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Actin-related proteins regulate the RSC chromatin
remodeler by weakening intramolecular
interactions of the Sth1 ATPase
Bengi Turegun1, Richard W. Baker2, Andres E. Leschziner 2 & Roberto Dominguez1

The catalytic subunits of SWI/SNF-family and INO80-family chromatin remodelers bind actin

and actin-related proteins (Arps) through an N-terminal helicase/SANT-associated (HSA)

domain. Between the HSA and ATPase domains lies a conserved post-HSA (pHSA) domain.

The HSA domain of Sth1, the catalytic subunit of the yeast SWI/SNF-family remodeler RSC,

recruits the Rtt102-Arp7/9 heterotrimer. Rtt102-Arp7/9 regulates RSC function, but the

mechanism is unclear. We show that the pHSA domain interacts directly with another

conserved region of the catalytic subunit, protrusion-1. Rtt102-Arp7/9 binding to the HSA

domain weakens this interaction and promotes the formation of stable, monodisperse

complexes with DNA and nucleosomes. A crystal structure of Rtt102-Arp7/9 shows that

ATP binds to Arp7 but not Arp9. However, Arp7 does not hydrolyze ATP. Together, the

results suggest that Rtt102 and ATP stabilize a conformation of Arp7/9 that potentiates

binding to the HSA domain, which releases intramolecular interactions within Sth1 and

controls DNA and nucleosome binding.
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Chromatin-remodeling complexes (remodelers) are large,
multisubunit complexes that regulate gene expression and
genome maintenance1. Remodeler malfunction is often

linked to diseases, including cancer2 and cardiovascular dis-
orders3. Remodelers belong to four families: CHD, ISWI, SWI/
SNF, and INO80. While the subunit composition of these families
varies, they all assemble around a catalytic subunit defined by the
presence of a conserved helicase superfamily 2 (SF2) ATPase
domain4, 5. The ATPase domain consists of two recA-like sub-
domains, with the nucleotide-binding and DNA-binding sites
located at the interface between subdomains6–8. DNA-dependent
ATP hydrolysis by the catalytic subunit propels changes in
chromatin structure, such as histone octamer sliding, ejection,
and histone subunit exchange9–14. These activities are regulated
by auxiliary subunits recruited through family-specific domains N
and C terminal to the central ATPase domain of the catalytic
subunit.

Two families of remodelers, SWI/SNF and INO80, recruit as
auxiliary subunits actin and actin-related proteins (Arps) through
a region N terminal to the ATPase domain called the helicase/
SANT-associated (HSA) domain15. Actin and Arps have been
proposed to regulate the catalytic and nucleosome targeting and
sliding activities of their host remodelers15–22. The HSA domain
of Sth1, the catalytic subunit of the budding yeast SWI/SNF-
family remodeler RSC (Remodeling the Structure of Chromatin),
recruits Arp7 and Arp915. In turn, the Arp7/9 heterodimer forms
a tight complex with another auxiliary subunit, Rtt102. Bio-
chemical and structural studies have shown that Rtt102 stabilizes
a compact conformation of Arp7/9 that favors binding to the
HSA domain, while also promoting high-affinity binding of ATP
to one of the Arps23, 24. Arp7/9 regulates the nucleosome sliding,
ejection, and ATPase activities of RSC in an Rtt102-dependent
manner16, 23. However, the molecular mechanism through which
binding of Rtt102-Arp7/9 to the HSA domain of Sth1 regulates its
activity is unknown.

Several studies have identified regulatory interactions between
the ATPase domain and flanking regions in various catalytic
subunits25–29. Interestingly, in Sth1, mutations that restore via-
bility of ΔArp7/9 yeast strains localize to two highly conserved
regions: protrusion-1 (P1) within the ATPase domain and a ~60-aa
sequence in between the HSA and ATPase domains known as the
post-HSA (pHSA) domain15. It is therefore possible that the
pHSA domain of Sth1 interacts with the ATPase domain, and this
interaction could in principle be regulated by Rtt102-Arp7/9
binding to the neighboring HSA domain. In this study, we test
this hypothesis; we show that the pHSA domain interacts with the
ATPase domain, directly contacting P1. We further show that
binding of Arp7/9 to the HSA domain weakens this interaction in
an Rtt102-dependent manner. In addition, the binding of Rtt102-
Arp7/9 to the HSA domain reduces the affinity of the ATPase for
DNA, while promoting the formation of stable, monodisperse
complexes with both DNA and nucleosomes. A nucleotide-bound
structure of Rtt102-Arp7/9 reveals that ATP binds only to Arp7,
helping stabilize a closed conformation of Arp7 that potentiates
binding of Rtt102-Arp7/9 to the HSA domain. Together, the
results suggest a molecular mechanism for how actin and Arps
might regulate SWI/SNF-family and INO80-family remodelers.

