of transporter

genes as they may represent a metabolic strategy for tolerance to

an elevated magnesium sulfate environment. Over 200 different

genes encoding membrane-based transporters were differentially

expressed across the Col-0 time series (Table S2). Since the Time

90 and 180 comparisons are not fully controlled for diurnal effects,

gene expression differences for several transporter genes of interest

to this study were analyzed by Q-PCR using diurnally controlled

samples. The number of differentially expressed transporter genes

increased from 13 at Time 45, to 74 at Time 90 and 189 at Time

180 (Table 2). The expression of the 217 unique genes encoding

transporters across the Col-0 time series was analyzed by cluster

algorithms to reveal subsets of genes with corresponding patterns

of expression (Fig. 7 and Fig. S1).

The differential expression of genes encoding known magne-

sium, sulfate and calcium/proton transporters is summarized in

Table 6. The summary shows that the expression of the genes

encoding magnesium transporters MRS2-10 and MRS2-7 is

slightly up-regulated. Genes encoding sulfate transporters

SULTR3;4, SULTR3;1 and SULTR4;1 (a vacuolar H+/SO4
22

cotransporter) show down-regulated expression. The down-

regulated expression of the gene encoding SULTR3;4 was

confirmed by Q-PCR at 180 min., although its down-regulated

expression was less pronounced when controlled for diurnal effects

(Table 7, Fig. 8). The gene encoding the vacuolar Mg2+/H+

antiporter (MHX) shows up-regulated expression, while the

vacuolar Ca2+/H+ antiporters CAX1, CAX2 and CAX3 show

down-regulated expression. The down-regulated expression of

CAX1 was confirmed by Q-PCR after 180 min. of exposure when

controlled for diurnal effects (Table 7, Fig. 8). Besides the genes

described above, there were many examples of differentially

expressed genes encoding transporters of unknown function

belonging to several large transporter gene families. Represented

families include the MATE efflux family, the ABC transporter

family, the integral membrane family, the major intrinsic protein

family, the cation efflux family, the cation-chloride cotransporter

family, the anion exchange family, and the ATPase E1–E2 type

family. In addition, several genes encoding transporter-related

proteins and putative transporters were differentially expressed.

Differentially regulated genes cax1-1/Col-0 comparison
Only 4 unique transcripts showed a significant difference in

expression between the cax1-1 and Col-0 sample sets treated for

180 minutes (Table 8). Among those, the transcript with the

Figure 5. The shoot fresh weight biomass comparisons of mutant and wildtype lines grown on soil. Average fresh weight shoot biomass
of (a) mrs2-10 and Col-0, (b) sel1-10 and Ws, (e) cax1-1 and Col-0, or (f) cax1/cax3 and Col-0 plants in response to increasing concentrations of
MgSO4?7H2O in soil medium. Bars indicate standard error, n = 12. Average leaf chlorophyll content of (c) mrs2-10 and Col-0, (d) sel1-10 and Ws, (g)
cax1-1 and Col-0, or (h) cax1/cax3 and Col-0 plants in response to increasing concentrations of MgSO4?7H2O in soil medium. Bars indicate standard
error, n = 72. The asterisks indicate statistically significant differences between genotypes (p,0.05) at specific concentrations of MgSO4?7H2O based
on ANOVA.
doi:10.1371/journal.pone.0012348.g005
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smallest q-values and largest differences in expression was CAX1,

the gene that was knocked out in the mutant cax1-1, and which is

represented on the microarray by two different probes. The other

three transcripts included At3g01345, an expressed protein with

similarity to beta-galactosidases in Arabidopsis, At4g07526, an

unknown protein with similarity to other unknown proteins in

Arabidopsis, and chromosomal region CHR2:011819877–

011819818, which corresponds to a portion of the mitochondrial

photorespiration gene At2g27730.

