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ABSTRACT
Extracellular vesicles (EVs), which can be found in almost all body fluids, consist of a lipid bilayer
enclosing proteins and nucleic acids from their cells of origin. EVs can transport their cargo to target
cells and have therefore emerged as key players in intercellular communication. Their potential as
either diagnostic and prognostic biomarkers or therapeutic drug delivery systems (DDSs) has gener-
ated considerable interest in recent years. However, conventional methods used to study EVs still
have significant limitations including the time-consuming and low throughput techniques required,
while at the same time the demand for better research tools is getting stronger and stronger. In the
past few years, microfluidics-based technologies have gradually emerged and have come to play an
essential role in the isolation, detection and analysis of EVs. Such technologies have several advan-
tages, including low cost, low sample volumes, high throughput and precision. This review sum-
marizes recent advances in microfluidics-based technologies, compares conventional and
microfluidics-based technologies, and includes a brief survey of recent progress towards integrated
“on-a-chip” systems. In addition, this review also discusses the potential clinical applications of “on-a-
chip” systems, including both “liquid biopsies” for personalized medicine and DDS devices for
precision medicine, and then anticipates the possible future participation of cloud-based portable
disease diagnosis andmonitoring systems, possibly with the participation of artificial intelligence (AI).
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Introduction

Extracellular vesicles (EVs) are found in the extracellular
space as well as in almost all body fluids, including blood
[1], urine [2], saliva [3] and cerebrospinal fluid [4]. EVs
carry and protect cargoes, including proteins, nucleic acids
and lipids, from their cells of origin [5,6] (Figure 1(a)). For
this reason, the vast potential of EVs as biomarkers, vac-
cines and therapeutic drug delivery systems (DDSs) has
attracted increasing attention in recent years [7–9].
However, conventional methods used to study EVs still
have significant limitations; for example, they are often
time-consuming and low throughput [10–12]. Recently,
microfluidics technology has been applied to the study of
EVs and has several advantages, including low cost, low
sample volumes, high throughput and precision [13].
Initially, the microfluidic method was developed at the
interface of physics and chemistry [14]. The emerging
cross-disciplinary interface between microfluidics and
biology is quite natural [15,16], given the need for such
technology to study complicated biological systems.
Microfluidics allows the development of “on-a-chip” sys-
tems for the isolation, detection and analysis of EVs on a

single integrated circuit of only a few square centimetres.
This technology has already been combined with smart-
phone technology [17], and we anticipate the advent of a
cloud storage- and cloud computing-based future of dis-
ease diagnosis andmonitoring, possibly with the participa-
tion of artificial intelligence (AI).

This review focuses on comparisons between conven-
tional and microfluidics-based technologies, and the
impact of recent developments in microfluidic technolo-
gies on EV-related research. This includes a brief survey
of recent progress towards integrated on-a-chip systems.
Finally, we discuss the limitations of current systems and
possible directions for future progress.

Extracellular vesicles

EVs are released from cells through two principal path-
ways: the “inward budding” pathway for the biogenesis
of exosomes (Exos) from endosomes/multivesicular
bodies (MVBs) via the endocytic pathway, and the “out-
ward budding” pathway for the biogenesis of microve-
sicles (MVs) from the plasma membrane [18,19]. The
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endocytic pathway involves the formation of endosomes
via a fundamental pathway for the entrance into the cell
of large cargoes; the biogenesis of intraluminal vesicles,
which are precursors of Exos, in endosomes for the
transformation from early endosomes to MVBs, and
the fusion between cytomembrane andMVBmembrane
to release Exos to the outside of the cell. Although
initially dismissed as artefacts or “cell debris”, it is
now clear that these nano-sized vesicles act as “corre-
spondents” in intercellular communication [18,20,21].
EVs tend to express similar membrane proteins to their
parent cells, which could give them potential targeting
ability, and, in addition, could make them potential
detection targets for use in liquid biopsy. For instance,
EVs derived from endothelial cells have endothelial cell-
specific surface markers including E-selectin (CD62E)
and vascular endothelial cadherin (VE-cadherin) [22].
Glioblastomas and gliomas can express tumour-specific
epidermal growth factor receptor variant III (EGFRvIII)
on the surface of their EVs [23,24]. EVs containing the
cancer-specific surface protein glypican-1 can be used

