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A B S T R A C T

Covid-19 disease has had a disastrous effect on the health of the global population, for the last two years.
Automatic early detection of Covid-19 disease from Chest X-Ray (CXR) images is a very crucial step for
human survival against Covid-19. In this paper, we propose a novel data-augmentation technique, called SVD-
CLAHE Boosting and a novel loss function Balanced Weighted Categorical Cross Entropy (BWCCE), in order to
detect Covid 19 disease efficiently from a highly class-imbalanced Chest X-Ray image dataset. Our proposed
SVD-CLAHE Boosting method is comprised of both oversampling and under-sampling methods. First, a novel
Singular Value Decomposition (SVD) based contrast enhancement and Contrast Limited Adaptive Histogram
Equalization (CLAHE) methods are employed for oversampling the data in minor classes. Simultaneously, a
Random Under Sampling (RUS) method is incorporated in major classes, so that the number of images per
class will be more balanced. Thereafter, Balanced Weighted Categorical Cross Entropy (BWCCE) loss function
is proposed in order to further reduce small class imbalance after SVD-CLAHE Boosting. Experimental results
reveal that ResNet-50 model on the augmented dataset (by SVD-CLAHE Boosting), along with BWCCE loss
function, achieved 95% F1 score, 94% accuracy, 95% recall, 96% precision and 96% AUC, which is far
better than the results by other conventional Convolutional Neural Network (CNN) models like InceptionV3,
DenseNet-121, Xception etc. as well as other existing models like Covid-Lite and Covid-Net. Hence, our
proposed framework outperforms other existing methods for Covid-19 detection. Furthermore, the same
experiment is conducted on VGG-19 model in order to check the validity of our proposed framework. Both
ResNet-50 and VGG-19 model are pre-trained on the ImageNet dataset. We publicly shared our proposed
augmented dataset on Kaggle website (https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-
dataset), so that any research community can widely utilize this dataset. Our code is available on GitHub
website online (https://github.com/MrinalTyagi/SVD-CLAHE-and-BWCCE).
1. Introduction

Severe Acute Respiratory Syndrome Corona Virus2 (SARS-CoV2)
[1] was declared as ‘pandemic’ by World Health Organization (WHO)
in March 2020. Still now, over the last two years, more than 230
million people have been affected by this novel Corona Virus and
more than 4.8 million people were declared dead [2] due to this
virus. One of the features of this SARS-CoV2 is that it directly attacks
human respiratory system and causes different forms of lung opacity,
pneumonia and chest infections in human body [3]. Moreover, it can
penalize human life, by destroying their immune systems. Covid-19
virus has become dangerous because it is contagious, which means it
can be transmitted from person to person through their physical contact
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or breath contact [4]. One of the crucial steps into the battle against
COVID-19 disease is to incorporate accurate, automated and easily
available screening methods of infected patients, like radiology exami-
nation using chest radiography, Computed Tomography (CT) scanning
and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) [5]
etc. Although RT-PCR is the most common golden standard screening
method for Covid-19 detection, it is also a very tedious and manual
process, and several researchers have already identified that RT-PCR
can not detect Covid-19 with higher accuracy and sensitivity [6]. Thus,
RT-PCR has not been considered in the field of machine learning or
computer vision for automatic Covid-19 detection. Several researchers
([7],[8]) have proposed automatic Covid-19 detection model using
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computer vision and deep learning model from CXR or CT scan images.
In this paper, we have considered CXR images’ dataset because this is
the most easily available screening method and not very costly [9] like
CT scanning. The main objective of this research is to classify the CXR
images into four classes (I) Covid 19, (II) Lung Opacity, (III) Normal
and (IV) Viral Pneumonia.

Class imbalance is a very common problem in medical image diag-
nosis, since in hospitals the number of patients for different diseases
varies considerably. The problem of class imbalance appears when the
number of images in one class outnumbered the other classes [10]
and consequently it may affect the final results of the classification.
That means images from minor classes may be misclassified into major
class which is undesirable. One of the ways to tackle this problem is
to deploy Under-Sampling, in order to balance the dataset. Random
Under-Sampling (RUS) [11] is the most frequently employed under-
sampling method by researchers and it is known for its simplicity. It
simply randomly chooses some images from major class in order to
exclude them. However, RUS does not work efficiently for a highly-
imbalanced dataset, since large number of randomly excluded images
may contain significant features for the classification task. Thus, many
researchers preferred over-sampling over under-sampling for resolving
this class imbalance problem. In the recent advent, the most frequently
employed over-sampling method for CNN is Data Augmentation tech-
nique [12] by zooming, cropping, rotation and flipping. SMOTE [13],
KNN [14] and GAN-Oversampling ([15],[16]) etc. have also been
widely utilized by several researchers. However, there is no guarantee
that these data-augmentation methods will be feature invariant for the
classification task. Indeed, this is dependent on the statistics of the
dataset. SMOTE [13] generates synthetic images, based on random in-
terpolation between their neighbor samples in a minor class. According
to Z. Chen et al. [17], SMOTE can generate a very different statistical
distribution of dataset than original dataset which is not desirable.
GAN-Oversampling [16] is a comparatively efficient method, where
synthetic images are produced by Generative Adversarial Network
(GAN). However, GAN-oversampling is computationally very costly
than other data-augmentation techniques, moreover, larger number of
images are required to perform GAN-Oversampling [16]. This is not
feasible for small datasets. Another significant limitation of these data-
augmentation methods is that they may produce very similar images
(almost replicas), in large amounts in the augmented dataset. This does
not improve the model performance, moreover, this may further induce
overfitting in the model [18]. Hence, any data-augmentation method
has a trade-off that, it should not produce exactly same images, as well
as it should not produce very dis-similar images (otherwise that will be
feature variant for final classification task). Another limitation of over-
sampling is that it further increases the training times of CNN model.
Several researchers ([11], [19]) have come up with a hybrid method of
employing both oversampling and under-sampling in recent times, but
it does not resolve the class imbalance problem in a generalized way.

Boosting is another technique which generally boosts the perfor-
mance of a weak classifier [20]. Boosting can be any method like
oversampling, under-sampling [11], ensemble method [17] etc. RUS
Boosting [11], Ada Boosting [20], SMOTE Boosting [21] etc. have
been widely utilized by numerous researchers. Ada-Boosting is an
ensemble technique which uses variants of Nearest Neighbor Classifiers
to enhance the performance of this weak classifier. However, this
kind of ensemble method may increase computational complexity of
the model and consequently, it may induce huge overfitting. RUS
Boosting and SMOTE Boosting are further modifying Ada Boost by
combining data sampling (oversampling and under-sampling) and en-
semble method. J. Sun et al. [22] recently proposed an AdaBoost SVM
Ensemble model along with SMOTE and time weighting in order to
resolve class imbalance problem for financial distress prediction. All of
these aforementioned Boosting methods are very time consuming and
more feasible for time series data (or in NLP) than digital images. In
2

this paper, we propose a novel SVD-CLAHE Boosting which is based on
only over-sampling and under-sampling methods. We call this method
as Boosting, because we have observed there is a huge boosting perfor-
mance of standard CNN models, after employing proposed augmented
dataset. Further it is explained in depth in Section 2.

Another way to resolve this issue, is to incorporate a cost sensitive
[23] Deep Learning model in which different kind of loss function is
used in order to alleviate class imbalance problem. For example, many
researchers employed Weighted Categorical Cross Entropy (WCCE)
([24], [25]) for CNN model. The idea is to give little bit more weightage
to the minor class and a little bit less weightage to the major class.
However, WCCE may not work if the dataset is highly imbalanced.
This is further explained in depth in the Section 3.3. There are many
different loss functions like focal loss [26], center loss [27], distribution
balanced loss [28], Anchor loss [29] proposed by several scientists who
have worked in the same direction of class imbalance problem. Y. Cui
et al. [30] found that the problem of class imbalance can be resolved
just by modifying weights in loss function for different classes, rather
than employing entirely different loss function. They have come up
with a novel methodology of assigning weights, which are inversely
proportional to the number of images to the corresponding class.
However, we found that their methodology of weights assignment is not
dependent on the number of classes, thus, it is not adaptive with multi-
class classification task. Focal loss [26], Tversky loss [31], Unified
focal loss [32] etc. are used very frequently to resolve class imbalance
problem for image segmentation. However, for classification task, we
didn’t find any specific loss function which efficiently works with any
kind of class imbalance problem, in a generalized way.