Discussion

The use of regolith on Mars with high levels of hydrated sulfate

minerals for bioregenerative life support systems will lead to

exposure of plant roots to supra-optimal concentrations of both

Mg2+ and SO4
22 ions in the soil solution. The results in this study

show that knockout mutant lines of the known genes in

Arabidopsis encoding root plasma membrane based uptake

transporters of Mg2+ and SO4
22 ions failed to confer an adaptive

Figure 6. Volcano plots of gene expression comparisons at distinct timepoints. (a) Time 45 (Col-0 treated for 45 min. vs Col-0 exposed to a
control solution for 45 min.) (b) Time 90 (Col-0 treated for 90 min. vs Col-0 exposed to a control solution for 45 min.) (c) Time 180 (Col-0 treated for
180 min. vs Col-0 exposed to a control solution for 45 min.) (d) cax1-1 treated for 180 min. vs Col-0 treated for 180 min. The x-axes show log2 values
of the fold changes in gene expression between sample sets. Each dot represents one of 37478 transcripts. Vertical lines indicate absolute fold
change values as indicated on top of the graphs. The y-axes show the 2log10 p-values corresponding to the log2 fold change values. The horizontal
line indicates the 2log10 p-value where the q-value is 0.05. Transcripts whose expression difference (fold change) corresponds to a p-value for which
q,0.05 are above the horizontal line and indicated in red.
doi:10.1371/journal.pone.0012348.g006
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advantage to a MgSO4?7H2O enriched environment. Because

sel1-10 mutants are known to take up 80% less sulfate than their

wildtype background Ws, these results mean that phytotoxic effects

of magnesium sulfate on overall plant growth are dominated by

the Mg2+ cation. Overexpression of AtMRS2-10 (AtMGT1) in

Nicotiana benthamiana led to increased accumulation of magnesium

(Mg), manganese (Mn), and iron (Fe) per unit dry weight and per

plant compared to wildtype plants [29]. However, the potential

role of AtMRS2-10 as a major uptake transporter of Mg2+ in

Arabidopsis remains uncertain based on the observation that mrs2-

10 plants did not show a significant difference in leaf Mg levels

compared to Col-0 under standard nutrient conditions. This could

explain why, despite the indication that Mg dominantly affects

overall plant growth, the mrs2-10 mutant did not show a significant

improvement in growth performance compared to Col-0.

Interestingly, the dominant role of Mg is also supported by the

Table 2. Significantly over-represented GO molecular
function categories within the set of genes with significant
differences in expression at Time 45.

GO category Molecular function Count P-Value

Over-represented

GO:0004650 Polygalacturonase activity 6 0.0176

GO:0005509 Calcium ion binding 8 0.0176

GO:0003700 Transcription factor activity 27 0.0443

The set of 325 genes with significant differences in expression at Time 45 was
analyzed for over- and under-represented GO molecular function categories.
The results were corrected for multiple testing using False Discovery Rate and
the p-value threshold was set to 0.05.
doi:10.1371/journal.pone.0012348.t002

Table 3. Well-characterized genes with significant differences in expression at Time 45 (Col-0 treated for 45 min. vs Col-0 exposed
to a control solution for 45 min.).

Transporters:

Gene Description Log2

At2g38170 calcium exchanger (CAX1) 20.5676

At4g13420 potassium transporter (HAK5) 1.5548

At5g43350 inorganic phosphate transporter (PHT1) (PT1) 0.3541

At4g37640 calcium-transporting ATPase 2 (ACA2) PM-type 0.3525

At3g17690 cyclic nucleotide-binding transporter 2 (CNGC19) 0.9209

At5g53130 cyclic nucleotide-regulated ion channel (CNGC1) 20.3754

Transcription factors:

Gene name Description Log2

At3g46090 zinc finger (C2H2 type) family protein (ZAT7) 0.9947

At3g56400 WRKY family transcription factor (WRKY 70) 20.9454

Kinases:

Gene name Description Log2

At1g01140 CBL-interacting protein kinase 9 (CIPK9) 1.7794

phytohormone associated:

Gene name Description Log2

At1g78390 9-cis-epoxycarotenoid dioxygenase 2.554

At5g65800 1-aminocyclopropane-1-carboxylate synthase 1.8605

At1g72520 lipoxygenase 1.3473

Cell wall related:

