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Exploring highly reliable substructures 
in auto‑reconstructions of a neuron
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Abstract 

The digital reconstruction of a neuron is the most direct and effective way to investigate its morphology. Many 
automatic neuron tracing methods have been proposed, but without manual check it is difficult to know whether 
a reconstruction or which substructure in a reconstruction is accurate. For a neuron’s reconstructions generated by 
multiple automatic tracing methods with different principles or models, their common substructures are highly reli-
able and named individual motifs. In this work, we propose a Vaa3D-based method called Lamotif to explore indi-
vidual motifs in automatic reconstructions of a neuron. Lamotif utilizes the local alignment algorithm in BlastNeuron 
to extract local alignment pairs between a specified objective reconstruction and multiple reference reconstructions, 
and combines these pairs to generate individual motifs on the objective reconstruction. The proposed Lamotif is 
evaluated on reconstructions of 163 multiple species neurons, which are generated by four state-of-the-art tracing 
methods. Experimental results show that individual motifs are almost on corresponding gold standard reconstruc-
tions and have much higher precision rate than objective reconstructions themselves. Furthermore, an objective 
reconstruction is mostly quite accurate if its individual motifs have high recall rate. Individual motifs contain common 
geometry substructures in multiple reconstructions, and can be used to select some accurate substructures from a 
reconstruction or some accurate reconstructions from automatic reconstruction dataset of different neurons.
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1  Introduction
The  structure and function of neurons are very impor-
tant for understanding the working mechanism of brains. 
Neuronal morphology is an important means to investi-
gate neuronal structure and function. One major task of 
the US BRAIN Initiative (http://​brain​initi​ative.​nih.​gov/) 
and European Human Brain Project (https://​www.​human​
brain​proje​ct.​eu/) [1] was to reconstruct and aggregate 
neuronal morphologies on scales up to the whole rodent 
brain. So far, researchers have invented many automatic 
tracing methods to efficiently generate a reconstruc-
tion of a neuron. Different tracing methods have dif-
ferent principles and/or models, and produce different 

reconstructions for a same neuron. However, a great pro-
portion of the digitalized neurons so far was still acquired 
by manual tracing which is a highly labor intensive pro-
cedure. Without manual check, it is almost impossible to 
know whether a reconstruction or which substructure in 
a reconstruction is accurate enough for using with confi-
dence. For a neuron’s reconstructions generated by some 
automatic tracing methods, their common substructures 
have a high degree of reliability, and can be used directly. 
We introduce a method to define and find these common 
substructures in a specified reconstruction and multiple 
reference reconstructions.

In recent years, many automatic methods and tools 
have been developed for digital reconstruction of neu-
rons, such as automatic contour extraction [2], APP1 [3, 
4], APP2 [5], MOST [6], SmartTracing [7], Ray casting 
[8], tTuFF [9], Rivulet [10], SparseTracer [11], M-AMST 
[12], Ensemble Neuron Tracer [13], Rivulet2 [14], FMST 
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[15], MOST-based repairer [16], 3-D upgraded ray-
shooting [17], and so on. Two memorabilia were held to 
promote the research of automatic tracing technologies. 
One is the DIADEM neuron reconstruction contest held 
in 2010 [18, 19], and another is the BigNeuron project 
[20] (http://​bigne​uron.​org) launched in 2015. The Big-
Neuron project aims to gather a worldwide community 
to define and advance the state-of-the-art of single neu-
ron reconstruction by benchtesting as many automatic 
neuron reconstruction methods as possible against as 
many neuron datasets as possible [20–22]. BigNeuron 
incorporated around 30 automatic tracing algorithms, 
which were implemented on a set of 30,000 + multi-
dimensional neuronal image stacks and generated more 
than one million morphological reconstructions of neu-
rons from different species (https://​allen​insti​tute.​org/​
bigne​uron).