Results
The pHSA and ATPase domains of Sth1 interact with each
other. The HSA domain, defined as the region of the ATPase that
binds Rtt102-Arp7/9, and the more highly conserved pHSA
domain are unique to actin/Arp-containing remodelers (Fig. 1
and Supplementary Fig. 1). The existence of an intramolecular
interaction involving the pHSA domain was first suggested by the

observation that construct Sth1425–1097, lacking both the HSA and
pHSA domains, was insoluble and accumulated in bacterial
inclusion bodies, whereas a construct lacking only the HSA
domain, Sth1365–1097, was soluble. Since Sth1 cannot be expressed
without the pHSA domain to test the existence of a hypothetical
intramolecular interaction involving the pHSA domain, we
designed an internally cleavable construct, whereby the
HSA–pHSA region could be severed from the ATPase domain
after purification. For this, a canonical TEV protease cleavage site
was engineered within the poorly conserved linker between the
pHSA and ATPase domains and with minimal changes to the
endogenous sequence (Figs 1b and 2a). The resulting construct
(TEV-cleavable Sth1301–1097) contains a non-cleavable N-terminal
His-tag for affinity purification and pull-down assays (Fig. 2a).
Purified TEV-cleavable Sth1301–1097 was soluble, and remained
soluble after cleavage with TEV protease. Analysis by SDS-PAGE
confirmed the formation of two fragments, with masses corre-
sponding to the His-HSA–pHSA and ATPase fragments (Fig. 2b
and Supplementary Fig. 2). Importantly, the untagged ATPase
domain co-eluted with His-HSA–pHSA on a Ni-NTA affinity
column (Fig. 2a, b, g). The same results were obtained with TEV-
cleavable construct Sth1365–1097, lacking the HSA domain;
Sth1365–1097 remained soluble after TEV cleavage and the result-
ing untagged ATPase and His-pHSA fragments co-eluted on a
Ni-NTA column (Fig. 2c, g). These results suggested that the
untagged ATPase domain remains bound to the His-tagged N-
terminal fragments through interaction with the pHSA domain.
To rule out the possibility that the ATPase domain bound
independently to the Ni-NTA affinity column (despite the lack of
an affinity tag on this portion of the protein), TEV-cleaved
Sth1365–1097 was purified through a gel filtration column, which
again showed the ATPase and His-pHSA fragments co-migrating
as a single peak, as further confirmed by SDS-PAGE analysis
(Fig. 2d). In this case, however, we noticed some loss of His-
pHSA due to dilution in the column, characteristic of interactions
with affinities in the micromolar range30. As an added control, we
inserted a second TEV site in between the N-terminal His-tag and
the pHSA domain of construct Sth1365–1097. In this case, TEV
protease is expected to cleave at two locations, between the His-
tag and pHSA domains and between the pHSA and ATPase
domains. As anticipated, after cleavage the untagged pHSA and
ATPase fragments flowed through the Ni-NTA column, whereas
the non-cleaved His-tagged protein remained bound (Fig. 2e).
Taken together, these results support the presence of a direct
intramolecular interaction involving the pHSA and ATPase
domains of Sth1.

The pHSA domain interacts directly with protrusion-1.
Because mutations that suppress ΔArp7/9 lethality localize to the
pHSA and P1 regions of Sth1 (residues highlighted by red
asterisks in Fig. 1b, c)15, these two regions might be expected to
interact with each other. To test this possibility, P1 in the TEV-
cleavable construct Sth1301–1097 was swapped with P1 from
Rad54, a homologous SF2 ATPase that does not bind actin or
Arps and therefore has a different P1 (Fig. 1c). In the resulting
construct (Sth1301–1097P1swap), Sth1 residues P646-P692 were
replaced with Rad54 residues P610-P644 (which is 12-aa shorter),
such that the swapped region is flanked by conserved sequences
that can be unequivocally aligned (Fig. 1c). Importantly, the
replaced sequence is mostly exposed in the structure of Rad547,
and the few residues that interact with the ATPase domain tend
to be conserved in Sth1. The migration profile of the P1 swapped
construct on a gel filtration column suggests that the large sub-
stitution of 47 amino acids does not affect folding of the ATPase
(Supplementary Fig. 3a), further supported by the demonstration
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of DNA-dependent ATPase activity (Supplementary Fig. 3b) and
by the of the swapped construct DNA-binding affinity (Supple-
mentary Fig. 3c), both of which are similar to those of the wild-
type protein.

As anticipated, the P1 substitution almost entirely abolished
the ability of His-HSA–pHSA to pull-down the untagged ATPase
domain on a Ni-NTA affinity column after TEV cleavage (Fig. 2f, g).
These results suggest that the pHSA and P1 regions of Sth1
interact directly with each other. Because the pHSA and P1
regions are highly conserved within (albeit not across) the SWI/
SNF and INO80 families of remodelers (Fig. 1 and Supplemen-
tary Fig. 1), it is possible that this interaction is conserved among
actin/Arp-containing remodelers.

Rtt102-Arp7/9 destabilizes the pHSA–protrusion-1 interac-
tion. Since mutations in P1 and the pHSA domain restore the
viability of ΔArp7/9 yeast strains15, we reasoned that the binding
of Arp7/9 to the HSA domain could regulate the pHSA–P1
interaction. To test this possibility, the TEV cleavage and pull-
down approach described above were performed with construct
Sth1301–1097 co-purified with Arp7/9 (Fig. 3a). To our surprise,
however, a large fraction of the ATPase domain co-eluted with
the Arp7/9-bound His-HSA–pHSA fragment (Fig. 3b, c).
Therefore, Arp7/9 alone appears to have little effect on the
pHSA–P1 interaction.