Gene name Description Log2

At2g23130 arabinogalactan-protein (AGP17) 21.149

At2g23130 arabinogalactan-protein (AGP17) 20.7107

At1g55330 arabinogalactan-protein (AGP21) 21.0069

At5g10430 arabinogalactan-protein (AGP4) 20.4932

At5g65390 arabinogalactan-protein (AGP7) 20.7772

At4g12730 fasciclin-like arabinogalactan-protein (FLA2) 20.3949

At1g03870 fasciclin-like arabinogalactan-protein (FLA9) 20.501

At1g64440 UDP-glucose 4-epimerase (RHD1) 20.5767

At4g03210 xyloglucan endotransglycosylase (XTH9) 20.4144

At2g20750 beta-expansin (EXPB1) 21.0351

At1g20190 alpha-expansin (EXP11) 0.7098

At3g15370 alpha-expansin (EXP12) 3.2099

At4g01630 alpha-expansin (EXP17) 2.4955

At5g02260 alpha-expansin (EXP9) 0.793

doi:10.1371/journal.pone.0012348.t003
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relative tolerance of the cax1-1 vacuolar H+/Ca2+ transport

mutant plants to elevated levels of MgSO4?7H2O. The soil data

shown in Figures 5 and 6 are in line with the relative tolerance of

cax1-1 on agar to high concentrations of dissolved MgCl2, a

mineral in which the Mg2+ cation is the dominant phytotoxic

factor [16]. In addition, Bradshaw et al (2005) observed that cax1

mutants are better able to tolerate the low Ca:Mg ratios

characteristic of terrestrial serpentine soils. The CAX1 knockout

mutation does not fully eliminate the effects of high magnesium

sulfate on plant growth performance; the absolute FW shoot

biomass of cax1-1 grown on soil for four weeks was still low (20%)

compared to untreated Col-0.

The primary Arabidopsis Col-0 root transcriptome responses to

elevated levels of magnesium sulfate suggest a number of

candidate genes that could play a role in enhancing the growth

performance of plants exposed to this nutrient stress. Transcrip-

tome responses of Arabidopsis Col-0 roots exposed to

MgSO4?7H2O versus a control solution for 45 min. revealed over

300 differentially expressed genes. Genes of known functional

category include those encoding enzymes involved in hormone

metabolism, transcription factors, calcium-binding proteins, kinas-

es, disease resistance proteins, cell wall related proteins, and

membrane-based transporters. The biological significance of this

seemingly diverse set of gene classes illustrates the comprehensive

nature of a primary abiotic stress response. The differentially

expressed genes at Time 45 encoding enzymes in the ABA,

ethylene and jasmonate biosynthesis pathways point to possible

changes in the synthesis of these phytohormones. ABA, ethylene,

and jasmonic acid have all been implicated in adaptive

mechanisms of osmotic stress, ion-mediated signal transduction

and the regulation of transporters [30,31,32]. The exact role of

many of the differentially expressed genes at Time 45 encoding

transcription factors is currently unknown, although some are

associated with tolerance to other abiotic stresses. The up-

regulation at Time 45 of the gene encoding ZAT7 is for example

in line with the finding that ZAT7 renders plants more tolerant to

salinity stress when constitutively expressed [33]. The down-

regulation at Time 45 of the gene encoding WRKY70 correlates

with the observation that WRKY70 functions as a negative

regulator of developmental senescence and is involved in plant

defense signaling pathways [34]. The majority of transcripts

encoding kinases that are differentially expressed at Time 45

encode uncharacterized protein kinases as well as receptor-like

protein kinases (RLKs) with extracytoplasmic leucine-rich repeats

(LRRs) or with an extracellular lectin-like domain. RLKs are

membrane-spanning proteins with a predicted signal sequence and

a cytoplasmic kinase domain that have been implicated in a wide

range of signal transduction pathways [35]. The up-regulated

expression of the gene encoding CBL-interacting protein kinase

CIPK9 at Time 45 is consonant with the fact that CIPK9 is

required for low-potassium tolerance in Arabidopsis [36]. Genes

encoding proteins that belong to the transcription factor or kinase

categories might be transcriptional or post-translational regulators

of transporters [37].