The Covid 19 dataset is taken from publicly available Kaggle web-
site ([33], [34]) This dataset consists of four different classes. (I) Covid,
(II) Lung Opacity (LO), (III) Normal, (IV) Viral Pneumonia (VP). A team
of researchers from Qatar University, Doha, Qatar, and the University
of Dhaka, Bangladesh have created this database of CXR images. In
the first update, they released 219 COVID-19, 1341 normal and 1345
viral pneumonia CXR images. In the 2nd update, they have increased
the COVID-19 class to 1200 CXR images. In the 3rd update, they have
modified the database into total 3616 COVID-19 positive cases, along
with 10,192 Normal, 6012 Lung Opacity and 1345 Viral Pneumonia
(VP) images.

There are some challenges in this dataset which are as follows.

• Clearly this can be observed that the number of images in each
class, varies significantly in this dataset. Thus, conventional CNN
model may not work on this dataset efficiently. This is a class
imbalance problem.

• Intra-class variance in Covid class, is comparatively higher than
that of other classes, which is further discussed in section-4.2.
This kind of intra-class statistical variability in the dataset further
makes the classification task a lot more complicated.

• Many of the images have poor contrast and poor background
luminance, thus, it may lead to poor feature extraction in CNN
model.

In order to resolve these aforementioned challenges, we have pro-
posed a novel framework in this paper. The main contributions of this
paper are explained as follows:

1. A novel data-augmentation technique, ‘‘SVD-CLAHE Boosting",
is proposed for resolving class imbalance problem from a highly
imbalanced Covid 19 Chest X-Ray (CXR) dataset.

2. A novel SVD-based contrast enhancement method, CLAHE 0.5
and CLAHE 1.0, are employed for over-sampling, whereas under-
sampling is done by RUS in major classes.

3. A novel loss function, ‘‘Balanced Weighted Categorical Cross-
Entropy (BWCCE)", is proposed for eliminating little class im-

balance present after employing SVD-CLAHE Boosting.
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4. For training the CNN models, a transfer learning approach is
deployed in which pre-trained weights are taken from a large
ImageNet dataset.

5. A unique framework (i.e. ‘‘SVD-CLAHE Boosting" data aug-
mentation along with BWCCE loss function) is proposed for
ResNet-50 model, which performs more efficiently than individ-
ual ResNet-50 model and other existing models.

6. For the validity of the aforementioned framework, the same
experiment is also conducted on the VGG-19 model.

7. We have also shared the augmented dataset (of 30,033 images),
generated by proposed SVD-CLAHE Boosting method, on the
Kaggle site. To the best of our knowledge, this kind of augmented
and balanced Covid CXR dataset was not available so far in
public.

The rest of the paper is organized in the following way: Section 2
presents a brief explanation of existing methods for Covid-19 detection
from CXR images. Section 3 describes the entire proposed methodology,
that is SVD-CLAHE Boosting and BWCCE Loss function, performed on
ResNet-50 CNN model. Moreover, in Section 4, quantitative and qual-
itative results of several CNN models are compared with the proposed
framework. In Section 5, we present our concluding remarks.

2. Existing methods of Covid detection

M. Shiddhartha and Avik Santra [35] proposed a very light weighted
CNN model, called Covid Lite model, which is based on Depth-wise
Separable Convolutional Neural Network (DSCNN). The advantage of
deploying DSCNN over DCNN is that, DSCNN reduces computational
complexity of the model (during training) considerably, since sequen-
tial point wise convolution is incorporated. Moreover, White Balance
and CLAHE image processing methods are utilized as pre-processing
methods before feeding the images into DSCNN. The authors have
employed a very small dataset of CXR images, having only 1823
images. Thus, their proposed Covid-Lite model is feasible for training
this small dataset. L. Wang et al. [36] first time designed a novel CNN
architecture, especially dedicated to Covid-19 detection from Chest X-
Ray (CXR) images. The authors deployed a CNN architecture, called
Projection Expansion Projection Extension (PEPX), based on human-
machine collaborative design strategy. They incorporated a very light
weighted CNN so that it can efficiently train the Covid dataset from
the scratch. They called their architecture as Covid-Net. Moreover, they
made a new CXR dataset Covid-x publicly available, which consists of
13,975 CXR images. Their dataset had three classes: Covid, Pneumonia
and Normal. Y. Xu et al [37] recently employed a novel Mask Attention
(MANet) based model for covid-19 detection from CXR images for five
classes: Covid, Normal, Tuberculosis (TB), Bacterial Pneumonia (BP)
and Viral Pneumonia (VP). Their model is comprised of two stage
network. In the first stage, they segmented only the lung portions
from the CXR images using a ResUnet (ResNet Backbone Unet) model.
Thereafter, in the second stage, they employed several standard CNN
models like ResNet-34, ResNet-50, VGG-16 and Inception-V3 etc.,
in order to accomplish the final classification task. They employed
ResUnet model as an attention-based model [38], which gives more
attention to the important lung portions of the image. They have shown
experimentally that accuracy of those CNN models is improved 0.5-1%,
after employing MANet.

M. Togacar et al. [39] proposed a novel framework in which they
have created two different augmented datasets, by using a fuzzy color-
based image processing method and original dataset stacking tech-
nique. The main purpose of utilizing fuzzy color based pre-processing
technique is to convert original images into the images with lesser
noise and clear the foreground information. Moreover, a dataset stack-
ing technique is incorporated to fuse the original images onto these
processed images, further providing better clarity and high contrast
images. They have combined two datasets from two different sources,
3

in order to make a small dataset of 458 images. Moreover, they have
employed two very lightweight CNNs, which are Mobile-Net V2 [40]
and Squeeze-Net [41] for feature extraction from very small dataset.
This is followed by an SVM classifier for the final classification task.
Although, their method used data-augmentation, it did not work in the
direction of reducing class imbalance from the dataset. Instead, they
tried to improve the contrast of the original images, for better feature
extraction. Recently, M. Mamalakis et al. [42] proposed a deep transfer
learning pipeline DenResCov-19, which is based on ensemble of ResNet-
50 [43] and DenseNet-121 models [44]. These models are pre-trained
on ImageNet dataset. According to the author, combining both of these
models further improved the model’s overall performance significantly.
D. Das et al. [45] proposed a truncated Inception-Net model in which
they modified the architecture of the traditional Inception-V3 model
[46] a little bit, to reduce its complexity. Moreover, they deployed
both Max-pooling and Global Average Pooling operation in order to
reduce the dimension of the image considerably. Although they re-
duced the complexity of Inception-V3 considerably, their preparation
of datasets was entirely a manual process. Other than these works, a
lot of comparative analysis have been done in the direction of deep
learning-based CNN model for Covid 19 detection [47–54] from CXR
images and CT images. S. Nayak et al. [7] presented a survey paper for
Covid 19 detection from CXR images, in which they implemented many
standard CNN models AlexNet [55], VGG-16 [56], Google Net [57],
ResNet-34 [43], ResNet-50 [43], InceptionV3 [46] etc., for CXR Covid
dataset.

All of the methods mentioned above did not work toward alleviating
class imbalance problems from a particular dataset. Instead, we have
found that most of the researchers [36,39,42,45,49] combined different
Covid CXR datasets from different sources and manually discarded
many images, in order to produce a balanced dataset. This is a wrong
approach, in our perspective, because they have manually reduced
the challenges of the dataset. Moreover, different datasets can have
different kinds of statistics; thus, combining all the datasets into one
is not feasible. A.M.Khan et al. [49] claimed that still now there is no
balanced Covid dataset available online. To the best of our knowledge,
our proposed method is the first attempt to provide an automatic
deep learning framework that can efficiently work on a highly class
imbalanced Covid-19 dataset. Unlike other existing research work, our
proposed augmentation technique (of preparing a dataset) is purely
automatic.

In this research, we intentionally chose this dataset with the chal-
lenges mentioned above. Many researchers already found 97–98 per-
centage accuracy, F1-score, precision and recall for covid-19 detection
from other existing CXR datasets [36,58]. However, the same is not true
for the employed dataset. We found conventional CNN model does not
work efficiently for this employed dataset [33] due to the challenges
as mentioned earlier. Hence, we believe that there is a huge research
scope to further improve the existing models’ performance for this
challengeable dataset.

Our research mainly focuses on resolving the class imbalance prob-
lem in a highly imbalanced and challengeable dataset. We have not
found an equally challenged and imbalanced dataset for Covid-19 de-
tection from CXR images; thus, other existing datasets are not feasible
for our proposed methodology. Instead, we have prepared three more
augmented datasets along with this original dataset. We tested the
performance of two different CNN models on those datasets for the
validity of the proposed framework.

