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Age-related macular degeneration (AMD) is the most common cause of irreversible
vision loss in the developed world which affects the quality of life for millions of elderly
individuals worldwide. Genome-wide association studies (GWAS) have identified genetic
variants at 34 loci contributing to AMD. To better understand the disease pathogenesis
and identify causal genes for AMD, we applied random walk (RW) and support vector
machine (SVM) to identify AMD-related genes based on gene interaction relationship
and significance of genes. Our model achieved 0.927 of area under the curve (AUC),
and 65 novel genes have been identified as AMD-related genes. To verify our results,
a statistics method called summary data-based Mendelian randomization (SMR) has
been implemented to integrate GWAS data and transcriptome data to verify AMD
susceptibility-related genes. We found 45 genes are related to AMD by SMR. Among
these genes, 37 genes overlap with those found by SVM-RW. Finally, we revealed the
biological process of genetic mutations leading to changes in gene expression leading
to AMD. Our results reveal the genetic pathogenic factors and related mechanisms
of AMD.
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INTRODUCTION

Age-related macular degeneration (AMD) is the most common cause of irreversible blindness
with limited therapeutic options in the elderly in many countries (Lim et al., 2012). AMD
causes decreased photoreceptor function in the macular area of the retina (Fritsche et al., 2014).
Researchers have found many factors which are related to the development and severity of AMD.

Genetic factors are significantly related to AMD. In 2005, Klein et al. found that CFH gene was
related to AMD, which was the first discovered AMD-related gene (Haines et al., 2005). This gene
is significantly expressed in retinal pigment epithelial cells. Y402H mutation of CFH impairs the
complement pathway regulation function of CFH gene (Landowski et al., 2019). Subsequently,
the ARMS2 gene cluster was also found to be related to AMD. Multiple studies have shown that
there is a strong correlation between multiple genetic variants in this gene cluster and AMD
(Johnson et al., 2001). Recently, it has been discovered that the apolipoprotein E (APOE) gene
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has a strong correlation with AMD (Fernández-Vega et al.,
2020). The APOE gene plays a role in transporting lipids and
cholesterol in the central nervous system, and multiple studies
have shown that this gene is associated with neurodegenerative
diseases such as Alzheimer’s disease and stroke (Feher et al., 2006;
Zhao et al., 2019, 2020d). The gene is expressed on photoreceptor
cells, retinal ganglion cells, retinal pigment epithelial cells, Bruch’s
membrane, and the choroid. Most studies have proved APOE
can prevent AMD (Pang et al., 2000). The genetic risk of
advanced AMD is increased (Heiba et al., 1994). Researchers
have found that the heritability estimate for twin studies is 0.45
for early AMD (Hammond et al., 2002) but 0.71 for late AMD
(Seddon et al., 2005).

Computational methods have been widely used to discover
functions of biological molecules (Zhao et al., 2020a,b, 2021a).
AMD-related genome-wide association studies (GWAS) analyses
have identified a strong association of 52 independent single-
nucleotide polymorphisms (SNPs) at 34 genetic loci accounting
for over 50% of the genetic heritability (Fritsche et al., 2016).
Machine learning methods can help researchers find disease-
related information on a large scale. However, these methods
cannot explain the genetic mechanism of the results. GWAS
studies are a valuable resource for understanding disease
pathologies, but they may not precisely point out the causal
genes responsible for the disease of interest. Besides, there have
been studies that reported that causal genes are distinct from
the nearest genes discovered by GWAS (Smemo et al., 2014;
Claussnitzer et al., 2015). However, The gene expression is
related to the genetic variant so the gene expression levels are
different in different genotypes (Zhao et al., 2020c). Expression
quantitative trait locus (eQTL) mapping offers a powerful
approach to elucidate the genetic component underlying altered
gene expression. Gene expression is vital for complex diseases
(Zhao et al., 2021b) and is also differentially regulated across
tissues, such as the brain, heart, and pancreas. Ratnapriya et al.
(2019) have found potential causal genes in six AMD GWAS
loci from human retinal samples. However, that analysis only
considered retinal samples and was not comprehensive since
it is difficult to obtain multiple living tissues and most eQTL
studies so far have been performed with RNA isolated from
immortalized lymphoblasts or lymphocytes. In this study, we
fused random walk (RW) with support vector machine (SVM)
to identify AMD-related genes. Since many GWAS and eQTL
studies have been made public, to verify our results, AMD
GWAS data and blood eQTL studies are integrated to further
find expression of the genes related to AMD. In this method,
we referred to the concept of Mendelian randomization (MR)
analysis (Davey Smith and Ebrahim, 2003; Katan, 2004), where
a genetic variant (such as a SNP) is considered as an instrumental
variable (such as gene expression) to validate for the causative
effect of an exposure on an outcome (such as a phenotype). Based
on this assumption, we can obtain AMD-related genes based
on MR. We collected eQTL data from the GTEx database and
collected GWAS datasets including 12,711 advanced AMD cases
and 14,590 controls of European descent from a study by Han
et al. (2020); 707 Caucasian AMD patients and 2,014 controls
from a study by Yan et al. (2018); and 14,034 cases, 91,214