Automatic tracing methods are developed for different 
application scenarios and based on different models and/
or principles, and typically have varying performance, 
especially on neuronal images with variable quality [20, 
21]. Almost all automatic methods have not been directly 
cross-tested thoroughly, so it is unclear which methods 
are best matched with different imaging modalities or 
datasets [20]. Even the best tracing method is hard to 
make sure that its reconstruction is accurate everywhere 
on a neuron. One method might perform well at some 
substructures and another method might be good at 
other substructures. Reconstructions of a neuron gener-
ated by some different methods usually have some similar 
(or common) parts, which reflect a high degree of agree-
ment reached by these methods. For a reconstruction, 
it is reasonable to suppose that its substructures com-
mon to many other reconstructions of the same neuron 
are accurate substructures, which are called individual 
motifs in this paper. In practice, in order to obtain mor-
phological reconstructions with high-accuracy, neuronal 
reconstructions are often traced or checked segment 
by segment by human experts. Individual motifs can be 
taken as parts of a gold standard reconstruction without 
manual checking and is helpful for decreasing the work-
load of annotators.

Actually, common substructures in morphologies of 
different neurons are called motifs in computational 
biology. Wan et al. developed BlastNeuron to compare 
neurons in terms of their global appearance, detailed 
arborization patterns, and topological similarity [23]. 
The local alignment algorithm in BlastNeuron is capa-
ble of finding the corresponding branches or substruc-
tures in neuron morphologies of two tightly connected 
neurons, and pinpoints structure motifs of two simi-
lar neurons. Gillette et  al. defined topological motifs 

in reconstructions of different neurons [24, 25]. The 
neuron topology was decomposed into sequences of 
branching patterns, and then a method was proposed 
to compare neuron structures using sequence align-
ment. The method is able to identify the difference in 
branching patterns in dendritic and axonic arbors, and 
extract common topological motifs in the structure [24, 
25]. Topological motifs use the topology of neurons and 
look for common topological structures in different 
neurons. Individual motifs are different from above two 
kinds of motifs in definition and aim. Individual motifs 
are based on structure motifs in an objective recon-
struction and many other reconstructions of a neu-
ron, utilize the geometry of these reconstructions and 
explore common geometric substructures hidden in the 
objective and multiple other reference reconstructions.

In this work, we propose a method to find individ-
ual motifs in a specified objective reconstruction of a 
neuron, which makes use of local alignment in Blast-
Neuron and is called Lamotif. Lamotif consists of four 
main steps: pre-processing on automatically gener-
ated reconstructions, generating local alignment pairs 
using BlastNeuron (Basic Local Alignment Search Tool 
for Neurons) [23], constructing overlaps and obtain-
ing individual motifs by some post-processing. Lamo-
tif is implemented and tested on a reconstruction 
dataset of 163 neurons from different species. Experi-
mental results show that individual motifs are almost 
on corresponding gold standard reconstruction and 
have much higher precision rate than these objective 
reconstructions themselves. Meanwhile, an objective 
reconstruction must be very accurate if the recall rate 
of its individual motifs is high (close to 1). Individual 
motifs are helpful for both selecting some accurate sub-
structures from an automatic reconstruction or some 
accurate reconstructions from a dataset of neuronal 
reconstructions generated by an automatic tracing 
method.

The main contributions of this paper include the 
following:

•	 It proposes a method called Lamotif to explore 
common substructures in some reconstructions of 
a neuron generated by multiple automatic tracing 
methods, which makes use of local alignment in 
BlastNeuron.

•	 It introduces the idea ‘two heads are better than 
one’ to find some accurate substructures in an auto-
matic reconstruction or some accurate reconstruc-
tions in a dataset of automatic reconstructions.

•	 It performs an experimental evaluation of Lamotif 
on reconstructions of 163 neurons from different 
species and analyzes its experimental results.

http://bigneuron.org
https://alleninstitute.org/bigneuron
https://alleninstitute.org/bigneuron
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2 � Method
The overview of our proposed Lamotif and its main 
steps: pre-processing, generating local alignment pairs, 
constructing overlaps and post-processing overlaps are 
introduced in detail.