3. Methodology

The methodology for our proposed method can be divided into
three parts: I. Choosing a suitable CNN model, II. SVD-CLAHE Boost-
ing for class imbalance problem, III. Balanced Weighted Categorical
Cross-Entropy (BWCCE).
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Fig. 1. Block Diagram of entire proposed model (SVD-CLAHE Boosting + ResNet-50 + BWCCE).
3.1. Choosing suitable CNN model

Since the employed dataset is very challenging, which is mentioned
in the previous section, our first task is to find a suitable CNN model for
this dataset. We have tested various CNN models like InceptionV3 [46],
Xception [59], DenseNet-121 [44], VGG 16, VGG 19 [56], ResNet-
50 [43] etc. on this dataset, which is further presented in the results
and analysis section. We observed that VGG 16, VGG19, and ResNet-50
have slightly better results than Xception, DenseNet-121, InceptionV3,
etc. VGG models are also known for their simplicity which is a di-
rect modification of Alex-Net. Because of this simplicity, their model
converges faster, and consequently, they have better performances
than other complicated models (Inception-V3, DenseNet-121, Xcep-
tion). ResNet-50 model also performs efficiently for this dataset, despite
its complicated structure. To the best of our knowledge, due to the
skip connection present in the ResNet-50 model [43] it can alleviate
the problem of vanishing gradients, which generally appear during
weights updating by the back-propagation algorithm (especially for a
large and complicated network like InceptionV3, Xception). Moreover,
the ResNet-50 model has a higher (50) number of layers, enabling the
network to make very complicated decisions. Thus, we have chosen
ResNet-50 as our proposed model. Additionally, we have also employed
VGG-19 to check the validity of the proposed framework (i.e., SVD-
CLAHE boosting + BWCCE loss function). The entire proposed model
is presented in Fig. 1.

3.2. SVD-CLAHE boosting for class imbalance problem

Any class imbalance problem can be defined as follows: Assume the
data samples in an image dataset is represented by [(𝑋1, 𝑌1), (𝑋2, 𝑌2),
…(𝑋𝑚, 𝑌𝑚)] where 𝑚 is the total number of samples in the dataset, 𝑋𝑖
is 𝑖th original image and 𝑌𝑖 is its corresponding label. The total number
of classes in the dataset is 𝐾. Thus, labeled data 𝑦 ∈ [1, 2, ..𝐾].

The estimated probabilities for each class are represented by 𝑝 =
[𝑝𝑖,𝑐1, ..𝑝𝑖,𝑐𝐿,. . . .𝑝𝑖,𝑐𝐾 ]𝑇 , where 𝑝𝑖,𝑐𝐿 ∈ [0, 1], ∀𝐿 = 1, 2, ..𝐾; here 𝑝𝑖,𝑐𝐿
means that the probability of a sample ‘𝑖’, will be correctly classified
into the class ‘𝑐𝐿’.

A dataset is said to have class imbalance problem if and only if:
𝑛𝑐𝑙
𝑚

≪
𝑛𝑐𝐻
𝑚

(1)

where 𝑛𝑐𝑙 is the number of samples in a minor class ‘𝑐𝑙’, and 𝑛𝑐𝐻 is
the number of samples in a major class ‘𝑐𝐻 ’. The name ‘𝑐𝑙’ is chosen
for the lower class, the name ‘𝑐𝐻 ’ is chosen to indicate the higher class,
𝑚 =

∑

𝑐 𝑛𝑐 is the total number of samples in the dataset.
In Eq. (1), 𝑛𝑐𝑙

𝑚 can also be interpreted as the probability that one
sample will be correctly classified into minor class ‘𝑐𝑙’. Thus, the pur-
pose of any over-sampling method is to significantly increase this prob-
ability of classification for minor classes so that it will be comparable
to the probability of classification for major classes.
4

Hence, the purpose of any over-sampling method is,

𝑝𝑖,𝑐𝑙 ≈ 𝑝𝑗,𝑐𝐻 (2)

Here, 𝑝𝑖,𝑐𝑙 is the probability of 𝑖th sample, correctly classified into minor
class ‘𝑐𝑙’. 𝑝𝑗,𝑐𝐻 is the probability of 𝑗th sample, correctly classified into
major class ‘𝑐𝐻 ’.

The performance of ResNet-50 is fraught with the problem of a
highly class imbalance of dataset, although it is working better than
other models. This can be further observed in Section 5. We have
noticed a slight fluctuation in the precision and recall results for
different classes; moreover, we think 90% accuracy (by ResNet-50)
can be further improved for the multi-class classification task for this
imbalanced dataset.

This paper develops a novel data-augmentation technique, based on
contrast enhancement by SVD based method and CLAHE method. Our
proposed data-augmentation method neither generates exactly same
images, nor they generate very dis-similar images, in terms of statistics.
Thus, it overcomes the trade-off of conventional data augmentation
mentioned earlier in Section 1. The idea is to generate a synthetic, pre-
processed, and balanced dataset so that the model has enough images
per class to learn how to distinguish various classes of images. By
SVD based contrast enhancement, we produce synthetic images with
slightly different statistics in terms of luminance and contrast. Whereas
CLAHE 0.5 and CLAHE 1.0 further improved the clarity and contrast of
the images, which can strengthen the edges during feature extraction
by the CNN model. Some of the pre-processed images by CLAHE
0.5 and SVD+CLAHE 0.5 are shown in Fig. 2. We call our proposed
oversampling and RUS under-sampling method SVD-CLAHE Boosting
because it can significantly boost the performance of a standard CNN
model by alleviating the class imbalance problem from the dataset.

The exact method of the proposed SVD-CLAHE Boosting method is
further explained below in-depth in three parts: (a) SVD based contrast
enhancement method, (b) CLAHE Contrast enhancement method, (c)
Proposed SVD-CLAHE boosting according to intra-class variance.

3.2.1. SVD based contrast enhancement method
The first step of this method is to decompose the images into two

orthogonal matrices and one singular value (diagonal) matrix by Sin-
gular Value Decomposition (SVD) [60], which is given in Eq. (3). After
that, we modify only the singular matrix by multiplying it with a real
constant, named as ‘ratio’. In Eq. (3), these two decomposed orthogonal
matrices have all the essential information of the images; thus, only
multiplying a real constant value with the singular value matrix does
not lose any critical information, to the best of our knowledge.

There was already a similar method of SVD based contrast en-
hancement, which was proposed for satellite images [61]; however,
by their method, the value of ratio does not give a higher value for
the employed Covid image dataset. Thus, we proposed a novel SVD
based contrast enhancement method that will be suitable for the CXR
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Fig. 2. Example of proposed Augmented Dataset (by SVD-CLAHE Boosting).
dataset. In our proposed method, we choose a reference image with
very good contrast. We choose the value of ‘ratio’ according to the
contrast difference between the reference image and the source image.
The SVD contrast enhancement method is further explained below in
Eqs. (3)–(8).

Step1: Decompose 𝐼 into 𝑈 , 𝑆 and 𝑉 , whereas 𝑈 , 𝑉 are orthogonal
matrices, 𝑆 is the singular value matrix, which is a diagonal matrix.

𝐼 = 𝑈𝑆𝑉 (3)

Step2: The real constant ‘ratio’ is determined in the following way,
which is presented from Eq. (4)–(7). Here, 𝜎𝑔 means global standard
deviation, and 𝜇𝑔 means the global mean of the image. 𝐶𝑡𝑎𝑟 is the global
contrast of the target image, 𝐶𝑆𝑜 is the global contrast of the source
image.

𝐶𝑡𝑎𝑟 =
𝜎𝑔(𝑡𝑎𝑟)
𝜇𝑔(𝑡𝑎𝑟)

(4)

𝐶𝑆𝑜 =
𝜎𝑔(𝑆𝑜𝑢𝑟𝑐𝑒)
𝜇𝑔(𝑆𝑜𝑢𝑟𝑐𝑒)

(5)

𝑖𝑓 𝐶𝑡𝑎𝑟 > 𝐶𝑆𝑜

𝑟𝑎𝑡𝑖𝑜 = 1.05 +
𝐶𝑡𝑎𝑟 − 𝐶𝑆𝑜
𝐶𝑡𝑎𝑟 + 𝐶𝑆𝑜

(6)

𝑒𝑙𝑠𝑒

𝑟𝑎𝑡𝑖𝑜 = 1.05 (7)

Step3: Multiply ‘𝑆’ (the singular matrix) with the real constant
‘𝑟𝑎𝑡𝑖𝑜’ given in the following Eq. (8).