controls, and 11 sources of data including the International
AMD Genomics Consortium, IAMDGC, and United Kingdom
Biobank (UKBB) from a study by Winkler et al. (2020). Based
on these GWAS studies and eQTL dataset, we can not only
identify genes related to AMD but also speculate on their
biological processes.

MATERIALS AND METHODS

Encoding Gene Interaction Network by
Random Walk
The RW algorithm is a method that is simple to operate
but not easy to fall into a local minimum. We constructed a
gene interaction network by known AMD-related genes and
a string database. Then, we implemented RW on the gene
interaction network.

f (x) is a multivariate function with n variables;
x = (x1, x2, ..., xn) is an n dimension vector.

Step 1: Given the initial iteration point x, λ is the first walking
step length, and ε is the control accuracy (ε is a very small positive
number, used to control the end of the algorithm).

Step 2: Given the number of iterations control N, k is the
current iteration number; set k = 1.

Step 3: When k < N, randomly generate an n-dimensional
vector between (−1, 1). u = (u1, u2, ..., un), (−1 < ui < 1, i = 1,
2,..., n), and standardize it to get u′.

u′ =
u√∑
u2
i

Let x1 = x+ λu′ to complete the first step of walking.
Step 4: Calculate the value of the function, if f (x1) < f (x),

which is a better point than the initial value, then reset k to 1,
change x1 to x, and go back to step 2; otherwise, k = k + 1.
Go back to step 3.

Step 5: If no better value can be found for N consecutive
times, it is considered that the optimal solution is within the
N-dimensional sphere with the current optimal solution as
the center and the current step as the radius (if it is three-
dimensional, it just happens to be in the space sphere). At this
point, if λ < ε, the algorithm ends; otherwise, let λ = λ2, go back
to step 1, and start a new round of walking.

Finally, we can get the gene feature after encoding
the gene network.

Classification by Support Vector
Machine
We obtained the gene feature in the last section. Then, we can
input the gene feature and label into SVM to get the relationship
between the gene and AMD. The workflow of SVM is shown in
Figure 1.

First, we used Z-score normalization to process the gene
feature. Then, we constructed a Lagrangian function to obtain
the values and dualized the original problem. Sequential minimal
optimization (SMO) algorithm was used to solve the dualization
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FIGURE 1 | Workflow of SVM. SVM, support vector machine; SOM, sequential minimal optimization.

problem. Finally, we can obtain the classification model and
output the prediction results.

RESULTS

AMD-Related Genes Identification by
SVM-RW
We obtained 34 known AMD-related genes from GWAS data.
We constructed a gene network which has 239 nodes (genes). We
did 10-cross validation by SVM-RW and tested the performance
of SVM-RW. The area under the curve (AUC) of SVM-RW is
shown in Figure 2.

SVM-RW achieved AUC of 0.927 in identifying AMD-related
genes. We compared the results of SVM-RW with several other
methods. The results are shown in Table 1.

FIGURE 2 | ROC curve of SVM-RW. ROC, receiver–operator characteristic;
SVM-RW, support vector machine and random walk.