Within the group of genes encoding membrane based

transporters, the Ca2+/H+ antiporter CAX1 is one of the few

Table 4. Motif analysis of 500bp upstream region of genes
with significant differences in expression at Time 45 (Col-0
treated for 45 min. vs Col-0 exposed to a control solution for
45 min.).

oligomer motif name query set genomic set p-value

up-regulated genes

ACGCGG/CCGCGT ABRE-CE 33/156 1155/33518 5.11E-17

CGCGTA/CGCGTA 28/156 1163/33518 9.30E-13

AACGCG/CGCGTT 32/156 1731/33518 1.72E-11

ACGCGT 24/156 1053/33518 1.36E-10

ACACGG/CCGTGT 31/156 1927/33518 1.04E-09

CGCGTC/GACGCG 23/156 1148/33518 3.74E-09

CACGCG/CGCGTG D-box 26/156 1525/33518 8.63E-09

AACACG/CGTGTT 48/156 4731/33518 5.07E-08

ACACGT/ACGTGT 51/156 5594/33518 4.64E-07

ACCGCG/CGCGGT 17/156 940/33518 1.72E-06

down-regulated
genes

ACAGCT/AGCTGT 40/153 3998/33518 7.44E-07

AATAGA/TCTATT 40/153 13809/33518 3.79E-05

GACAGC/GCTGTC 23/153 2068/33518 4.57E-05

AATATG/CATATT 87/153 13955/33518 5.03E-05

AGCCTG/CAGGCT 20/153 1727/33518 8.48E-05

AATAAT/ATTATT 120/153 21856/33518 1.33E-04

ATATTA/TAATAT 106/153 18637/33518 1.72E-04

ATTAGC/GCTAAT 47/153 6439/33518 2.17E-04

CAGCTG 16/153 1317/33518 2.54E-04

AAGACA/TGTCTT 72/153 11483/33518 3.17E-04

The 500 bp upstream regions of the significantly down-regulated and up-
regulated genes at Time 45 were statistically analyzed for over-represented six-
mer sequences (motifs), which may correspond to cis-regulatory elements.
Table 4 lists the ten motifs with the highest significance for both the up-
regulated and down-regulated subsets of genes.
doi:10.1371/journal.pone.0012348.t004

Table 5. Genes with significant expression differences
between Col-0 treated for 45 min. and Col-0 exposed to a
control solution for 45 min.

Gene Description Log2

At1g02400 gibberellin 2-oxidase, putative 0.6555

At1g18740 expressed protein 0.706

At1g19180 expressed protein 0.8927

At1g73540 MutT/nudix family protein 0.7802

At1g74450 expressed protein 1.1068

At2g27080 harpin-induced protein-related 0.5201

At2g30040 protein kinase family protein 0.9232

At2g34930 disease resistance family protein 1.3017

At2g41410 calmodulin, putative 20.78

At2g46600 calcium-binding protein, putative 21.0632

At3g10300 calcium-binding EF hand family protein 1.1562

At3g16720 zinc finger (C3HC4-type RING finger) family protein 20.4137

At4g24570 mitochondrial substrate carrier family protein 1.1447

At4g27652 expressed protein 0.8255

At4g29780 expressed protein 1.4961

At4g35985 senescence/dehydration-associated protein-related 0.6918

At5g12010 expressed protein 0.6498

At5g16830 syntaxin 21 (SYP21)/PEP12 homolog 0.3345

(Time 45) that are known to be universally responsive to abiotic stress.
doi:10.1371/journal.pone.0012348.t005
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transporter genes that are already differentially expressed at

Time 45. Its down-regulated expression is in line with our

finding that the cax1-1 mutant performed better compared to

wildtype when grown on soil with elevated levels of magnesium

sulfate. The slightly up-regulated expression of the gene

encoding magnesium transporter MRS2-10 at Time 90 and

180 agrees with the observation that a knockout mutant of

AtMRS2-10 (mrs2-10) does not show improved growth in the

form of higher FW shoot biomass compared to Col-0 at elevated

levels of magnesium sulfate. MRS2 transporters have been

shown to transport other ions in addition to Mg2+ [29,38].

Schock et al. (2002) speculate that, in line with the large number

of AtMRS2 family members, the function of the AtMRS2 gene

family may be the maintenance of metal ion homeostasis in

different cellular compartments (i.e. over different cellular

membrane systems). The expression of the gene encoding

SULTR1;2, a high-affinity sulfate transporter, showed no

significant differences at the three time points. The fact that

expression of the gene is not down-regulated in the early

adaptation response of Arabidopsis roots to high levels of

magnesium sulfate supports the outcome of the FW shoot

biomass comparison between the AtSULTR1;2 knockout mutant

sel1-10 and Col-0, which showed no advantage for sel1-10. The

gene encoding EIL3, one of the known transcriptional

regulators of SULTR1;2 [39], did not show a significant

difference in expression at any of the time points either.