for early detection of pancreatic cancer [25]. Dendritic
cells, one type of antigen-presenting cells, release EVs
containing surface proteins including intercellular adhe-
sion molecule-1 (ICAM-1), which can be captured by
leukocyte function-associated antigen-1 (LFA-1) on the
T-cell surface via the high-affinity LFA-1/ICAM-1 inter-
actions and thus activate T cells [26]. Some surface
proteins can target specific tissues by targeting the extra-
cellular matrix of target organ. For example, specific
expression of integrins α6β4 and α6β1 on tumour-
derived EVs (T-EVs) is associated with lung metastasis,
and specific expression of integrin αvβ5 is associated
with liver metastasis [27].

EV subtypes

EV subtypes differ in size and composition, and there
is still a need for a complete set of improved protocols
to isolate and distinguish these subtypes [28,29]. A
conventional classification method, based on particle
size, divides EVs into two subtypes: Exos (30–100 nm

Figure 1. Current basic knowledge of EVs. (a) The constitution of EVs, involving membrane proteins (including ligands, receptors,
tetraspanins, integrins and MHC – major histocompatibility complex – proteins), cargo proteins, nucleic acids (including DNA,
messenger RNA (mRNA), microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA)) and lipids, derived from their
cells of origin. (b) Removing unwanted “trash” from the cell via the release of EVs. (c) The involvement of MHC-II-containing EVs in
antigen presentation. (d) EV-mediated intracellular communication through transportation of proteins, nucleic acids and lipids from
parent cells to distant cells. (e) EV surface protein modification, for example, based on C1C2 domain from the EV-surface-specific
protein MFG-E8 (milk fat globule-epidermal growth factor 8 protein), or the N-terminus of lysosomal associated membrane protein
2b (Lamp2b), to customise targeting ability. (f) Cargo loading of EVs, based on cell engineering, which is particularly suitable for
delivering nucleic acids, and specific delivery technology for proteins – for example, intracellular proteins labelled by a WW tag for
the recognition by late-domain (L-domain) proteins and specifically loaded into EVs during their biogenesis.
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in diameter) and MVs (100–1000 nm in diameter)
[18,30]. However, this classification method has been
exposed as inadequate. For example, the biogenesis of
some small vesicles (approximately 100 nm in dia-
meter) is similar to that of MVs, formed by budding
from the surface of the cytoplasmic membrane, but
they can be isolated together with Exos [31].
Moreover, apoptotic bodies (800–5000 nm in dia-
meter), which contain genomic DNA and have a vari-
ety of sizes, are difficult to distinguish from other EV
subtypes [18,32].

Although the biogenesis of Exos and MVs is very
different, the isolation method used in most EV-related
research cannot distinguish their intracellular origin
strictly following the definition of Exos and MVs. In
most studies, small EVs are regarded as Exos [29,33]
even though this is not the strict definition of Exos.
Therefore, to avoid confusion, we make no distinction
between Exos and MVs, consistent with most other
EV-related reviews [32].

Physiological functions of EVs

Removing unwanted substances from a cell is one
purpose for the release of EVs from a cell (Figure 1
(b)). Initially, EVs were found to emerge during the
maturation process of reticulocytes, in which the
release of EVs containing transferrin receptors ensures
the shutoff of iron import to prevent toxic iron over-
load [34–36]. However, subsequent researches, includ-
ing investigation of the involvement of major
histocompatibility complex II-containing EVs in anti-
gen presentation (Figure 1(c)), revealed the participa-
tion of EVs in intracellular communication [37].
Recently, a growing body of evidence has shown that
EVs can also transfer intracellular information, includ-
ing proteins, nucleic acids and lipids, from parent cells
to distant cells (Figure 1(d)) and can even participate in
the re-programming/phenotype-alteration of the reci-
pient cells [1,38–40].