After verifying the effectiveness of SVM-RW, we randomly
selected 34 genes as negative samples and built a final
SVM model. SVM-RW predicted 65 novel genes as AMD-
related genes.

Verify SVM-RW Results by Summary
Data Level-Mendelian Randomization
Analysis
If we use g to denote a genetic variant (such as a SNP), x as the
expression level of a gene, and y as the trait, then the two-step
least-squares (2SLS) estimate of the effect of x on y from an MR
analysis can be denoted as:

Êxy = Êzy/Êzx (1)

where Êzy and Êzx indicate the least-squares estimates of y
and x on z, respectively, and Exy indicates the effect size of
x on y free of confounding from non-genetic factors. Then
the sampling variance of the 2SLS estimate of Exy can be
denoted as:

var
(
Êxy
)
=

[
var

(
y
)

(1− P2
xy

]
/
[
n var(x)P2

zy

]
(2)

where n denotes the sample size, P2
xy indicates the proportion of

variance in the explanation of y by x, and P2
zy is the proportion

of variance in the explanation of y by z. Therefore, we use the

TABLE 1 | Comparison results.

Algorithm AUC AUPR

SVM-RW 0.927 0.781

Random forest-RW 0.852 0.645

Naive Bayes-RW 0.711 0.586

Backpropagation-artificial neural network-RW 0.823 0.692

Logistic regression-RW 0.691 0.531

AUC, area under the curve; AUPR, area under the precision-recall curve;
RW, random walk.
Bold values highlight the result of SVM-RW.
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FIGURE 3 | (A,B) Distribution of GWAS summary dataset and blood eQTL dataset. GWAS, genome-wide association studies; eQTL, expression quantitative trait
locus.

FIGURE 4 | Workflow of SMR on AMD based on GWAS and eQTL datasets. AMD, age-related macular degeneration; GWAS, genome-wide association studies;
eQTL, expression quantitative trait locus; SMR, summary data-based Mendelian randomization.
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statistic TMR to test the significance of Exy; TMR can be denoted
as:

TMR = Ê2
xy/var(Êxy)

where TMR=χ2
1.

Based on the suggestion that the power of detecting Exy can be
significantly increased using a two-sample MR analysis (Inoue
and Solon, 2010; Pierce and Burgess, 2013), if GWAS and
eQTL datasets share the same population, we can use unbiased
estimates ε̂zx to replace Ezx. We therefore have

Êxy = Êzy/ε̂zx (3)

where Êzy is the estimate of a SNP effect from a GWAS for a trait,
and ε̂zx is the estimate of a SNP effect on the expression level of

a gene from an eQTL study. The sampling variance of Êxy can be
approximately computed by the Delta method (Lynch and Walsh,
1998) as:

var
(
Êxy
)
≈

E2
zy

ε2
zx

[
var(ε̂zx)

ε2
zx
+

var(Êzy)
E2
zy
−

2cov(ε̂zx, Êzy)
εzxEzy

]
(4)

where cov(ε̂zx, Êzy) is 0. Based on experience, we can replace them
by their estimates in practice, indicated as an approximate χ2 test
statistic of:

TSMR =
Ê2
xy

var
(
Êzy
) ≈ z2

zyz
2
zx

z2
zy + z2

zx
(5)

where zxy is the z statistic of the GWAS and zzx is the z statistic
of the eQTL study.

FIGURE 5 | (A–C) Distribution of p-value calculated by SMR for three GWAS datasets. GWAS, genome-wide association studies; SMR, summary data-based
Mendelian randomization.
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In an MR analysis, Exy is interpreted as the effect of a
phenotype on the gene expression without considering non-
genetic confounders. We first collected GWAS summary data and
blood eQTL data from available online studies. We first collected
a GWAS summary dataset composed of 12,711 advanced AMD
cases and 14,590 controls of European descent from the study
by Han et al. (2020); 707 Caucasian AMD patients and 2,014
controls from the study by Yan et al. (2018); and 14,034
cases, 91,214 controls, and 11 sourced from datasets including
the International AMD Genomics Consortium, IAMDGC, and
UKBB from the study by Winkler et al. (2020). The distribution
of the above datasets is shown in Figures 3A,B.