𝑆′ = 𝑆 ∗ 𝑟𝑎𝑡𝑖𝑜 (8)

Step4: Concatenate 𝑈𝑆′𝑉 into 𝐼𝑝, whereas, 𝐼𝑝 is the processed
image.

Explanation: The idea is to generate some synthetic images by
modifying the singular matrix in SVD space. In order to fix the constant
‘𝑟𝑎𝑡𝑖𝑜’ (by which the singular matrix is to be multiplied), we have
chosen one target image from each class that has very good contrast
and luminance property. After that, we compute the global contrast,
according to S. Roy et al. [62], which is nothing but the ratio of global
standard deviation to the global mean value for both reference image
and source image. These are in Eqs. (4) and (5), respectively. We fix
the ratio by Eq. (6), which should be proportional to the contrast
between the reference and source images. A similar kind of adaptive
transformation is recently proposed by S. Roy et al. [63] for color
normalization of histopathology images. However, we observe that
some CXR images (𝐶𝑡𝑎𝑟 − 𝐶𝑆𝑜) can be negative. Because there is no
guarantee that reference image contrast is always greater than that
5

of any other source images in the dataset. In that case, no further
contrast enhancement is required because the source image contrast
is already greater than that of the reference image. Thus, the value of
‘ratio’ should be chosen 1. However, we choose the by-default value
of ‘ratio’ to 1.05 instead of 1, which are given in Eqs. (6) and (7).
Because it will ensure that there will always be around 5 percent
contrast enhancement for every image. Otherwise, the same images
could be produced by the proposed SVD based contrast enhancement,
which is not desirable for data augmentation, mentioned in Section 1.
Therefore, it was necessary to produce slightly different images (in
terms of contrast and luminance statistics) during oversampling in a
minor class, thereby choosing the default value of ratio to 1.05. Some
of the images from the proposed augmented dataset are shown in Fig. 2.

3.2.2. CLAHE Contrast enhancement method
Contrast Limited Adaptive Histogram Equalization (CLAHE) [64] is

a modified version of Global Histogram Equalization (GHE) [65] in
which histogram stretching operation is limited by a maximum clipping
value (e.g., 0.5, 1.0). Here HE method is employed locally, which means
it is performed in every local region (or window) of the image. We have
chosen this window size 8 × 8 empirically for this operation. This is to
clarify that, CLAHE 0.5 means it specifies a scale of contrast clipping
0.5 (this is not a version). For example, CLAHE 0.5 will do less contrast
enhancement than CLAHE 1.0. However, we have also noticed that
the conventional CLAHE 2.0 method (according to open cv library it
is, CLAHE 2.0) is not inevitable of data loss. It can do over-contrast
enhancement for some CXR images. Consequently, it might not work for
CNN models. Therefore, we have chosen CLAHE 0.5 and CLAHE 1.0 so
that there will not be excess contrast enhancement and, consequently,
there will be comparatively little data loss. In order to ensure that fact,
we have computed the correlation coefficient between the processed
image and the original image in the overall CXR dataset for different
scales of CLAHE. We have found that the mean correlation co-efficient
value does not go less than 0.93 for CLAHE 0.5 and does not go less
than 0.90 for CLAHE 1.0. Therefore, we have empirically chosen the
CLAHE 0.5 and CLAHE 1.0 contrast enhancement methods with an
8 × 8 window for data augmentation.

3.2.3. Proposed SVD-CLAHE Boosting according to intra-class variance
We have done a series of experiments on SVD-CLAHE boosting. Ta-

ble 1 represents a different number of images per class we have chosen
for various experiments. The results of their performances can be found
in more depth in Section 5. First, we have performed conventional
data-augmentation techniques [12] like rotation, flipping (horizontal
and vertical), zooming, and cropping in minor classes (e.g., Viral Pneu-
monia and the Covid class) in order to do oversampling. However, we
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Fig. 3. The entire scheme of proposed SVD-CLAHE Boosting.
Table 1
Comparisons of various experiments with different number of images per classes.

Dataset (training) Covid Normal LO VP

Original 2923 8096 4831 1082

SVD-CLAHE Boosting 5355 5355 5355 5355
(Equal images per class)

Proposed SVD- 8769 8192 7662 5410
CLAHE Boosting

observed that incorporating such data augmentation produces worse
results.

Because we have found that these data augmentation techniques
are not exactly featured invariant for these CXR images, for example,
if we flip those images horizontally, we notice a very different image
is produced. This will differ the feature extraction process for the
classification task. Consequently, it further increases the complexity
during the training of the CNN model. Later, we generate an augmented
dataset by SVD-CLAHE oversampling and RUS, where each class has an
equal number of images (5355) to resolve the datasets class imbalance
problem. This is shown in Table 1. However, we have found that
producing a precisely same (or very similar) number of images per class
did not resolve this class imbalance problem entirely from this dataset.
However, it improved the model performance a little bit.

In the final experiment, a dataset of 30,033 images is prepared
by the proposed SVD-CLAHE Boosting method. In this method, the
number of images per class is chosen based on an intra-class variance
in each class. To the best of our knowledge, if in one class the intra-
class variance among the images is huge (that means different images
have different kinds of statistics in a class), in that case, the number
of images trained to the CNN model must also be higher for the corre-
sponding class. Because of higher statistical variance, neural networks
may need a higher number of such images to converge faster. Hence,
intra-class variance significantly impacts this kind of dataset for the
final classification task. We have chosen ten images per class with the
most similarity among all images in that class to compute the intra-
class variance in the dataset. We have employed five different (expert)
people in order to choose the most similar images from each class,
and thereafter, we computed intra-similarity by estimating correlation
co-efficient [66] between the chosen image and all other images in
that class, which is given in Eq. (9). This is to clarify that, here
6

Table 2
Mean Values of Intra-class similarity and Intra-class variance for different classes of
Covid 19 dataset.

Classes Covid Normal LO VP

Intra-class similarity 0.5283 0.5572 0.5852 0.7052
Intra-class variance 0.4717 0.4428 0.4147 0.2958

expert people means they are experts in computer vision task and thus,
understand well statistical similarity inside images. Subsequently, we
take an average of all such values and subtract it from one to compute
the final intra-class variance.

𝜎(𝑖𝑛𝑡𝑟𝑎) = 1 − 1
𝑀(𝑁 − 1)

𝑀
∑

𝑚=1

𝑁−1
∑

𝑛=1
𝐶𝑜𝑟𝑟(𝑥𝑚, 𝑦𝑛) (9)

where 𝑀 = 10 per class, which is the chosen number of images
having the most similarity per class, 𝑁 = a total number of images in
one class, 𝑥𝑚 is the selected image (from those 10 images) in one class
which are the most similar, 𝑦𝑛 is any other image in that class, 𝐶𝑜𝑟𝑟
is representing correlation coefficient between two random variables 𝑥
and 𝑦. Having more intra-class similarity (structural similarity) means
that it has a lesser intra-class variance. Therefore, we subtracted the
computed correlation coefficient from 1 in Eq. (9) to have a probabilis-
tic kind of intuition to compute the final intra-class variance in each
class.

We have found mean intra-class variance for different classes are
0.4717, 0.4428, 0.4147, and 0.2948 for Covid, Normal, Lung Opacity,
and Viral Pneumonia classes, respectively, according to the Eq. (9).
This can be further observed from Table 2, that the Covid class has
the highest intra-class variance, which means that in the covid class
the statistics among images are comparatively dis-similar than other
classes.

Hence, after incorporating the notion of intra-class variance, the
purpose of proposed SVD-CLAHE Boosting will be slightly different than
Eq. (2). This is given by Eq. (10).