Because we previously found that subunit Rtt102 stabilizes the
Arp7/9 heterodimer, enhancing its interaction with the HSA
domain24, we repeated the experiment with Rtt102-Arp7/9

(Fig. 3a). In this case, ~23% of the ATPase was lost after TEV
cleavage, likely due to protein precipitation (as mentioned above,
in isolation the ATPase domain has low solubility), and an
additional 45% was lost after passage through a Ni-NTA affinity
column (Fig. 3b, c). These results suggest that the binding of
Rtt102-Arp7/9 to the HSA domain weakens the interaction
between the pHSA and P1 regions of Sth1.

Rtt102-Arp7/9 reduces the affinity of Sth1 for DNA. The results
described above suggested that the binding of Rtt102-Arp7/9
produces a conformational change in Sth1, which in principle
could affect DNA binding, since the structure of Rad54 shows P1
making contacts with DNA7. To verify this possibility, we mea-
sured DNA binding to Sth1 constructs alone and in complex with
Rtt102-Arp7/9 using fluorescence anisotropy, as previously
described31 (Fig. 4). Three Sth1 constructs were tested in these
experiments: Sth1301–1097, Sth1365–1097, lacking the HSA domain,
and Sth1388–1097, lacking additionally 17-aa of the pHSA domain.
The proteins and DNA used in the experiments were purified to
homogeneity (Supplementary Fig. 4a, b), and all the Sth1 con-
structs were soluble, monomeric and formed 1:1 complexes with
DNA under the conditions of the assays, as illustrated here for
construct Sth1388–1097 using multi-angle light scattering (Fig. 4d).

To measure DNA binding in the ATP state, the non-
hydrolyzable analog AMPPNP was used to prevent DNA-
dependent nucleotide hydrolysis during the experiments. In the
AMPPNP-bound state, Sth1301–1097 bound DNA with a KD of
0.28 μM, whereas Sth1365–1097 bound with ~3-fold weaker affinity
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(KD of 0.83 μM; Fig. 4a, c). Since these two constructs differ only
in the presence/absence of the HSA domain, their different DNA-
binding affinities suggest that the HSA domain contacts the DNA,
consistent with the presence of 14 basic residues within this
region of Sth1. No functional relevance is assigned here to this
HSA–DNA interaction, however, since in the full RSC complex
Rtt102-Arp7/9 masks the HSA domain. The 23-aa shorter

construct Sth1388–1097 displayed an additional ~2-fold drop in
affinity for DNA (KD of 1.32; Fig. 4a, c). Sth1388–1097 lacks a
highly conserved segment of the pHSA domain that includes
most of the ΔArp7/9 suppressor mutations (Fig. 1), and it is thus
noteworthy that this region appears to participate in DNA
binding when the Arps are not present. On the other hand, the
ternary complex Arp7/9-Sth1301–1097 and the quaternary complex
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from three (Sth1365–1097 and Sth1301–1097P1swap) or four (Sth1301–1097) technical replicates
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Rtt102-Arp7/9-Sth1301–1097 displayed dramatic ~11-fold and ~15-
fold drops in DNA-binding affinity, respectively, compared to
Sth1301–1097 alone (KD’s of 3.0 and 4.2 vs. 0.28 μM; Fig. 4a, c).
Because the binding of Rtt102-Arp7/9 to the HSA domain
weakens the affinity for DNA further than the deletion of the
HSA domain (Fig. 4a, c), nonspecific HSA–DNA interactions are
only partially responsible for the drop in DNA-binding affinity
observed with the quaternary complex. Therefore, at least two
factors appear to explain the weaker DNA-binding affinity of the
quaternary complex: (a) masking by Rtt102-Arp7/9 of positively
charged amino acids within the HSA region that could
nonspecifically contact the DNA and (b) weakening of the
pHSA–P1 interaction upon binding of Rtt102-Arp7/9 to the HSA
domain.

To test whether Rtt102-Arp7/9 regulates DNA binding
throughout the catalytic cycle, similar experiments were
performed in the post-hydrolysis, ADP-bound state. All the
Sth1 constructs bound DNA less tightly in the ADP than in the
AMPPNP state, and a similar trend was observed in that
successive N-terminal deletions of Sth1 or the binding of Rtt102-
Arp7/9 to the HSA domain weakened the affinity of Sth1 for
DNA (Fig. 4b, c).

Combined, these results suggested that Rtt102-Arp7/9 nega-
tively regulates the binding of Sth1 to DNA. To validate this idea,
we used two alternative methods. First, we used a native gel-shift
assay in which increasing concentrations of Sth1301–1097 (or
Rtt102-Arp7/9-Sth1301–1097) deplete a fixed concentration of free
DNA through complex formation both in the AMPPNP-bound
and ADP-bound states. This assay revealed a similar trend to that
observed by fluorescence anisotropy; higher concentrations of
Rtt102-Arp7/9-Sth1301–1097 than Sth1301–1097 were required to
deplete the DNA band, indicative of a lower DNA-binding

affinity of the quaternary complex (Supplementary Fig. 5a–c).
This experiment also suggested that the quaternary complex
Rtt102-Arp7/9-Sth1301–1097 forms a more stable (or homogenous)
complex with DNA than Sth1301–1097 alone, as indicated by a
single, slowly migrating band in the native gel (Supplementary
Fig. 5a, b). In the second approach, we used a heparin column to
mimic DNA binding. Consistent with the results described above,
Sth1301–1097 displayed longer retention times on the heparin
column than the quaternary complex Rtt102-Arp7/9-Sth1301–1097
(Supplementary Fig. 5d).