2.1 � Overview of Lamotif
For a neuron, many different reconstructions can be con-
veniently obtained by implementing various automatic 
tracing methods plugged in Vaa3D. The aim of Lamotif 
is to find morphological motifs in a specified objective 
reconstruction and multiple reference reconstructions. 
The objective reconstruction is a reconstruction gener-
ated by a relatively good automatic tracing algorithm, 
such as APP2 [4], Snake [26], Neutube [27] and Neu-
roGPS-Tree [28]. A reference reconstruction is the result 
of any other automatic tracing algorithm.

The input of Lamotif is some automatically traced 
reconstructions represented in a SWC format [29], which 
describes a neuronal morphology as tree structures with 
location, node’s radius, parent node and some other 
attributes. The overview of Lamotif is demonstrated via 
an example (Fig.  1). Taking APP2 reconstruction as the 
objective reconstruction and some other reconstructions 
as references, Lamotif pre-processes each reconstruction, 
and constructs local alignment pairs between the objec-
tive and each reference by the local alignment algorithm 

in BlastNeuron [23] (step S1 in Fig. 1). Then, local align-
ment pairs are pruned (step S2 in Fig. 1) and overlapping 
nodes are selected (step S3 in Fig. 1). Finally, these nodes 
are connected into tree-like morphological structures 
and individual motifs are obtained after pruning some 
small fragments (step S4 in Fig. 1).

2.2 � Preprocessing reconstructions
Due to the diverse design of various tracing algorithms, 
their results might be quite different in the density of 
nodes, number of roots, positions of roots, and so on. It 
is necessary to implement some pre-processing steps to 
standardize all reconstructions and removing some obvi-
ously unreasonable reconstructions. Preprocessing steps 
contains resampling, sorting and filtering, and the former 
two can be carried out by running corresponding plugins 
in Vaa3D [30, 31]. All reconstructions are resampled with 
a fixed step length by running the resample_swc func-
tion. Then the number of nodes in each resampled recon-
struction reflects the size of its neuronal tree. To satisfy 
the requirements of the local alignment algorithm, all 
reconstructions are reconnected into a single tree and 
the root node of each tree is reset to its node nearest to 
the root node of the objective reconstruction, which are 
actualized by implementing the sort function.

Reconstructions with too few or too many nodes do 
not make sense, and are excluded in subsequent steps. A 

...
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overlaps individual motifs

Snake

APP2
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pruned 
alignment pairs

local alignment 
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local alignment 
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pruned 
alignment pairs
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S1 S2
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S3 S4

S1: generating local alignment pairs  
S2: pruning alignment pairs 
S3: constructing overlaps    
S4: post-processing overlaps

Fig. 1  Overview of the proposed Lamotif method
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bad reconstruction is picked out by comparing its node 
number to the average node number of all reconstruc-
tions. Let ni be the node number of the ith reconstruc-
tion, nmean and nstd be the average and standard deviation 
of node numbers of all reconstructions. Only reconstruc-
tions satisfying the following condition are retained:

where k is parameter determined by users. It needs to 
be note that excluded reconstructions have much more 
or much less nodes while k > 1 (1.5 in our experiments), 
since nstd is always quite big. The exclusion of bad recon-
structions makes the subsequent processing steps more 
efficient.

2.3 � Generating local alignment pairs
The local alignment algorithm is the most important 
component of BlastNeuron [23]. The algorithm compares 
neuronal morphologies locally at the compartment level. 
It finds the corresponding relationship between segments 
of two reconstructions and constructs local alignment 
pairs accordingly by matching their topology and geome-
try. The algorithm is utilized to find local alignment pairs 
between the objective reconstruction and each reference 
reconstruction in Lamotif.

The inputs of local alignment algorithm are two recon-
structions (denoted by X and Y ) with tree-topology 
structures. Both reconstructions are firstly normalized to 
the same center location in 3D space by using resampling 
and the PCA (principal component analysis) method, and 
a matrix of Euclidean distance from each node in X to all 
other nodes in Y is constructed. A RANSAC sampling 
process [32] is used to estimate the optimal affine trans-
formation from X to Y , then the correspondence relation 
between X and Y can be found in a same space. Consid-
ering the inhomogeneity of the shape and location of 
neuronal arbors, the algorithm decomposes both recon-
structions into several simple line segments bounded by 
branching nodes and tip nodes. A dynamic program-
ming algorithm is used to calculate distances between 
these segments and their inner nodes, and corresponding 
nodes are matched to provide local alignment pairs.