𝑝𝑖,𝑐𝑙 ∗ [1 − 𝜎𝑐𝑙(𝑖𝑛𝑡𝑟𝑎)] ≈ 𝑝𝑗,𝑐𝐻 ∗ [1 − 𝜎𝑐𝐻 (𝑖𝑛𝑡𝑟𝑎)] (10)

Here 𝑝𝑖,𝑐𝑙 is the probability that a sample ‘𝑖’ will be correctly
classified taken from minor class ‘𝑐𝑙’. 𝑝𝑗,𝑐𝐻 is the probability of a sample
‘𝑗’ will be correctly classified taken from major class ‘𝑐𝐻 ’. Indeed, we
found for this SVD-CLAHE Boosting, for minor class probability 𝑝
𝑖,𝑐𝑙
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multiplied by its intra-class similarity (that is, nothing but [1 − 𝜎𝑐 ]),
hould be similar to that of major class. Hence, for the Viral Pneumonia
VP) class, the probability of classification multiplied by 0.7052 (from
able 2), should be similar to the probability of classification for the
ormal class multiplied by 0.5572. This perhaps enables us to choose

ewer images from the VP class than other classes. Because in the case
f the VP class, this intra-class similarity among images is higher than
f other classes.

Viral Pneumonia (VP), which has the least number (1082) of im-
ges for training, is oversampled by SVD-based contrast enhancement,
LAHE 0.5 and CLAHE 1.0. Moreover, the proposed SVD+CLAHE 0.5
nd the original image sets are also included to oversample VP (minor)
lass 5 times larger (1082 × 5 = 5410) than previous. Now, keeping
his number of image combination constant for the VP class, we try
o compute what should be the number of images for other classes
ccording to the formula of intra-class variance. We have found those
umbers should be 8657, 7610, and 8125 for covid, lung opacity, and
ormal classes, respectively. Therefore, for covid class, we have gener-
ted thrice the size of the dataset (2923 × 3 = 8769), by incorporating
VD contrast enhancement method and CLAHE 0.5 method, along with
riginal images. Moreover, for lung opacity, we employed RUS in order
o exclude 1k images from that class (4831-1000 = 3831). This is
ollowed by CLAHE 0.5 method (along with original images), to get
wice of rest of the data size (3831 × 2 = 7662). For normal class,
e have excluded 4k images by RUS, followed by CLAHE 0.5 (along
ith original) to twice the remaining dataset (4096 × 2 = 8192). This

an be observed that the new augmented dataset (of 30,033 images)
as a very similar number of images in each class, compared to the
equired number of images, according to its intra-class variance. The
ntire scheme of generating this augmented dataset is presented in
ig. 3.

.3. Balanced Weighted Categorical Cross Entropy (BWCCE)

By employing SVD-CLAHE Boosting, we generated a new aug-
ented dataset, which is more balanced than the original dataset.
owever, we observed that the performance of the ResNet-50 model
n this augmented dataset is still a little bit imbalanced. This can
e observed from its classification report for different classes and
ts confusion matrix. Therefore, a new loss function is proposed to
lleviate a little bit of class imbalance from the model after employing
VD-CLAHE Boosting.

Categorical Cross-Entropy (CCE) [67] loss function can be expressed
s the following mathematical formula.

𝐶𝐶𝐸 (𝑦, 𝑝) = − 1
𝑁

∗
𝑁
∑

𝑖=1

𝐾
∑

𝑐=1
𝑦𝑖,𝐾 ∗ 𝑙𝑜𝑔(𝑝𝑖,𝑐 ) (11)

where, 𝑝𝑖,𝑐 is the probability that the 𝑖th sample belongs to class c, 𝑦𝑖,𝐾
is the class weight for 𝑖th sample for total 𝐾 no of classes and for each
class 𝑦𝑖,𝐾 is same, 𝑁 is the total number of samples in a particular class.

In case of conventional CCE, 𝑦𝑖,𝐾 is by-default chosen as

𝑦𝑖,𝐾 = 1 (12)

For class imbalance problem, Weighted Categorical Cross-Entropy
(WCCE) is widely employed by researchers [24,25]. The expression of
the WCCE loss function is given in the following equation.

𝐿𝐶𝐶𝐸 (𝑦, 𝑝) = − 1
𝑁

∗
𝑁
∑

𝑖=1

𝐾
∑

𝑐=1
𝛽𝑐 ∗ 𝑙𝑜𝑔(𝑝𝑖,𝑐 ) (13)

Whereas 𝛽𝑐 is the weight in each class. 𝛽 of the minor classes must
be inversely proportional to the number of images per class and 𝛽
of the major classes keep remain the same, that is 1. However, the
number of images in minor class may differ a lot from the same of
major class. In that case, 𝛽 of the minor class can be a very higher
7

value. Consequently, the CNN model will be more biased to a particular f
(minor) class, and it will further push the accuracy and precision of the
minor class closer to 1. However, the accuracy and precision of other
classes will fluctuate considerably in that case, which is not desirable.
This is further demonstrated in Section 4.

In order to resolve the problem mentioned above, we propose a
novel BWCCE loss function in which bias weights 𝛽 are assigned in-
versely proportional to the number of images in class. However, unlike
WCCE, bias weights of BWCCE are assigned based on the probability
notion. The following equation can express the proposed BWCCE loss
function.

𝐿𝐵𝑊 𝐶𝐶𝐸 (𝑦, 𝑝) = − 1
𝑁

∗
𝑁
∑

𝑖=1

𝐾
∑

𝑐=1
𝛽𝑐 ∗ 𝑙𝑜𝑔(𝑝𝑖,𝑐 ) (14)

where, the bias weight in each class, 𝛽𝑐 is given by the following
equation.

𝛽𝑐 =
1

𝐾 − 1
(1 −

𝑛𝑐
∑

𝑐 𝑛𝑐
) (15)

here, (𝐾 > 1)
Here, in Eq. (15), 𝑛𝑐 is the total number of samples in class c, ∑𝑐 𝑛𝑐

s the total number of samples in the entire dataset, (𝐾 − 1) is just
normalization factor which ensures that sum of all 𝛽’s will not go

eyond the value 1, 𝐾 is a total number of classes.

emma 1. If weight of each class in a Weighted Cross Entropy, is chosen
s 𝛽𝑐 = 1

𝐾−1 (1 − 𝑛𝑐
∑

𝑐 𝑛𝑐
), where ∀𝑐 = 1, 2, ..𝐾 and (𝐾 > 1), then sum of

weights of all class will be equal to 1.

That is,
𝐾
∑

𝑐=1
𝛽𝑐 = 1 (16)

Proof. The number of classes = 𝐾. We have to prove that ∑𝐾
𝑐=1 𝛽𝑐 = 1 if

𝛽𝑐 =
1

𝐾−1 (1 −
𝑛𝑐

∑

𝑐 𝑛𝑐
). The total number of images in entire dataset ∑𝑐 𝑛𝑐

will be a same constant number, let us assume this ‘𝑚’.

Thus, substituting the value from Eq. (15) into Eq. (16) we get,
𝐾
∑

𝑐=1
𝛽𝑐 =

1
𝐾 − 1

[(1 −
𝑛1
𝑚
) + (1 −

𝑛2
𝑚
) +⋯ + (1 −

𝑛𝐾
𝑚

)] (17)

𝑜𝑟,
𝐾
∑

𝑐=1
𝛽𝑐 =

1
𝐾 − 1

[𝐾 −
(𝑛1 + 𝑛2 +⋯ + 𝑛𝐾 )

𝑚
] (18)

𝑁𝑜𝑤, (𝑛1 + 𝑛2 +⋯ + 𝑛𝐾 ) =
𝐾
∑

𝑐=1
𝑛𝑐 = 𝑚 (19)

Hence, substituting the value from Eq. (19) into Eq. (18), we get,
𝐾
∑

𝑐=1
𝛽𝑐 =

1
𝐾 − 1

(𝐾 − 1) = 1(𝑃𝑟𝑜𝑣𝑒𝑑) (20)

As 𝐾 ≠ 1, from Eq. (20), this is proved that sum of 𝛽’s for BWCCE
ill be equal to 1. Hence, the proposed loss function BWCCE supports

he notion of probability for assigning weights. Therefore, we have
bserved that the proposed loss function BWCCE produces much more
alanced classification results than conventional CCE and WCCE. In
very class, the results of accuracy, precision, and recall are a little
ore balanced (do not fluctuate too much) by the proposed BWCCE.