Rtt102-Arp7/9-Sth1 stabilizes the Sth1–nucleosome complex.
In light of the negative effect of Rtt102-Arp7/9 on the affinity of
Sth1 for DNA, we asked whether nucleosome binding was
similarly affected. Nucleosome binding was measured for
Sth1301–1097 and Rtt102-Arp7/9-Sth1301–1097 in the AMPPNP-
bound and ADP-bound states using the native gel-shift assay
performed above, in which macromolecules migrate according to
their mass/charge ratio. Overall, the complex of Rtt102-Arp7/9-
Sth1301–1097 with nucleosomes displayed a narrower distribution
in native gels compared to that of Sth1301–1097 (Fig. 5a–d), which
is indicative of a more ordered or compact complex, as also
observed with DNA (Supplementary Fig. 5a, b). On the other
hand, the nucleotide state did not appear to affect the
nucleosome-binding affinities of Sth1301–1097 or Rtt102-Arp7/9-
Sth1301–1097 (Fig. 5e, f). Importantly, Sth1301–1097 and Rtt102-
Arp7/9-Sth1301–1097 bound nucleosomes with similar affinities
(unlike their very different affinities for DNA), with a slight albeit
reproducible advantage for the quaternary complex both in the
AMPPNP (apparent KD of 0.46 vs. 0.67 μM) and ADP (apparent
KD of 0.51 vs. 0.67 μM) states. Therefore, we conclude that, while
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the isolated Sth1 catalytic subunit and the Rtt102-Arp7/9-Sth1
quaternary complex have similar affinities for nucleosomes,
Rtt102-Arp7/9 appears to confer specificity upon Sth1 by pro-
moting the formation of monodisperse complexes with nucleo-
somes. These results are consistent with previous findings that the
quaternary complex has lower DNA-dependent ATPase activity
but increased translocation efficiency on nucleosomes16.

The structure of Rtt102-Arp7/9 reveals ATP bound to Arp7.
The quaternary complex of Rtt102-Arp7/9-Sth1301–1097 studied
here contains three potential ATP-binding sites, on Sth1, Arp7,
and Arp9, such that nucleotide-dependent effects could in prin-
ciple be due to ATP binding and/or hydrolysis at any of these
sites or their combinations. While ATP binding and hydrolysis by
actin has been extensively studied32, little is known about the role
of ATP in nuclear Arps33. In a previous study, we observed using
isothermal titration calorimetry that ATP binds to a single, high-
affinity site within Rtt102-Arp7/924, whose location we could not
precisely identify. Now that we have found that Rtt102-Arp7/9
affects the interaction of Sth1 with nucleosomes, it is imperative
to better understand this regulatory complex, including the
location and role of ATP in Rtt102-Arp7/9.

Reported structures of Arp7/9 (PDB accession code: 3WEE)34

and Rtt102-Arp7/9-HSA (PDB accession code: 4I6M)23 do not
contain ATP bound, presumably because these complexes were

crystallized in the presence of high concentrations of phosphate
and sulfate ions, which occupy the nucleotide-binding pockets of
Arp7 and Arp9. Here, we pre-incubated Rtt102-Arp7/9 with ATP
prior to crystallization, and obtained crystals using polyethylene
glycol 3350 as the main precipitant. The crystals, which diffracted
to a relatively low resolution (3.25 Å), contain two copies of the
Rtt102-Arp7/9 ternary complex in the P1 unit cell (RMSD = 0.51
Å for 833 equivalent Cα atoms; Fig. 6a and Table 1). The overall
structure, and specifically the disposition of the Arps relative to
one another, is marginally closer to that of the quaternary
complex Rtt102-Arp7/9-HSA (RMSD of 0.64 Å for 774 equiva-
lent Cα atoms) than that of the Arp7/9 heterodimer (RMSD of
0.67 Å for 758 equivalent Cα atoms). The conformation of Rtt102
is also very similar to that observed in the complex of Rtt102-
Arp7/9-HSA, and, although the current structure reveals 13 more
amino acids for this subunit, a large portion of Rtt102 (90 amino
acids out of 157) remains unresolved in the electron density map.
The observable portion of Rtt102 interacts mostly with Arp9, and
seems to act as a “clip” holding the Arps together, which may
explain why Rtt102 enhances the affinity of Arp7/9 for both Sth1
and nucleotide24. More importantly, unlike in previous struc-
tures, composite omit maps of the current structure clearly
showed the presence of ATP in the nucleotide-binding cleft of
Arp7 but not Arp9 in both complexes of the unit cell (Fig. 6b).
The striking similarity of the structures suggests that while
lacking ATP the two previous structures23, 34 displayed a
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conformation corresponding to that of the nucleotide-bound
state, likely due to the presence of phosphate ions in the catalytic
cleft substituting for ATP.