Then summary data-based Mendelian randomization (SMR)
analysis is implemented on the blood eQTL data and GWAS data;
in this paper, we identified 48 SNPs regulating 45 genes (including
41 coding genes and four non-coding genes) resulting in AMD
susceptibility. The workflow is shown in Figure 4.

For the first GWAS datasets consisting of 12,711 AMD cases
and 14,590 controls from European cohorts, in total we found
3,872 SNPs coexist in both GWAS data and eQTL data; 43
of 3,872 SNPs are significant and regulate 44 genes in gene
expression level. In the second GWAS dataset, we found 714
SNPs coexist in both GWAS dataset and eQTL dataset, with

none significant. In the third GWAS dataset, we found 1,149
SNPs coexist both in GWAS dataset and eQTL dataset, with
one significant regulating one gene in gene expression level.
The distribution of the p-value of SNPs regulating genes tested
by SMR is shown in Figures 5A–C. A Supplementary Table 1
indicates the p-values of significant SNPs regulating genes tested
by SMR; the last line resulted from GWAS dataset 3, and the rest
resulted from GWAS dataset 1.

Case Study
Age-related macular degeneration has been described as a
partly genetic disease (Heiba et al., 1994; Stone et al., 2004).
Recently, a unifying hypothesis is that immune response
gene polymorphisms modulate susceptibility to AMD. Human
leukocyte antigen (HLA) polymorphisms, encoded within
the major histocompatibility complex (MHC), are the most
polymorphic within the human genome. In AMD, researchers
detected intense HLA-DR immunoreactivity in not only soft
but also hard drusen (Mullins et al., 2000). In the study of
Goverdhan et al. (2005), considering the effect of smoking, age,
and body mass index (BMI), HLA alleles B∗4001, DRB1∗1301,
and Cw∗0701 were found to be related to AMD, which is
consistent with our results displayed in Table 1.

FIGURE 6 | Gene interaction network obtained from 45 genes.
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In a study by Gu et al. (2013), they researched P2RX7 and
P2RX4 genes in 744 AMD patients and 557 Caucasian controls
and reached a conclusion that a rare functional haplotype of the
P2RX4 leads to loss of innate phagocytosis and confers increased
risk of AMD. P2RX7 and P2RX4 damage the normal scavenger
function of macrophages and microglia through interaction,
making individuals susceptible to AMD.

Gene Interaction Network Based on AMD
Figure 6 shows the gene interaction network produced from the
results of SMR on AMD. Based on the interaction network, the
HLA class intensively interacted and is significantly associated
with AMD.

The cluster consisting of DDX39B (aka BAT1), PRRC2A
(aka BAT2), and SKIV2L are genes found in the class III
region of the MHC (MHC Class III). These genes encode
RNA-binding proteins with clear roles in post-transcriptional
gene regulation and RNA surveillance. They are likely to
have important functions in immunity and are associated
with autoimmune diseases (Schott and Garcia-Blanco, 2020).
Early work by immunologists have shown that DDX39B
promoted gene expression of anti-inflammatory pathways
(Allcock et al., 2001). Therefore, understanding the genes
interactions may help speculate on the proposed AMD
mechanisms and immunotherapy.

CONCLUSION

We applied the SMR method on AMD to test the gene–AMD
associations based on GWAS summary data and blood eQTL
data. From a total of 27,452 AMD cases and 107,818 controls,
we obtained 44 SNPs regulating 45 genes significantly associated
with AMD. Among the results, HLA class genes have been proved
to be associated with immunologically mediated diseases because
of the critical role of HLA in mediating the immune response, and
genes from MHC Class III are also associated with autoimmune

diseases. These genes may play important roles in causing AMD
susceptibility and need to be further verified with experiments.
Since AMD has been considered as a genetic disease, from this
perspective, it is helpful in understanding the disease from gene-
expression level to speculate about the AMD mechanisms and
pathology and propose future treatment options for AMD.
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