Pathology related to EVs

In cancer progression, T-EVs modify the tumour-
related microenvironment to make it more suitable
for tumour cells by inducing angiogenesis and suppres-
sing the reaction of immune cells [6]. EVs derived from
malignant tumours at different stages are very differ-
ent, so T-EVs can be used as biomarkers for the recog-
nition and classification of tumours at very early stages
[41]. EVs are also potential diagnostic biomarkers for
infectious diseases because of the infection-related pro-
teins and RNAs they carry [42]. However, a convenient

yet accurate detection method is still needed to realise
the potential of EVs in diagnostics.

EV-related cell-free therapy

EVs could be used therapeutically in two main ways:
(1) by exploiting their natural properties and (2) by
using them as drug delivery agents. Over the past few
years, there has been much research into the wide
range of potential applications of EVs in tissue engi-
neering and regenerative medicine. For example, EVs
from mesenchymal stem cells (MSCs) can promote
tissue regeneration via the extracellular signal-regulated
kinase pathway [43]. Moreover, MSC-derived EVs may
induce angiogenesis in ischaemia-related disease [44].
The potential of human platelet-derived EVs in tissue
regeneration is also emerging [18,45,46].

There is increasing exploration of nano-DDSs
including liposomes and polymeric nanoparticles for
delivery of therapeutic agents such as small molecule
drugs and nucleic acids [47–49]. However, there are
several disadvantages to the use of synthetic nanopar-
ticles, such as low biocompatibility, immunoreaction
and safety problems [50]. In comparison, EV-based
DDSs have several advantages, for example, (1) low
toxicity[51,52], (2) good stability in the circulation
[52,53], (3) specific targeting ability [51,52], (4) custo-
misation of targeting ability by modifying surface pro-
teins, for example, based on the C1C2 domain from the
EV-surface-specific protein MFG-E8 (milk fat globule-
epidermal growth factor 8 protein), or the N-terminus
of lysosomal-associated membrane protein 2b
(Lamp2b) [52,54] (Figure 1(e)) and (5) straightforward
cargo loading, especially for biomacromolecules, based
on cell engineering, which is particularly suitable for
delivering nucleic acids, as well as providing specific
delivery technology for proteins – for example, intra-
cellular proteins labelled by a WW tag for the recogni-
tion by late-domain (L-domain) proteins and
specifically loaded into EVs during their biogenesis
[9,52] (Figure 1(f)). As a result, we believe that EVs
will open up a new frontier in the field of regenerative
medicine.

Microfluidics-based EV isolation

Conventional methods

Conventional EV isolation techniques make use of (1)
the specific size and density of EVs (differential cen-
trifugation (DC), density gradient centrifugation
(DGC), sucrose cushion centrifugation, ultrafiltration
(UF) and chromatography), (2) specific EV surface
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markers (immunoaffinity capture, IAC) and (3) simple
non-specific concentration (precipitation).

DC isolates EVs using increasing centrifugal force in
three steps: (1) <1500×g (pelleting cell debris), (2)
10,000–20,000×g (pelleting large EVs) and (3)
100,000–200,000×g (pelleting small EVs) [55].
However, DC has limitations: (1) absolute separation
is not possible using size alone [55,56]; (2) EVs may
clump together [57,58]; (3) non-EV nanoparticles,
including viruses [59] and protein complexes [60],
may be co-isolated; (4) EVs may be damaged by ultra-
centrifugation [61]; and (5) the recovery rate is variable
(2%–80%), resulting in poor comparability between
studies [62,63].