Monomeric actin is an extremely slow ATPase, and nucleotide
hydrolysis is only activated upon polymerization35. Not surpris-
ingly, we found here that Arp7 lacks ATPase activity, both alone
and within the ternary complex Rtt102-Arp7/9, whereas the
quaternary complex Rtt102-Arp7/9-Sth1301–1097 displays strong
DNA-dependent ATPase activity catalyzed by subunit Sth1
(Fig. 6c). This is consistent with previous findings that
mutagenesis of the nucleotide-binding clefts of Arp7 and Apr9
had no functional effect36. The structure determined here offers
clues that might explain the lack of ATPase activity of Arp7. Out
of 26 residues that either directly interact with or fall near the
nucleotide, and may thus coordinate water molecules that interact
with the nucleotide, only 9 are conserved between actin and Arp7
(Fig. 6d). In particular, the all-important actin residue Lys-18,
which anchors the nucleotide in place by interacting with both
the α-phosphate and β-phosphate, becomes Val-18 in Arp7,
which cannot support these interactions. In actin, the
β-phosphate and γ-phosphate of the nucleotide are additionally
coordinated by a divalent cation (Mg2+ under physiological
conditions, or Ca+2 in most of the available structures). In
contrast, there is no cation associated with the nucleotide in the
structure of Arp7. Indeed, Arp7 appears to lack a cation-binding
site, as two of the residues that coordinate water molecules that
hold the cation in place in actin, Asp-11 and Gln-137, have
changed in Arp7 to His-11 and Glu-141, respectively. Specifically,
Gln-137 and the cation coordinate a water molecule thought to
serve as the nucleophile in the ATP hydrolysis reaction of actin.
Strikingly, mutating this residue to glutamic acid in yeast actin
(the amino acid found in Arp7) results in lack of viability32. The
same study found that residue His-161 in the actin cleft is also

absolutely required for yeast viability. Actin His-161 becomes
Asn-165 in Arp7. Therefore, the lack of ATPase activity in Arp7
is supported by the structure and previous genetic studies on
actin and the Arps36.

Discussion
We have shown here that the pHSA domain of Sth1 interacts with
the P1 region of the ATPase domain, and that regulation of this
interaction might be an important mechanism to fine-tune the
activity of actin/Arp-containing remodelers. This finding adds to
a growing list of evidence showing that domains adjacent to the
ATPase domain regulate the activity of the catalytic subunits of
several remodelers. Thus, N-terminal chromodomains in Chd1
interact with and lock the ATPase domain in an inactive con-
formation26. The AutoN and NegC regions of ISWI, N and C
terminal to the ATPase domain, negatively regulate ATP
hydrolysis and the link between ATP hydrolysis and productive
DNA translocation, respectively25. Similarly, the N-terminal
region of CSB negatively regulates its ATPase activity27. In
SWI/SNF remodelers, the SnAc (Snf2 ATP coupling) domain
positively regulates the catalytic activity of the ATPase domain
and may also interact with histones29, 37.

During the preparation of this manuscript, a structure of the
Sth1 homolog Snf2 from Myceliophthora thermophila was
reported38. The structure comprises Snf2 residues Ala-458 to
Gly-1128, corresponding to Sth1 residues Ser-383 to Gly-1049
(i.e., it does not include the HSA domain). Although several
elements of the structure were not visualized, including parts of
P1 and the linker between the pHSA and ATPase domains, the
structure offers important clues; it reveals most of the pHSA
domain (equivalent to Sth1 residues Ser-383 to Val-419) and a
portion of the C-terminal SnAc domain (equivalent to Sth1
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residues Asp-971 to Gly-1049). Both the SnAc and pHSA
domains interact extensively with the ATPase domain and, con-
sistent with our findings here, the pHSA domain lies adjacent to
P1. The concurrence of our findings and the high conservation of
the interacting sequences in the individual SWI/SNF and INO80
families of remodelers (Fig. 1 and Supplementary Fig. 1) allow us
to postulate that the pHSA–P1 interaction is conserved
throughout actin/Arp-containing remodelers.

A recent study found that the binding of Rtt102-Arp7/9
increases the activity of Sth1 by allowing for more efficient
translocation per ATP hydrolysis cycle16. The same study found
that a ΔArp7/9 yeast viability-restoring mutation in the P1 region
had the same effect in the absence of Rtt102-Arp7/9. This raises
the question as to how the suppressor mutations restore viability
of ΔArp7/9 yeast strains? Our initial thought was that these
mutations had the same effect as the binding of Rtt102-Arp7/9 to
the HSA domain of the catalytic subunit, namely weakening the
interaction between the pHSA and P1 regions. However, this does
not appear to be the way these mutations work. Indeed, several of
the mutated amino acids were visualized in the recent structure of
Snf238, and appear scattered throughout the pHSA and P1
regions, not forming a single cluster. What is more, the

suppressor mutations are not found within the hydrophobic
interface between the pHSA and P1 regions, and instead point
away from this interface, and thus these mutations are not
expected to affect the pHSA–P1 interaction. Therefore, a
mechanistic understanding of the effect of the suppressor muta-
tions is still lacking.