2.4 � Constructing overlaps
Matched local alignment pairs consist of line segments 
between two nodes in the objective reconstruction and 
a reference reconstruction. The shorter a pair is, the 
better these two connected nodes match. Only pairs 
shorter than a given threshold (20  μm in our experi-
ments) are selected to construct overlap and the node 
in the objective reconstruction is used to represent the 
pair. The distance between two local alignment pairs for 
two reference reconstructions A and B is defined by the 

(1)|ni − nmean| < k ∗ nstd ,

Euclidean distance between their representative nodes on 
the objective reconstruction (red and green filled circles, 
respectively, in Fig.  2). If two representative nodes have 
distance less than a given neighbor distance threshold d, 
they are put into an overlapping set for these two refer-
ence reconstructions. If a representative node belongs 
to more than a given count number c overlapping sets, it 
is defined to be a node in the final overlap between the 
objective and reference reconstructions.

2.5 � Post‑processing overlaps
Though all points in the overlapping set are selected 
from nodes of the objective reconstruction, they might 
be quite sparse or discontinuous in the reconstruction. 
These points are processed to compose the skeleton of 
the final morphological structure by using the sort func-
tion in Vaa3D. The sorted tree-like structures may con-
tain some very short trees with only one to two nodes, 
and short trees (with no more 3 nodes) are pruned.

3 � Experiment and its results
Lamotif is implemented on a reconstruction dataset of 
163 neurons from different species, and experiment aims 
to evaluate its capability in discovering some accurate 
substructures in an automatic reconstruction and some 
accurate reconstructions in many reconstructions.

3.1 � Experiment dataset
The gold166 dataset was released by the BigNeuron pro-
ject (https://​allen​insti​tute.​org/​bigne​uron), which consists 
of some benchtesting reconstructions of 163 neurons 
from multiple species (166 neurons except 3 neurons 

A

B

objective

Fig. 2  Representative nodes of local alignment pairs. Objective 
is the objective reconstruction, and A and B are two reference 
reconstructions. Unfilled circles are nodes on reference 
reconstructions, arrows represent local alignments between two 
nodes, and filled circles (red and green) are representative nodes and 
also candidates for the final overlap

https://alleninstitute.org/bigneuron
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without gold standard reconstruction). These neurons 
are 8 neurons of chick, 2 neurons of frog, 91 neurons 
of fruitfly, 11 neurons of human, 31 neurons of mouse, 
7 neurons of silkmoth and 13 neurons of zebrafish. For 
each neuron, the benchtesting reconstructions include 
a gold standard reconstruction and about 40 automatic 
reconstructions by 20 + automatic tracing algorithms 
with different parameters. APP2 [4], Snake [26], Neutube 
[27] and NeuroGPS-Tree [28] are four tracing algorithms 
with good performance and generate most reconstruc-
tions (the number of each algorithm is given in Table 1). 
Their reconstructions are used to explore individual 
motifs and analyze its advantage. In our experiments, the 
parameter k in formula (1) is set to 1.5, the neighbor dis-
tance d is set to 3 and the count number c is set to 3.

3.2 � More accurate substructures
The proposed Lamotif algorithm is implemented on the 
gold166 dataset to explore individual motifs of recon-
structions by APP2 [4], Snake [3], Neutube [3] and 
NeuroGPS-Tree [26]. Individual motifs are successfully 
generated for most automatic reconstructions (APP2 
except 10 neurons, NeuroGPS-Tree except 16 neurons, 
Neutube except 14 neurons and Snake except 6 neurons). 
Individual motifs of six neurons are given in Fig.  27, 
where gold standard and automatic reconstructions are 
also demonstrated for comparison. In Fig. 28, gold stand-
ard reconstructions are in red, automatic reconstruc-
tions and their individual motifs are in blue. The number 
above each column of images is the ID number of the 
neuron in the dataset. It can be seen that: (1) though 
APP2, NeuroGPS-Tree, Neutube and Snake are excel-
lent tracing algorithms and generated quite good recon-
structions, there are still some inaccurate or redundant 
substructures. (2) Individual motifs are almost on the 
gold standard reconstruction and are more accurate than 
corresponding automatic reconstructions themselves, 
though they are shorter than the later. That is to say, indi-
vidual motifs are really some more accurate substruc-
tures in automatic reconstructions.