Interestingly, two sulfate transporter genes of the same family as

SULTR1;2 show down-regulated expression; the gene encoding

SULTR3;4 at Time 90 and 180, and the gene encoding

SULTR3;1 at Time 180. The spatial and subcellular localization

of these transporters is not known, and so far no influence on the

expression of Group 3 sulfate transporters by the sulfur status of

plants has been reported [40]. This study shows for the first time

that genes encoding Group 3 sulfate transporters SULTR3;1 and

SULTR3;4 are differentially expressed in roots upon exposure to

high levels of sulfate. The expression of the gene encoding another

sulfate transporter - the tonoplast-localized H+/SO4
22 cotran-

sporter SULTR4;1 - is also down-regulated at Time 180, pointing

at the possible retention of excess SO4
22 in the vacuole. Similarly,

the up-regulated expression of the gene encoding the vacuolar

MHX transporter indicates the possible storage of excess Mg2+ in

the vacuole. Both MHX and SULTR1;4 could be seen as marker

genes for excess magnesium sulfate recognition by the plant, since

vacuolar storage of excess ions is a well-known defense mechanism

against ion stress.

Several members of the CAX (cation exchanger) family show

down-regulated expression in response to elevated magnesium

sulfate. The Ca2+/H+ antiporter CAX1, which shows down-

regulated expression across the time points, is localized to the

tonoplast and responsible for 50% of the Ca2+/H+ antiport activity

there [16]. CAX2 has been shown to transport Ca2+ and Mn2+

into the vacuole in Arabidopsis and other plant species [41], and

CAX3 is known as a weak Ca2+ vacuolar transporter. CAX1 and

CAX3 can be combined as ‘‘hetero-CAX’’ complexes to form

functional transporters with distinct transport properties [42]. The

down-regulated expression of the genes encoding these three

vacuolar Ca2+/H+ antiporters indicates a possible shortage of

calcium in the cytosol upon high magnesium sulfate exposure.

In total, over 200 differentially expressed genes encoding

membrane-based transporters were identified across the Col-0

Figure 7. Hierarchical average linkage cluster analysis of transporter gene expression using uncentered correlation. The cluster
analysis is based on transporter genes with significant expression at Time 45, 90 or 180. Yellow denotes a higher, and blue a lower expression of a
gene in the treated plants versus the control. The figure shows that distinct clusters of expression patterns can be distinguished within the group of
transporter genes across the three comparisons. The full cluster set is shown on the left; subsets of the clusters are expanded to the right to allow
closer inspection of the differential expression patterns. The first 10 letters of the annotation are provided in the expanded sections. The fully
annotated figure can be found in the Supplemental material (Fig. S1).
doi:10.1371/journal.pone.0012348.g007

Table 6. Genes encoding known magnesium, sulfate and calcium/proton transporters with significant differences in expression in
Col-0 at Time 45, 90 and 180.

Magnesium transporter family:

Gene Description Log2 Time 45 Log2 Time 90 Log2 Time 180

At1g80900 magnesium transporter (MRS2-10) 0.2182 0.2425

At5g09690 magnesium transporter (MRS2-7) 0.2772

Sulfate transporter family

Gene Description Log2 Time 45 Log2 Time 90 Log2 Time 180

At3g51895 sulfate transporter (SULTR3;1) 22.6591

At5g13550 sulfate transporter (SULTR4;1) 20.5451

At3g15990 sulfate transporter (SULTR3;4) 20.7491 20.8085

Cation/proton antiporter families

Gene Description Log2 Time 45 Log2 Time 90 Log2 Time 180

At2g38170 calcium exchanger (CAX1) 20.5676 20.8702 20.7321

At3g13320 calcium exchanger (CAX2) 20.2668 20.2707

At3g51860 cation exchanger (CAX3) 21.1699 21.1249

At2g47600 magnesium/proton exchanger (MHX1) 0.3887 0.4055

At3g53720 cation/hydrogen exchanger (CHX20) 0.4314 0.6706

doi:10.1371/journal.pone.0012348.t006
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time series. Among the genes encoding transporters of known and

unknown function, candidates for improving plant tolerance to

high magnesium sulfate may be found. Transporters of unknown

function include for example major intrinsic proteins, cyclic

nucleotide gated channels, integral membrane proteins, cation

efflux family proteins, ATPase E1–E2 type family proteins, MATE

efflux family proteins, transporter-related proteins and putative

transporters.