Given the intrinsic structural flexibility of the recA domains
relative to one another7, 8, 26, 38, 39, it is possible that by breaking
the interaction between the pHSA and P1 regions the role of
Rtt102-Arp7/9 is to free the recA domains to adopt a con-
formation more suitable for DNA translocation on nucleosomes,
as recently suggested16. Likely, the linker between the HSA and
pHSA helices, which contains three of the yeast viability-restoring
mutations (Fig. 1), serves as a hinge for Rtt102-Arp7/9-dependent
conformational changes in Sth1. In this regard, it is important to
note that a recent cryo-EM structure of the Sth1-related catalytic
subunit Snf2 from Saccharomyces cerevisiae bound to the
nucleosome shows an unexpected new role of the P1 region
(called SuppH in the cited work); it participates in inter-recA
domain stabilizing interactions39. Thus, two helices of the P1
region within the N-terminal recA domain fold upon two helices
of the so-called “Brace” region within the C-terminal recA
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domain in a crossed-arms manner to stabilize the recA domains
around the nucleosome. As a result, the inter-recA conformation
observed in this structure is very different from that observed in
the absence of nucleosome38. Yet, the pHSA helix lies adjacent to
the P1 region in both structures, suggesting that they move as a
single entity. If, as our work suggests, the binding of Rtt102-Arp7/9
to the neighboring HSA domain weakens the pHSA–P1 interac-
tion, this could impact the orientation of the recA domains with
respect to one another and thus their interaction with the
nucleosome, which could possibly explain the formation of the
monodisperse Rtt102-Arp7/9-Sth1/nucleosome complex
observed here.

The structure of ATP-bound Rtt102-Arp7/9 described here
and previous biochemical data24 confirm the presence of a
nucleotide-binding site in Arp7. However, we also found that
Rtt102-Arp7/9 lacks ATPase activity (Fig. 6c), suggesting that
ATP binding to Arp7 plays a regulatory role. And yet, ATP is
likely bound under physiological conditions, since the con-
centration of ATP in the nucleus is ~3.5 mM40 and Rtt102-Arp7/
9 binds ATP with a KD of 200 nM, and even higher affinity when
bound to the HSA domain24. What is then the role of ATP
binding to Arp7? Comparison with a recent structure of actin/
Arp4 bound to the HSA domain of SWR141 offers a potential
explanation. In this structure, Arp4 occupies the position of Arp7,
at the N-terminal end of the HSA domain, whereas actin takes the
position of Arp9. Remarkably, Arp4 displays a closed-cleft con-
formation and contains ATP bound, whereas actin shows an open
cleft conformation and lacks nucleotide (just like Arp9 in the
structure determined here). There are >100 actin entries in the
Protein Data Bank, and to our knowledge the actin/Arp4-
SWR1 structure is the first in which actin has no nucleotide
bound. In contrast, Arp7, which in isolation has low affinity for
ATP (KD = 12 μM), binds nucleotide tightly (KD = 94 nM) as part
of the quaternary complex Rtt102-Arp7/9-HSA24. Thus, there
appears to be a conserved structural requirement for a closed,
nucleotide-bound cleft for the subunit associated with the N-
terminal half of the HSA domain and an open, nucleotide-free

cleft for the subunit bound closer to the ATPase domain. In other
words, we propose that the role of nucleotide binding to actin/
Arp-containing remodelers is not regulatory, but structural. If this
prediction is correct, it could be expected that the fission yeast
remodelers RSC and SWI/SNF, which contain Arp9 and the Arp4
homolog Arp42 (instead of Arp7)42, will have nucleotide-bound
Arp42 and nucleotide-free Arp9 at the N-terminal and C-
terminal ends of the HSA domain, respectively.

In summary, the biochemical and structural data presented
here suggest that Rtt102 and ATP stabilize a conformation of
Arp7/9 that potentiates binding to the HSA domain, which in
turn releases intramolecular interactions between the pHSA
domain and the P1 region of the ATPase domain. These inter-
actions might control the affinity and specificity of the ATPase for
DNA and nucleosomes, ultimately regulating the translocation
efficiency of the remodeler. Because both the pHSA domain and
P1 are highly conserved separately within the SWI/SNF and
INO80 remodeler families, this could represent a general
mechanism for how actin and Arps regulate the activities of their
host remodelers.

Methods
Proteins. Sth1 constructs and complexes were cloned and expressed as described24.
For Sth1301-1097P1Swap, the Sth1 fragments 301–645 and 693-1097 were primer-
extended to add S. solfataricus Rad54 residues 610–644. A silent EcoRI site was
introduced during extension to ligate the two Sth1 fragments. For protein pur-
ification, cells were resuspended in lysis buffer (20 mM HEPES pH 7.5, 300 mM
NaCl, 5% glycerol, 25 mM imidazole, and 4 mM benzamidine), lysed using a
Microfluidizer apparatus (Microfluidics), and clarified by centrifugation. Lysates
were purified on a Ni-NTA affinity column (Qiagen) and washed extensively with
lysis buffer. Proteins were eluted with 250 mM imidazole and bound to a HiTrap
Heparin HP column (GE Healthcare) equilibrated in sample buffer (20 mM HEPES
pH 7.5, 200 mM NaCl, 5% glycerol, 2 mM dithiothreitol (DTT), and 4 mM ben-
zamidine). Proteins were eluted using a 200–800 mM NaCl gradient, and further
purified on a SD-200 gel filtration column (GE Healthcare) equilibrated with
sample buffer. To reconstitute the Rtt102-Arp7/9 ternary complex, Rtt102 and
Arp7/924 were mixed at a 2:1 molar ratio and purified through a SD-200 gel
filtration column equilibrated in sample buffer (without benzamidine).