To quantitatively evaluate the improvement of indi-
vidual motifs’ accuracy, we first define a node in a SWC 
file (individual motifs or automatic reconstructions) as 
an accurate node if its distance to the nearest ground 

truth node is no more than 4 voxels [14], and then the 
precision rate of a reconstruction or its individual motifs 
is defined as the ratio of the number of accurate nodes 
to its total node number. For reconstructions from each 
species generated by each of above four automatic trac-
ing methods, Table  2 gives their average precision rate 
and that of their corresponding individual motifs. It can 
be seen that, on all species except frog, individual motifs 
of all four methods have much higher precision rate than 
automatic reconstructions. The lower the precision rate 
of an automatic reconstruction is, the more improvement 
its individual motifs’ precision rate has. For two frog neu-
rons, automatic reconstructions by all four methods are 
very accurate with precision rate larger than 95%, and 
their individual motifs did not improve the precision rate 
any more. In one word, individual motifs with less sub-
structures are more accurate than automatic reconstruc-
tions themselves and have higher reliability.

3.3 � More accurate automatic reconstructions
In the experiment, Lamotif does not find individual 
motifs for some automatic reconstructions. The number 
of APP2, NeuroGPS-Tree, Neutube and Snake recon-
structions without individual motifs is 10, 16, 14 and 6, 
respectively (Table  3). Table  3 also gives the mean pre-
cision rate of these reconstructions. Comparing mean 
precision rates in Table 2 and Table 3, it can be seen that 
reconstructions without individual motifs have much 
lower mean precision rates than all reconstructions of 
each automatic tracing method (0.115 vs 0.804 for APP2, 
0.208 vs 0.748 for NeuroGPS-Tree, 0.576 vs 0.866 for 
Neutube and 0.402 vs 0.752 for Snake).

For these reconstructions without individual motifs, 
there are five neurons which have no individual motifs 
for any of these four tracing methods. Figure  4 demon-
strates the gold standard and four automatic reconstruc-
tions of these five neurons. The number below each 
automatic reconstruction is its precision rate, where 0 
means that the tracing algorithm fails to trace the neu-
ron. It can be seen that the morphological structures 
of these five neurons are quite complex and the perfor-
mance of most automatic tracing methods is very poor. 
APP2 fails to trace any meaningful morphological struc-
ture or even any neuron signal. NeuroGPS-Tree and 

Table 1  The number of reconstructions in each species traced by APP2, NeuroGPS-Tree (GPSTree), Neutube and Snake

Chick Frog Fruitfly Human Mouse Silkwoth Zebrafish Total

APP2 8 2 91 11 29 7 12 160

GPSTree 8 2 91 11 30 7 12 161

Neutube 8 2 91 9 31 7 13 161

Snake 8 2 91 7 24 7 13 152
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Snake lose many (or most) morphological structures and 
wrongly traces some morphological substructures. The 
performance of Neutube on these neurons is better than 
others three methods, and it correctly traces some mor-
phological structures. But due to the bad performance of 
most other tracing methods, its reconstruction has no 
overlapping points during voting by all tracing methods, 
and there is no individual motif. For a neuron, if it has no 
individual motifs for all automatic tracing methods, its 

morphological structure is so complex or its microscopic 
image quality is so poor that most methods fail to trace 
the structure rightly. In this case, if no gold standard 
reconstruction has been generated, it is difficult to judge 
which automatic algorithm does produce more accurate 
reconstruction. On the other hand, if its reconstruction 
by some (or all) automatic methods has individual motifs, 
individual motifs are capable of reflecting the perfor-
mance of different methods.