The differential expression of only four unique transcripts

between cax1-1 and Col-0 plants after 180 min. of

MgSO4?7H2O treatment indicates that the root transcriptome

responses are virtually identical for the two genotypes at this

time after initiation of treatment. In our transcriptome study we

see down-regulation of the gene encoding vacuolar sulfate efflux

transporter SULTR4;1 at Time 180, and up-regulation of the

gene encoding vacuolar magnesium influx transporter MHX at

Time 90 and Time 180 in Col-0 exposed to elevated magnesium

sulfate. Both of these responses point to storage of excess

magnesium and sulfate ions in the vacuole. This means that the

profile is most probably not performed at a time point before

plants recognize excess magnesium sulfate, especially since over

3000 differentially expressed genes were detected in Col-0 at

Time 180, in addition to the vacuolar marker genes. We could

therefore not foresee that after 180 minutes of exposure there

were no more than four differentially expressed transcripts

between the cax1-1 mutant and Col-0. One of the main reasons

for the limited number of differentially regulated transcripts

between the genotypes at this time after initiation of treatment

may be that CAX1 is one of the few transporter genes that are

already differentially expressed after 45 min. of exposure in Col-

0, which means that down-regulated expression of CAX1 is an

important natural response of Arabidopsis to elevated levels of

magnesium sulfate. The response of CAX1 and other CAX family

members in the Col-0 time series suggests that a deficiency of

calcium caused by high levels of magnesium and possibly by

calcium sulfate precipitation could play a major part in the

reduction of plant growth performance in the presence of high

magnesium sulfate concentrations. The difference between the

immediately down-regulated level of CAX1 in Col-0 and the

absence of CAX1 in the cax1-1 knockout mutant is apparently

not sufficiently large at 180 min. after initiation of treatment to

reveal many of the downstream molecular processes eventually

leading to enhanced growth performance and reduced leaf Mg

content of cax1-1 compared to Col-0 after several weeks of

growth. This result is significant in that follow-up studies

contrasting cax1-1 with Col-0 can look at profiles after possibly

even days of exposure.

Conclusions and perspectives
It was initially thought that the mrs2-10 and sel1-10 mutants

would have an advantage over wildtype in elevated magnesium

sulfate soils, but this was not the case. However, fresh weight shoot

biomass analyses showed that although mrs2-10 and sel1-10

mutants were not more successful than wildtype in this soil

environment, the cax1 mutants were. Thus, cax1 mutants are

currently the only confirmed genotype with partial tolerance to the

phytotoxic levels of magnesium sulfate expected for the regolith on

Mars.

To further characterize the response of Arabidopsis to Mars-like

levels of magnesium sulfate a set of experiments was conducted to

evaluate patterns of gene expression in wildtype (Col-0) and cax1

mutants. The 325 genes differentially expressed in Col-0 roots

after 45 min. of exposure to high magnesium sulfate can be seen as

candidate genes for enhanced tolerance. This set of genes included

CAX1, 18 genes previously associated with enhanced tolerance to

broad ranges of abiotic stresses, and several well-characterized

genes known to enhance tolerance to other salts like NaCl. Many

of the differentially regulated genes contain promoter sequence

motifs that are known to play a role in ABA-mediated regulation,

such as ABRE-CE. This abundance suggests that ABA plays a role

in regulating the stress response to elevated magnesium sulfate. In

addition, a rich pool of candidates is found in the 200+ transporter

genes that are differentially expressed in Col-0 across the time

points. Many genes in this set encode transporters of unknown

function. These unknown transporter genes, along with the four

differentially regulated transcripts between cax1-1 and Col-0, are

of particular interest as they encode proteins of unknown function

whose roles are now at least implicated.

This study functions as a solid basis for the development of Mars

soil-compatible plants by reducing the number of potential

candidate genes from tens of thousands to several hundred.