Explanation: First, let us understand why did we choose 𝛽𝑐 =
1

𝐾−1 (1 − 𝑛𝑐
∑

𝑐 𝑛𝑐
). Here, we assigned weights 𝛽 with the notion of prob-

ability. The ratio 𝑛𝑐
∑

𝑐 𝑛𝑐
perhaps shows a probabilistic perspective, and

hus, it is subtracted from 1, which is the total probability. For example,
he Viral Pneumonia has 5410 images after the proposed SVD-CLAHE
oosting out of 30,033 images. Hence, the probability that one sample
rom viral pneumonia will be classified correctly is 5410∕30, 033 =
.1801. This is comparatively lesser than the average probability for
our classes (i.e., 0.25). Thus, subtracting this probability value from 1
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Fig. 4. Visualization of entire proposed methodology Fig. 4(a) presents the distribution of major and minor classes in the original dataset, based on a number of images.
Figs. 4(b) to 4(d) present the changes in distribution after employing the proposed methodology. Fig. 4(e) indicates the cluster representation of major and minor classes for the
original dataset. Fig. 4(f) to Fig. 4(h) indicate the changes in cluster representation in major and minor classes after employing RUS, SVD-CLAHE Over-sampling, and BWCCE loss
function, respectively. All these diagrams of distribution and cluster representation are completely imaginary and have not been taken from any statistical plot of the dataset.
(which is the sum of total probability) and then normalizing the value
gives you the intuition of how much bias weight should be chosen
for viral pneumonia. That is, 1

3 ∗ (1 − 0.1801) = 0.2733 which is
now a slightly higher than average weight per class i.e., 0.25. Here
(4 − 1 = 3) is the normalization factor, because number of classes is
4. In Lemma 1, it is already proved that sum of 𝛽’s will be equal to one,
if the normalization factor is (𝐾−1). Similarly, if you compute the 𝛽 for
the major class, we will get a lesser weight, i.e., less than the average
weight 0.25. Unlike WCCE, the weights of different classes for BWCCE
are not exactly chosen inversely proportional to number of images in
that class, rather it is chosen based on the notion of probability of
classes. Thus, weights for different classes do not deviate too much from
the average weight 0.25. Consequently, deep neural networks will not
be biased too much towards one particular class for BWCCE. In the
results and analysis section, this can be further observed that ResNet-
50 with BWCCE loss function not only improves classification results a
little bit, but also, it enables the neural network to provide a very stable
validation graph, which is a significant improvement. Furthermore, we
have observed that ResNet-50 model along with BWCCE loss function,
converges a little bit faster, during training. This justifies the necessity
of employing the proposed loss function.

3.4. Physical interpretation of proposed methodology

From Fig. 4, the necessity of the proposed methodology can be
easily visualized. Figs. 4(a)–4(d) represent the distribution of major (+)
and minor (-) class based on several images. Clearly, Fig. 4(a) shows
that there is a huge class imbalance in the original dataset, which means
the number of images in major class and minor class is very different.
Fig. 4(b) indicates the distribution of major class peak is consider-
ably reduced after employing RUS, whereas the distribution of minor
class is same. Because images are only excluded from major classes,
but not from minor classes. Fig. 4(c) represents major and minor
class distribution after employing SVD-CLAHE oversampling. Clearly
peak of both major and minor classes is enhanced after incorporating
SVD-CLAHE oversampling, so that the major class distribution is now
comparable to the distribution of minor class. Fig. 4(d) represents major
and minor class distribution after employing the BWCCE loss function.
Clearly, the BWCCE function was deployed to alleviate a little bit of
class imbalance present after SVD-CLAHE Boosting (i.e., RUS + SVD-
CLAHE Over-sampling). Fig. 4(d) shows that both classes’ distribution
becomes exactly equivalent because by the BWCCE loss function, the
8

minor class is given more weightage (or, bias) than the major class.
Thus, effectively the distribution of both classes becomes equivalent.
Figs. 4(e)–4(h) represents major and minor classes cluster visualization.
Increasing the number of inner circles in a class is equivalent to
increasing the number of samples in that class. Increasing the size of
the inner circle in a class is equivalent to increasing the weight bias in
that class. In Fig. 4(f), this can be visualized that the number of inner
circles in major class decreases after RUS, which means the number of
samples is decreased from the major class by RUS. Fig. 4(g) indicates
that the number of inner circles in both major and minor classes is
considerably increased after incorporating SVD-CLAHE over-sampling.
Now the size of the bigger circle for major and minor classes is kind
of comparable. However, still, there was little class imbalance present
after employing SVD-CLAHE Boosting. Fig. 4(h) represents the final
cluster after employing SVD-CLAHE Boosting and BWCCE loss function.
Clearly, the size of the inner circles of the minor class is increased here,
which means in the BWCCE loss function, the minor class is getting
more biased than the major class. Hence, finally, the bigger circle of
both major and minor classes in Fig. 4(h) is now equivalent. This
reveals that our proposed methodology makes the distribution of major
class and minor class similar; hence it alleviates the class imbalance
problem completely. All these diagrams of distribution and cluster are
entirely imaginary. They have not been taken from any statistical plot
of the dataset, and they are just employed for better visualization of
the proposed methodology.

4. Experimental results and analysis

The following points can summarize the entire experimental results
and analysis section:

1. First, experimental results of several CNN models like Incep-
tionV3, DenseNet-121, VGG 16, VGG 19, ResNet-50 etc. are
compared for this Covid CXR dataset and shown in Table 3.
Moreover, two existing models (only for Covid detection), Covid-
Lite by M.Shiddhartha et al. [35], and Covid-Net by Wang
et al. [36], are implemented on this CXR dataset. This can be
observed from Table 3 that ResNet-50 and VGG-19 have better
results than other models. The reason was already mentioned in
Section 4.1.
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2. We have chosen the ResNet-50 model as the proposed model.
Moreover, different data-augmentation techniques are employed
to prepare three more augmented datasets and the original
dataset. These augmented datasets are: (I) an augmented dataset
by traditional data-augmentation technique (i.e., by rotation,
flipping, zooming, etc.), (II) an augmented dataset prepared by
SVD-CLAHE Boosting in which a number of images per class is
the same, and finally (III) the proposed augmented dataset by
SVD-CLAHE Boosting, in which a number of images per class is
chosen based on intra-class variance. After that, the ResNet-50
model is performed on these four datasets. Furthermore, differ-
ent loss functions are incorporated in the ResNet-50 model for
the proposed augmented dataset. All the results of the ResNet-50
model experiments are presented in Table 4.

3. We have chosen another CNN model, VGG-19, to check the
proposed framework’s validity. Thus, the same experiments are
also conducted on the VGG-19 model. The results of VGG-19 are
presented in Table 5.

4. A comparison of training and validation graphs for both ResNet-
50 and VGG-19 models are shown in Fig. 5 and Fig. 6, respec-
tively.

4.1. Training specification

• All of the experiments have been performed using Tensorflow and
Keras. Tesla P100 GPU, provided by Google Colab Pro service, is
used to train the models. 25 GB RAM was also available from the
service to prevent RAM crashes during the experiments.

• Adams-optimizer is employed as the preferred choice of optimizer
for all the experiments with a learning rate of 1𝑒−7, beta 1 value
of 0.9, beta 2 value of 0.999, and epsilon value of 1𝑒−7.

• A batch size of 32 was used while training CNN models. All
the experiments are performed with 80% training data and 20%
testing data of the total dataset. This training-testing data splitting
is done randomly. Out of entire training dataset, 20 percent are
further chosen as a validation set randomly, to check the validity
of model performance.

• All the images are resized into 224 × 224 before feeding them
into the CNN model.

• Transfer learning approach is deployed for training all the stan-
dard CNN models. All these models are pretrained on the Im-
ageNet dataset [68] (by Keras) and finetuned on CXR dataset.
However, existing Covid-Lite and Covid-Net models are trained
from the scratch since their pre-trained weights are not available
on Keras.

• Early stopping call-back to stop the model training (if the model
starts to overfit) is employed based on the validation loss. Pa-
tience of 5 epochs is incorporated in the Early Stopping call-back,
which minimizes the validation loss. That means, if the validation
loss keeps increasing for 5 consecutive epochs, then the call-
back will automatically stop the model training in order to avoid
overfitting. Weights are restored to the last checkpoints where the
model was not overfitting.

• All the experiments are performed with the same hyperparam-
eters and with the same aforementioned methodology during
training.

.2. Evaluation metrics

Standard ‘accuracy’ metric is used as evaluation metric to check how
ccurately the model is working. Besides that precision, recall as well
s F1 Score are also evaluated in order to make sure the model is not
ffected by any class imbalance problem. The mathematical formulae
or the aforementioned metrics are given below:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (21)
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𝑇𝑃 + 𝐹𝑃 t
Table 3
Comparisons of Mean values of evaluation metrics for various existing models with the
proposed framework on the test set.