TEV cleavage and co-purification assay. A TEV site was engineered between
Sth1 residues 424 and 432 by site-directed mutagenesis (Quikchange, Agilent).
Purified Sth1 constructs at 6 μM (±Arp7/9 and Rtt102) were incubated with 20 μg
of TEV protease overnight in co-purification buffer (20 mM HEPES pH 7.5, 500
mM NaCl, 5% glycerol, 25 mM imidazole, 1 mM MgCl2, and 0.1 mM AMPPNP). A
1-mL volume of the reaction was then incubated for 4 h with 250 μL of Ni-NTA
resin (Qiagen) equilibrated in co-purification buffer. Unbound protein was flowed
through a PolyPrep column (Bio-Rad), and the resin was washed with 5 mL of co-
purification buffer, followed by elution with 250 mM imidazole. The samples were
then analyzed by SDS-PAGE, and the Coomassie-stained bands were quantified
densitometrically using the program ImageJ43. For experiments with Sth1 alone,
the ATPase level after cleavage was set to 1. To account for loading differences
(before and after co-purification), the loss of ATPase after co-purification was
calculated by normalizing the intensities of the His-tagged N-terminal fragments
and adjusting the intensities of the ATPase bands accordingly. For experiments
with Arp7/9, the ATPase levels were normalized using the intensities of Arp7 and
Arp9 as an internal reference. The normalized ATPase band intensities for the
TEV-digested samples were divided by 0.91, a factor accounting for the loss of
intensity of the ATPase band upon TEV cleavage.

Analytical size exclusion chromatography. Sth1365–1097 at 200 μM was digested
in column buffer (20 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 2 mM DTT)
with 100 μg TEV protease. A volume of 500 μL of the digested sample was injected
onto a Bio-Sil SEC 250 HPLC column (Bio-Rad) at a flow rate of 0.5 mL/min, and
0.25 mL fractions were collected starting at 15 min post injection. As a control, 500
μL of undigested Sth1, supplemented with an equivalent amount of TEV pur-
ification buffer, was also analyzed.

Oligonucleotide preparation. Oligos (5′-TCCATGTCCATGGATACGTGG-3′
and 5′-TCCACGTATCCATGGACATGGA-3′) were injected onto a Symmetry300
C18 column (Waters) equilibrated with 0.1 M TEAA pH 7.0 and purified on a
0–20% acetonitrile gradient. Following cycles of lyophilization and resuspension in
50% ethanol to fully remove the TEAA and acetonitrile, the oligos were resus-
pended in hybridization buffer (20 mM HEPES pH 7.5, 2.5 mM MgCl2 and 50 mM
NaCl). Equimolar (100 μM) amounts of each strand were mixed at 95 °C and

Table 1 Data collection and refinement statistics

Rtt102-Arp7/9 (PDB code: 5TGC)

Data collection
Space group P1
Cell dimensions
a, b, c (Å) 79.45, 88.03, 105.49
α, β, γ (°) 109.02, 104.65, 96.20

Resolution (Å) 40.0–3.25 (3.42–3.25)a

Rmerge (%) 9.7 (41.8)
I/σ(I) 11.2 (2.4)
Completeness (%) 96.6 (92.0)
Redundancy 3.4 (2.7)

Refinement
Resolution (Å) 39.37–3.25 (3.36–3.25)
No. of reflections 38,745
Rwork (%)/Rfree (%) 27.4/31.9
No. of atoms
Protein 14,131
Ligand/ion (ATP/SO4−) 77

B factors (Å2)
Protein 70.7
Ligand/ion 72.1

R.m.s deviations
Bond lengths (Å) 0.004
Bond angles (°) 1.020

The structure was determined using data collected from a single crystal
aValues in parentheses are for highest-resolution shell

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-017-0002-6 ARTICLE

COMMUNICATIONS BIOLOGY |  (2018) 1:1 |DOI: 10.1038/s42003-017-0002-6 |www.nature.com/commsbio 9

www.nature.com/commsbiol
www.nature.com/commsbiol


annealed by slow cooling to room temperature. For anisotropy experiments, the
oligos contained a fluorescein label at the 5′-end.