Future research efforts could determine whether any of these

Table 7. Q-PCR analysis results.

Gene Type
Relative Expression (Array
results) Std. Error P-value Result

Q-PCR results of gene expression in Col-0 treated for 180 min. vs Col-0 exposed to a control solution for 45 min. (RNA sources are the same as for the transcriptome
analysis):

At2g32170 REF 1

CAX1 TRG 0.57 (0.602) 0.436–0.766 0 DOWN

MRS2-10 TRG 1.035 (1.183) 0.758–1.377 0.714

SULTR3;4 TRG 0.557 (0.541) 0.462–0.691 0 DOWN

NRAMP1 TRG 1.196 (1.317) 0.886–1.515 0.107

Q-PCR results of gene expression in Col-0 treated for 180 min. vs Col-0 exposed to a control solution for 180 min. (diurnally controlled samples):

At2g32170 REF 1

CAX1 TRG 0.641 (0.602) 0.429–0.966 0.004 DOWN

MRS2-10 TRG 1.017 (1.183) 0.876–1.195 0.763

SULTR3;4 TRG 0.861 (0.541) 0.695–1.059 0.049 DOWN

NRAMP1 TRG 1.128 (1.317) 0.970–1.381 0.156

doi:10.1371/journal.pone.0012348.t007
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candidate genes, or their potential regulators, can be confirmed as

genomic loci for (crop) plant growth enhancement in the presence

of mars-like levels of magnesium sulfate.

Supporting Information

Table S1 Plant growth performance ANOVA. ANOVA (t-test)

results are shown for specific genotype concentration effects in the

growth experiments.

Found at: doi:10.1371/journal.pone.0012348.s001 (0.01 MB

XLS)

Table S2 Root transcriptome ANOVA. An ANOVA analysis of

differential expression in the root transcriptome.

Found at: doi:10.1371/journal.pone.0012348.s002 (0.71 MB

XLS)

Figure S1 The fully annotated Figure 7: hierarchical average

linkage cluster analysis of transporter gene expression using

uncentered correlation. Hierarchical average linkage cluster

analysis of transporter gene expression using uncentered correla-

tion. The cluster analysis is based on transporter genes with

significant expression at Time 45, 90 or 180. Yellow denotes a

higher, and blue a lower expression of a gene in the treated plants

versus the control. The figure shows that distinct clusters of

expression patterns can be distinguished within the group of

transporter genes across the three comparisons.

Table 8. Transcripts with differential expression at q,0.05
between Arabidopsis thaliana cax1-1 and Col-0 treated for
180 min.

q-value Log2(FC) Gene and DNA region description

1.66E-09 23.0461 calcium exchanger (CAX1) [At2g38170.1]

3.28E-07 23.8209 calcium exchanger (CAX1) [At2g38170.3]

0.001201795 22.7293 Expressed protein [At3g01345.1]

0.004291231 21.1998 hypothetical protein [At4g07526.1]

0.005396832 21.0903 Unknown [CHR2:011819877–011819818]

The table shows that 5 transcripts are identified with a significant difference in
expression. Two of the transcripts are identical (At2g38170), which means that 4
unique transcripts show a significant difference in expression between cax1-1
and Col-0 treated for 180 min.
doi:10.1371/journal.pone.0012348.t008

Figure 8. Whisker box plots representing gene expression ratio distributions for the Q-PCR analysis of four transporter genes. The
gene expression ratio distributions of transporter genes that showed significant differences in expression in the root transcriptome analysis of Col-0
treated for 180 min. vs Col-0 exposed to a control solution for 45 min are represented by Whisker box plots. Results show permutated expression
data that are calculated by the REST 2008 statistical analysis software, which uses randomization techniques. The graphs give an impression of the
expression ratio distribution per gene related to the results presented in Table 7. (a) RNA sources were the same as for the transcriptome analysis
(Col-0 treated for 180 min. vs Col-0 exposed to a control solution for 45 min.). (b) RNA was extracted from Col-0 treated for 180 min vs Col-0 exposed
to a control solution for 180 min. (diurnally controlled samples).
doi:10.1371/journal.pone.0012348.g008
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Found at: doi:10.1371/journal.pone.0012348.s003 (0.54 MB

PDF)
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