#139 #255 #280 #285 #286 #289

Gold

APP2

GPSTree

Moitif_APP2

Neutube

Snake

Moitif_GPS

Moitif_Neutube

Moitif_Snake

Fig. 3  The gold standard (red), APP2, NeuroGPS-Tree, Neutube and Snake reconstructions (blue) of six neurons, and their individual motifs (blue)
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In order to further explore the relationship between the 
quality of a reconstruction and the size of its individual 
motifs, we define the recall rate of individual motifs as 
the ratio of the number of nodes in individual motifs to 
that in its corresponding automatic reconstruction. Note 
that a node in individual motifs might be an inaccurate 
node which is not in the gold standard reconstruction. 
So the above defined recall rate just describes the size of 
individual motifs compared to its corresponding auto-
matic reconstruction, and it is different from the usual 
recall rate in information retrieval or patter classification 
The recall rate of individual motifs for all reconstructions 
generated by these four automatic tracing methods are 
calculated and each automatic reconstruction is repre-
sented as a point in the precision–recall plane. Figure 5 
demonstrates the scatter diagram of APP2, NeuroGPS-
Tree, Neutube and Snake reconstructions in gold166 
dataset, where reconstructions of neurons from different 
species are represented by points with different shapes.

From Fig. 5, it can be seen that for these four automatic 
tracing algorithms, the recall–precision relationship of 
their reconstructions on neurons from same species have 
some similarities. For the most abundant (91 from about 
161) fruitfly reconstructions, the corresponding points 
mainly locate in the lower left corner or the upper right 
corner of the diagram. This means that the recall and 
precision rate are either small or large at the same time. 
Therefore, the value of the recall rate can quite accurately 
reflect the value of the precision rate. It is feasible to use 
the recall rate of individual motifs to evaluate the quality 

of automatic reconstruction in fruitfly neuron. Without 
any gold standard reconstruction, neurons with most 
accurate automatic reconstructions can be selected just 
by choosing those with large recall rates. For neurons in 
other species, their reconstructions by four tracing meth-
ods might have larger precision rates but smaller corre-
sponding recall rates. The recall rate of individual motifs 
is also a candidate index, but there might be some neu-
rons corresponding to reconstructions with large preci-
sion rate but small recall rate.

More importantly, for these four algorithms, if their 
individual motifs have recall rate larger than 0.5, the pre-
cision rate of their reconstructions themselves is almost 
all larger than 0.5, and the basic trend is that the larger 
the recall rate is, the larger the precision rate is. Of 
course, a small number of recall rates less than 0.5 cor-
responds to relatively large precision rates. The recall and 
precision rate corresponding to APP2 reconstructions 
shows the strongest linear relationship, and their points 
is more concentrated in the lower left corner and upper 
right corner of the diagram. Recall and precision rates 
of reconstructions by other three algorithms also show a 
strong linear relationship, especially in fruitfly neurons. 
In the absence of gold standard reconstruction, the preci-
sion rate of an automatic reconstruction cannot be calcu-
lated. For reconstructions of different neurons generated 
by an automatic tracing algorithm, we can roughly judge 
which reconstruction is more accurate according to the 
recall rate of its individual motifs. The larger the recall 
rate of individual motifs is, the more accurate the recon-
struction is.

4 � Conclusions and discussion
For images of a neuron, many reconstructions can be 
obtained quickly by implementing some automatic trac-
ing methods with different models or assumptions. There 
are some similar and common substructures in these 
reconstructions which have high reliability and are called 

Table 2  Mean precision rates (standard variances) of four kinds of reconstructions (APP2, NeuroGPS-Tree, Neutube and Snake) and 
their individual motifs on each species neurons in the gold166 dataset

Chick Frog Fruitfly Human Mouse Silkmoth Zebrafish Mean (std)