Fluorescence anisotropy. Prior to titrations, a 1.5 mL volume of the double-
stranded oligonucleotide (50 nM) was equilibrated in hybridization buffer (sup-
plemented with 5% glycerol, 1 mM DTT, 1 mM AMPPNP or ADP, and 0.1 mg/mL
bovine serum albumin (BSA)) for 30 min at 20 °C. The anisotropy of free DNA was
recorded with a Cary Eclipse fluorescence spectrophotometer (Varian) by excita-
tion at 485 nm and recording the average anisotropy between 515 and 520 nm.
Measurements were performed in triplicate. Sth1 (±Rtt102-Arp7/9) at ~20–40 μM
was titrated, and recordings were taken after 4 min of stirring. The changes in
anisotropy were obtained by subtracting the anisotropy of free DNA from that of
DNA–protein complexes. Data were fitted to a single-site, hyperbolic binding
isotherm with the program Igor (WaveMetrics) to obtain dissociation constants.

Size exclusion chromatography–multi-angle light scattering. Sth1388–1097 at
100 μM was incubated with a 1.5-fold molar excess of the double-stranded oligo
(described above) for 2 h at 20 °C. The complex was loaded onto a TSKgel
SuperSW2000 column (Tosoh Bioscience) connected inline with a DAWN
HELEOS MALS detector and an Optilab rEX refractive index detector for mass
analysis. Molecular masses were calculated with the program Astra (Wyatt
Technology).

Native gel-shift assays. Histones were assembled and purified using the salt
gradient dialysis method as previously described44. Briefly, Xenopus laevis core
histones were expressed in BL21 Rosetta cells and purified from inclusion bodies.
Histone octamers were reconstituted and purified by gel filtration chromatography.
To determine the optimal ratio for nucleosome assembly, histone octamers were
mixed with varying concentrations of 601 nucleosomal DNA for test assemblies.
Nucleosomes were assembled according to the optimal DNA:histone ratio and
purified by gel filtration chromatography.

Native gel-shift assays were performed in 20 mM HEPES pH 7.5, 50 mM NaCl,
5% glycerol, 1 mM DTT, 0.1 mg/mL BSA, 1 mM MgCl2, and 1 mM ADP (or
AMPPNP). The concentration of nucleosomes or free DNA was held constant at
50 μM, and Sth1 constructs were added at a range of concentrations to a maximum
of 10 μM. The reactions were incubated for 30 min at room temperature, and 10 μL
aliquots were loaded onto a 4–20% TBE gel (Bio-Rad) in 0.5 × TBE. The gels were
run at 4 °C and 150 V for 3 h (nucleosome) or 45 min (free DNA), and then stained
with SYBR Gold (GE Healthcare) and imaged on a Bio-Rad Gel Doc Imager. The
bands corresponding to the nucleosome core particle or the 21-bp DNA duplex
were quantified densitometrically using the program ImageJ. For each lane, the
nucleosome band was quantified and normalized to the no-Sth1 control, and these
values were subtracted from 1 to obtain the fraction of nucleosomes bound.

Crystal structure of Rtt102-Arp7/9. Rtt102-Arp7/9 at 10 mg/mL was incubated
with 1 mM ATP for 30 min, and then crystallized at 16 °C using the sitting drop
method. Needle-like crystals were obtained in drops consisting of a 1:1 (v/v)
mixture of protein and well solution (20% (v/v) PEG 3350 and 200 mM ammo-
nium sulfate). These initial crystals were used to streak-seed hanging drops con-
sisting of a 1:1.2 (v/v) mixture of protein and well solution (20% (v/v) PEG 3350,
170 mM ammonium sulfate, and 17 mM EDTA). The resulting larger crystals were
flash-frozen in liquid nitrogen, using as cryo-protectant 25% glycerol added to the
crystallization solution.

X-ray data sets were collected at 100 K on a Bruker × 8 Prospector X-ray
diffraction system, fitted with an IμS microfocus-sealed-tube X-ray source with a
wavelength of 1.5418 Å, Apex II CCD detector, 4-circle Kappa goniometer, and an
Oxford Cryostream 700 liquid nitrogen-cooling system. The diffraction data sets
were indexed and scaled with the Bruker program SAINT (version v8.34a). A
molecular replacement solution was obtained with the program Phenix45, using as
a search model PDB entry 4I6M (the HSA domain was not included in the search).
Model building and refinement were performed with the programs Coot46 and
Phenix. The use of the program Rosetta47 in combination with Phenix significantly
accelerated the convergence of the refinement during the initial steps. The
Ramachandran plot of the final model revealed 97.0 and 0.12 percent of resides in
favored and outlier regions, respectively. Composite omit maps (Fig. 6b) were
calculated with the program Phenix, using the Refine option to remove model bias.

ATPase assay. Proteins at 5 nM were incubated with 1 mM ATP for 20 min at 22 °
C in 20 mM HEPES pH 7.0, 50 mM potassium acetate, 2.5 mM MgCl2, 0.1 mg/mL
BSA, 200 μM MESG, and 1 unit of purine nucleoside phosphorylase. The reactions
were stopped by addition of 250 mM EDTA, and the phosphate release was
determined by measuring the absorbance at 360 nm48. For Sth1 constructs and
complexes, the experiment was performed ±30 μM (nucleotide concentration) of
the plasmid pRSF-Duet-1 (Novagen).

Data availability. The atomic coordinates and structure factors for the ATP-bound
Rtt102-Arp7/9 complex described in this study have been deposited in the Protein

Data Bank (accession code: 5TGC). The data that support the findings of this study
are available from the corresponding author upon request.
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