Methodology F1 score Accuracy Precision Recall AUC

Covid Lite 0.85 0.85 0.84 0.87 0.88
by [35]
Covid-Net 0.87 0.87 0.88 0.86 0.88
by [36]
Inception-V3 0.78 0.8 0.77 0.79 0.80
Xception 0.79 0.8 0.81 0.77 0.78
DenseNet-121 0.84 0.82 0.82 0.86 0.89
VGG-16 0.88 0.88 0.89 0.87 0.90
VGG-19 0.91 0.90 0.92 0.90 0.91
ResNet-50 0.90 0.89 0.91 0.91 0.92

VGG-19 with 0.95 0.94 0.96 0.95 0.96
proposed
framework

ResNet-50 with 0.95 0.94 0.96 0.95 0.96
proposed
framework

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(22)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(23)

1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(24)

𝑇𝑃 stands for True Positives, i.e., instances labeled as positive and
lassified correctly as a positive instance. 𝑇𝑁 stands for True negatives,
hich represent instances where the actual label is negative and is
redicted likewise. 𝐹𝑃 stands for False positives where the instance
elongs to the negative label but is predicted to be positive. 𝐹𝑁 stands
or False negatives, where instances are positive but are predicted as
egative. Besides these metrics, we have also computed AUC metric
hich is an important metric for measuring class imbalance.

.3. Results analysis and discussions

First, various deep convolutional neural networks, namely,
eNet50, InceptionV3, DenseNet-121, VGG-16, VGG-19, Covid-Lite,
roposed by M. Siddhartha et al. [35], and Covid-Net by Wang et al.
36] are performed to the imbalance dataset. This provides us an
nsight into the problem by observing how this dataset responds to
aive methods of Deep Learning. This can be further observed from
able 3. The exact training specification mentioned in Section 4.1 is
ollowed for all the experiments, except the Covid-Net and Covid-Lite
odels.

For the Covid-Net model, a deep learning framework with PEPX
locks proposed by Wang et al. [36], has been trained on the original
ataset from scratch with 183,695,108 parameters with all of them as
rainable. A batch size of 8, for 30 epochs is employed and call-back
f early stopping is taken with the patience of 5. The model ran for 25
pochs to give an accuracy of 0.87 on the testing data. Although this
odel is trained from scratch on the original dataset, it provides good

esults in terms of accuracy, F1 score, precision, and recall which can
e observed from Table 3. However, we have found that this model is
till a slightly complicated model (having many no. of layers) and thus,
nducing overfitting in this CXR dataset.

For Covid-Lite model, original dataset is pre-processed by CLAHE
nd white balance image processing techniques, as mentioned by
.Shiddhartha et al. [35] in their paper. The dataset is then split

nto training, validation and testing sets with a ratio of 0.7, 0.1 and
.2. Thereafter, they are fed into the Covid-Lite model to train it
rom scratch for 50 epochs with a batch size of 32. It was observed

hat training and validation parameters are highly fluctuating, and



Computers in Biology and Medicine 150 (2022) 106092S. Roy et al.
Fig. 5. Comparisons of performances of several experiments on ResNet-50 Model (a) training accuracy, (b) training F1 score, (c) training loss, (d) validation accuracy, (e) validation
F1 score, (f) validation loss. The experiments are employed are already labeled in the diagram, those are ResNet-50 on original dataset, ResNet-50 on augmented dataset (by
SVD-CLAHE boosting) with equal no of images per class, ResNet-50 on augmented dataset (by proposed SVD-CLAHE boosting), ResNet-50+ SVD-CLAHE Boosting +WCCE, proposed
method (ResNet-50+ SVD-CLAHE Boosting +BWCCE).
the number of trainable parameters is 1,019,396. The performance
by their model is little bit poor. Due to the class imbalance problem
present in the original dataset, there is huge fluctuation of results in
their classification report. Their proposed model is only suitable for a
balanced dataset.

Standard CNN models like Inception-V3, Xception, and DenseNet-
121 have little bit poor results than other models due to the huge
complexity of their models. ResNet50, VGG 16, and VGG 19 performed
better than other models in terms of accuracy, precision, recall, and
F1 score, which can be observed in Table 3. VGG 16 and VGG 19
are comparatively simpler models than Inceptionv3, Xception, and
DenseNet-121. Therefore, those VGG models have no overfitting in
their model performances. ResNet-50 is another model that shows
promising results, shown in Table 3, despite its complicated structure.
We believe that the skip connection present in the model can alleviate
the problem of vanishing gradients, and it also reduces the complexity
of the model a little bit.

We have chosen ResNet-50 as proposed model over VGG-19 and
VGG-16, because we have observed the graphs of validation loss and
validation accuracy (which can be observed in Fig. 5 and Fig. 6)
fluctuates more for VGG-19. Moreover, according to our perspective,
due to higher number of layers (50) present in ResNet-50, it can
accomplish very complicated task and consequently its performance
graph of validation is more stable than that of VGG-19. However,
we have chosen VGG-19 for checking the validity of the proposed
framework, because it is having the second best results after ResNet-50.

The following experiments are conducted with the ResNet-50 model.
Important observations from all these experiments are presented below.

• First, conventional data-augmentation techniques like rotation,
flipping (horizontal and vertical), zooming, etc., are employed
for making an augmented dataset using the ImageDataGenera-
tor, available in Tensorflow. After that, the ResNet-50 model is
10
Table 4
Ablation Study of of various experiments conducted on ResNet-50 model on the testing
set.

Methodology F1-score Accuracy Precision Recall AUC

ResNet-50 with 0.90 0.89 0.91 0.91 0.943
original dataset

ResNet-50 with conven- 0.89 0.88 0.91 0.87 0.907
tional data augmentation
(flipping,rotation)

ResNet-50 with SVD- 0.92 0.91 0.91 0.93 0.937
CLAHE Boosting
with equal no of images

ResNet-50 with proposed 0.94 0.93 0.96 0.93 0.966
SVD-CLAHE Boosting

ResNet-50 with proposed 0.94 0.94 0.96 0.93 0.965
SVD-CLAHE Boosting
with WCCE

Proposed method 0.95 0.94 0.96 0.95 0.967
(ResNet-50+SVD-CLAHE
Boosting+BWCCE)

performed on that augmented dataset. The ResNet-50 model with
this conventional data augmentation produces poor results than
the ResNet-50 model on the original dataset. This can be further
noticed in Table 4. The reason we already discussed in Section 4.
According to our perspective, these data-augmentation techniques
are not feature invariant for the final classification task.

• SVD-CLAHE Boosting is performed to produce a balanced aug-
mented dataset in which each class has an equal number of
images. After that, the ResNet-50 model is performed on this
augmented dataset. The performance of this data augmentation is
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Fig. 6. Comparisons of performances of several experiments on VGG-19 Model (a) training accuracy, (b) training F1 score, (c) training loss, (d) validation accuracy, (e) validation
F1 score, (f) validation loss. The experiments are employed are already labeled in the diagram, those are VGG-19 on original dataset, VGG-19 on augmented dataset (by SVD-CLAHE
boosting) with equal no of images per class, VGG-19 on augmented dataset (by proposed SVD-CLAHE boosting), VGG-19+ SVD-CLAHE Boosting +WCCE, proposed method (VGG-19+
SVD-CLAHE Boosting +BWCCE).
slightly improved than the performance of ResNet-50 on the orig-
inal dataset. F1 score, accuracy, and recall factor are improved by
1-2%, which can be observed in Table 4. However, by observing
its confusion matrix, we found that little class imbalance exists.

• Proposed SVD-CLAHE Boosting (data-augmentation) method is
performed to produce a third augmented dataset. The number of
images per class is chosen according to the intra-class variance,
which is already explained in Section 4. ResNet-50 model on
this augmented dataset (by proposed SVD-CLAHE Boosting) has
performed very effectively, as it produced accuracy, precision,
recall, and F1 scores 93%, 96%, 93%, and 94% respectively,
given in Table 4. This is an approx 4%–5% improvement from
ResNet-50 with the original dataset. This is a significant im-
provement or boosting performance compared to other existing
methods mentioned in Table 3. Thus, this justifies the proposed
data-augmentation method and its name ‘SVD-CLAHE Boosting’.

• Although the proposed SVD-CLAHE boosting works very effec-
tively, we still have found a little bit of class imbalance, which is
noticed by its confusion matrix and from the classification report.
Therefore, the Weighted Categorical Cross-Entropy (WCCE) loss
function is incorporated in the ResNet-50 model, performed on
the proposed augmented dataset. We have observed a little bit of
improvement (1%) in the accuracy, compared to the performance
of ResNet-50 on the proposed augmented dataset, after employing
WCCE. However, from Fig. 5, this can be visualized that WCCE
further incorporates a little bit of fluctuation of validation graphs
for accuracy, F1 score, and loss. This is undesirable. Overall, we
have observed that WCCE pushes the accuracy and precision of
the model slightly more for minor classes, however, this induces
a little bit of fluctations in the performances among other classes.