APP2 0.459 ± 0.23 0.993 ± 0.01 0.908 ± 0.18 0.489 ± 0.31 0.855 ± 0.11 0.940 ± 0.03 0.299 ± 0.39 0.804 ± 0.19

Motif_APP2 0.542 ± 0.27 0.993 ± 0.01 0.950 ± 0.10 0.808 ± 0.21 0.906 ± 0.10 0.932 ± 0.03 0.811 ± 0.19 0.901 ± 0.12

GPSTree 0.418 ± 0.16 0.953 ± 0.05 0.815 ± 0.23 0.507 ± 0.30 0.725 ± 0.17 0.718 ± 0.32 0.728 ± 0.16 0.748 ± 0.22

Motif_GPS 0.646 ± 0.32 0.953 ± 0.05 0.924 ± 0.09 0.893 ± 0.07 0.850 ± 0.21 0.907 ± 0.07 0.850 ± 0.07 0.888 ± 0.12

Neutube 0.459 ± 0.15 0.959 ± 0.03 0.905 ± 0.14 0.904 ± 0.11 0.857 ± 0.12 0.919 ± 0.06 0.796 ± 0.08 0.866 ± 0.13

Motif_Neutube 0.649 ± 0.36 0.959 ± 0.03 0.966 ± 0.05 0.978 ± 0.02 0.945 ± 0.08 0.960 ± 0.03 0.949 ± 0.06 0.945 ± 0.07

Snake 0.474 ± 0.20 0.983 ± 0.02 0.776 ± 0.27 0.798 ± 0.06 0.803 ± 0.24 0.911 ± 0.05 0.516 ± 0.29 0.752 ± 0.24

Motif_Snake 0.592 ± 0.31 0.983 ± 0.02 0.905 ± 0.15 0.961 ± 0.05 0.918 ± 0.10 0.950 ± 0.02 0.840 ± 0.16 0.891 ± 0.14

Table 3  Numbers of reconstructions without individual motifs, 
and their mean precision rates (standard variances)

APP2 GPSTree Neutube Snake

Number 10 16 14 6

Precision 0.115 ± 0.17 0.208 ± 0.26 0.576 ± 0.23 0.402 ± 0.29
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individual motifs. We developed a method called Lamotif 
to find individual motifs, which is based on local align-
ment in BlastNeuron. Individual motif can be used with-
out manual checking while constructing a gold standard 
reconstruction. The performance of an automatic tracing 
method on some different neurons can be evaluated by 
the recall rate of their morphological motifs. The larger 
the recall rate is, the more accurate the reconstruction 
is. For reconstructions of different neurons in a neuron 
dataset which are generated by some different automatic 
tracing methods, reconstructions with larger recall rates 
are better tracing results. If a neuron contains complex 
morphological substructures or image quality is very 
poor, it is difficult to tracing their structures and different 
tracing methods might generate quite different results. 

So it might be impossible to find individual motif on this 
neuron and to find an automatic reconstruction with 
accurate substructure in these complex regions. Auto-
matic tracing results in these regions should be checked 
carefully by human experts. In addition, the most time-
consuming part of Lamotif is the local alignment algo-
rithm from Blastneuron, and other parts are simple 
operations like resampling, sorting and calculating dis-
tance and so on, which can be quickly done by imple-
menting corresponding plugins in Vaa3D. Its time cost 
is not high, which is mainly determined by the numbers 
of automatic reconstructions and the number of nodes in 
each reconstruction.

Neurons from same category might have similar mor-
phological substructures, and morphological motifs 

Fig. 4  Reconstructions without individual motifs. Numbers in the first line are the ID number of each selected neuron, and the number below each 
reconstruction is its precision rate
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in reconstructions of different neurons might contain 
some special morphological features of that kind of 
neurons. Lamotif can be used to find these morphologi-
cal motifs of different neurons. Though location differ-
ence of reconstructions from multiple neurons may be 
settled by translation, rotation and other pre-process-
ing, morphological motifs of multiple neurons might 
be very small. Local structures of multiple neurons are 
quite different and local alignment pairs might be too 
strict to evaluate them. This results in that Lamotif has 
not enough local alignment pairs to construct overlap. 
Some more sophisticated characterization of local simi-
lar structure might be the solution of the issue, but it 
needs to be studied further.
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