• Therefore, we develop a novel Balanced Weighted Categorical
Cross-Entropy loss function (BWCCE) to alleviate the limitation
mentioned earlier. This can be observed from Table 4 that BWCCE
performs slightly better than conventional CCE and WCCE for
this proposed augmented dataset. ResNet-50 model (along with
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BWCCE loss function) on the proposed augmented (30k) dataset
has achieved the accuracy, precision, recall, and F1 scores of
94%, 96%, 95%, and 95%, respectively. Overall, there is a 1%
improvement in accuracy, 1% improvement in F1 score, and
2% improvement in recall than the ResNet-50 model after SVD-
CLAHE Boosting. Additionally, from Fig. 5 this can be observed
that the proposed framework (that is, ResNet-50+SVD-CLAHE
Boosting+BWCCE) provides the least validation loss; moreover,
it provides validation accuracy and F1 score graph (shown in
Fig. 5), more stable than that of WCCE and CCE. This justifies
the effectiveness of the BWCCE loss function.

Furthermore, this has also been observed from Fig. 7(a) that the
ResNet-50 model with BWCCE loss function converges much faster (by
only 9 epochs) than that of CCE (20 epochs) and WCCE (13 epochs).
Fig. 7(b) also shows that the average time taken per epoch during
training by the proposed BWCCE loss function is significantly lesser
than that of other loss functions. Hence, this can be concluded that the
proposed BWCCE loss function simplifies the optimization problem of
a complicated CNN model; thus, it enables the CNN model to converge
much faster during training.

The confusion matrix in Fig. 8 helps us to visualize and analyze
the prediction performances of different experiments in a better way.
This gives a definite comparison of the evaluation metrics in a matrix
form. For example, the values 705, 1012, 1804, and 270 are the
True Positive values for the ResNet-50 model on an original dataset
for the classes Covid, Lung Opacity, Normal and Viral Pneumonia,
respectively. By comparing Fig. 8(a) and Fig. 8(b), we can visualize that
true-positives for Lung Opacity (LO) is significantly increased, whereas
Normal and VP classes are a little bit improved while utilizing SVD-
CLAHE Boosting. However, it fails to improve performances for overall
classes (not for Covid class). Because still, little class imbalance was
present after SVD-CLAHE Boosting. We incorporated the BWCCE loss
function on the ResNet-50 model to resolve this problem. Fig. 8(c)
indicates that BWCCE enables us to improve overall performances in
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Fig. 7. (a) No of Epochs of Convergence for ResNet-50 with different loss functions on proposed augmented dataset, (b) Average time taken per epochs in sec, for ResNet-50 with
different loss functions on proposed augmented dataset.
Fig. 8. Confusion matrix for different experiments on ResNet-50 model, (a) Confusion Matrix (CM1) for ResNet-50 on original dataset, (b) Confusion Matrix (CM2) for
ResNet-50+SVD-CLAHE Boosting, (c) Confusion Matrix (CM3) for Proposed methodology (ResNet-50+SVD-CLAHE Boosting+ BWCCE).
.

Table 5
Ablation Study of various experiments conducted on VGG-19 model on the testing set

Methodology F1-score Accuracy Precision Recall AUC

VGG-19 with 0.91 0.90 0.92 0.90 0.928
original dataset

VGG-19 with conven- 0.85 0.86 0.89 0.82 0.883
tional data augmentation
(flipping,rotation)

VGG-19 with SVD- 0.93 0.93 0.95 0.94 0.950
CLAHE Boosting
with equal no of images

VGG-19 with proposed 0.94 0.93 0.95 0.92 0.961
SVD-CLAHE Boosting

VGG-19 with proposed 0.95 0.94 0.95 0.94 0.964
SVD-CLAHE Boosting
with WCCE

Proposed method 0.95 0.94 0.96 0.95 0.967
(VGG-19+SVD-CLAHE
Boosting+BWCCE)

all classes (except little degradation in the VP class). Thus, it gives a
balanced result compared to other experiments. The number of true
positives in normal and Covid classes is significantly increased. Due to
the number of normal class images being higher, it enables the model
to achieve its best performance in terms of accuracy, precision, recall,
and F1 score, which we already observed in Table 4.

In order to check the validity of the proposed framework, we have
conducted the same experiments on the VGG-19 model as well. Because
we wanted to check whether the proposed framework works well in a
generalized way or not. An ablation study of various experiments on
VGG-19 (on the testing dataset), is presented in Table 5. First, VGG-
19 model is experimented with conventional data augmentation with
rotation, flipping, etc. However, those data-augmentation techniques
are not featured invariant; thus, it produces worse results. This data-
augmentation has degraded the overall performance by 3%–8%, shown
12
in Table 5. The performance on the second augmented dataset, how-
ever, has improved a bit. Overall, there is a 2%–4% improvement
from this augmented dataset to the original dataset. Furthermore,
proposed SVD-CLAHE Boosting based on intra-class variance works
very efficiently on the VGG-19 model as well. From Table 5, this
can be observed that SVD-CLAHE Boosting produces an overall 2%–
3% boosting of performance, over VGG 19 on the original dataset.
Hence, SVD-CLAHE Boosting works in a generalized way, to the best
of our knowledge. In order to reduce a little bit of class imbalance
still present after SVD-CLAHE Boosting, we employed the proposed
loss function BWCCE, incorporated in the VGG-19 model. Experimental
results in Table 5 reveal that BWCCE provides a little bit better and
more balanced results than the previous results. Table 5 shows that the
proposed framework (i.e., VGG-19+ SVD-CLAHE Boosting + BWCCE)
provides 1%–3% further improvement in performances than VGG-19
on the proposed augmented dataset (by SVD-CLAHE Boosting).

Moreover, this can be observed from Fig. 5 that by WCCE loss
functions, the VGG-19 model provides a little bit spike (or oscillation)
in all validation results (accuracy, F1 score, and loss graph). This is
undesirable. However, experiments with the BWCCE loss function in
Fig. 5 provides more stable results than WCCE. Overall, the BWCCE
loss function provides the best accuracy, F1 score, and least loss metrics
than other experiments for both models, shown in Figs. 5 and 6. This
is a significant improvement. Therefore, the proposed BWCCE justified
its usefulness for the VGG-19 model. Hence, the proposed framework
(i.e., data-augmentation by SVD-CLAHE boosting and proposed loss
function BWCCE) works very efficiently for both models.

5. Conclusion

A novel data-augmentation method SVD-CLAHE Boosting was pro-
posed to solve a multi-class classification task for a highly imbalanced
Covid-19 CXR dataset. First, the ResNet-50 model was proposed for
the classification task; moreover, ResNet-50 was employed on the aug-
mented dataset (by proposed SVD-CLAHE Boosting), which provided
better results than other models. The proposed augmented dataset (of
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30,033 images) was able to distinguish between different classes more
efficiently, thereby generalizing more and avoiding the issue of class
imbalance problem significantly. This augmented dataset was shared
online publicly on the Kaggle website. The boosting performance of
evaluation metrics further justified its name ‘SVD-CLAHE Boosting’. In
order to check the validity of the proposed data-augmentation method,
same experiment was conducted on the VGG-19 model as well. The
experimental result suggested that the proposed SVD-CLAHE Boosting
worked well in a generalized way. However, a little bit of a class
imbalance problem was still observed in the model (in their confusion
matrix); thus, a novel BWCCE loss function was employed, which
assigned the bias weightage of several classes based on the notion of
probability. This novel loss function provided improved performance
metrics for both ResNet-50 and VGG-19 models and provided a stable
validation graph for loss function and accuracy compared to WCCE.
Another attractive characteristic of the proposed loss function was that
for complicated models (ResNet-50), it converged a little bit faster than
conventional CCE and WCCE. Hence, this can be concluded that the
proposed data-augmentation technique, ’SVD-CLAHE boosting’ along
with BWCCE loss function, worked efficiently for both the ResNet-50
and VGG-19 models for this imbalanced imbalance Covid-19 dataset.
The mean of evaluation metrics indicated that the proposed framework
outperformed any other methods both qualitatively and quantitatively.
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