DGC, an improvement on DC, uses a density gra-
dient to isolate EVs according to their size and density
[59]. EV isolation by DGC is free from protein con-
taminants but is also time-consuming and low
throughput, limiting its practicability in clinical use
[10–12]. A variation or simplified version of DGC,
sucrose cushion centrifugation with a specific density
rather than a continuous density gradient, is often used
for morphological observation of EVs [64].

UF uses a membrane filter with pressure, either
directly applied or generated by a centrifuge/ultracen-
trifuge [65]. UF can rapidly isolate EVs from body
fluids [66,67], but the yield is low because of the loss
of small size EVs, which have a similar size to protein
aggregates, necessary to guarantee the purity [68].

Size exclusion chromatography (SEC) is a size-based
high-yield isolation method, which has the advantage
of simplicity, due to use of a single column, and the
ability to isolate EVs from other soluble components
[69]. However, this method can co-isolate other com-
ponents, including viruses, protein aggregates, very
large proteins (such as von Willebrand factor and chy-
lomicrons) or low-density lipoproteins [70–73]. Other
disadvantages include the requirement for specialised
equipment, the time required and the loss of small
EVs [69].

In principle, IAC of EVs uses a combination of
specific monoclonal antibodies (mA) and suitable car-
riers such as plates or beads [74,75]. The IAC technol-
ogy can be used on conventional systems including
columns, plates and tubes, or with the help of more
advanced microfluidic methods [76].

EV precipitation uses a synthetic polymer (available
in commercial kits such as ExoQuickTM , System
Biosciences (SBI), Palo Alto, CA, USA), which can
rapidly precipitate both EVs and non-EV components,
but the purity of precipitated EVs is very low [69], and
the precipitation reagents influence the biological func-
tions of EVs [77].

In summary, conventional methods usually require
specific reagents/equipment, which are expensive and/
or occupy a large amount of space. They are often
cumbersome and associated with poor purity, potential
effects on biological properties or low yield. These pro-
blems are present to a greater or lesser degree in all
conventional methods, which cannot, therefore, entirely
meet the needs of clinical usage. Microfluidic technolo-
gies have the potential to overcome these challenges.

Microfluidics-based isolation on-a-chip

Microfluidics-based EV isolation has several applica-
tions: (1) specific surface markers (microfluidics-based
immunoaffinity capture, Mf-IAC) and (2) specific size
and density (microfluidics-based membrane filtration
(Mf-F), nanowire-based traps (NTs), nano-sized deter-
ministic lateral displacement (nano-DLD), viscoelastic
flow and acoustic isolation).

Mf-IAC uses “capture antibodies” or “capture
beads” (beads coated with capture antibodies) targeting
specific surface markers of EV subpopulations [78].
There are two main approaches: (1) inner surface
modification with capture antibodies (Figure 2(e))
and (2) use of capture beads (Figure 2(f)). Chen et al.
employed a surface-modified microfluidic channel with
“herringbone grooves” to efficiently capture EVs [79].
Ashcroft et al. designed a mica surface with an anti-
body coat to efficiently isolate EVs from plasma [80].
Kanwar et al. efficiently captured circulating EVs using
the “ExoChip” platform [76]. Moreover, with continual
advances in nanotechnology such as nanoshearing
effects [81] and nanostructured interfaces [82], the
sensitivity and specificity of Mf-IAC devices has been
substantially improved. For instance, Zhang et al. pro-
duced a Y-shaped micropost nanostructured interface
to enhance the capture surface area [82], while Kang
et al. designed a device that can generate mechanical
whirling to increase the probability of binding between
the antibody and the EVs [83]. Procedures combining
Mf-IAC with capture beads consist of two steps: (1)
binding between EVs in the sample and capture beads
and (2) washing and separation of the capture beads.
Dudani et al. developed an efficient Mf-IAC system by
combining a rapid inertial solution exchange system
with capture beads [84]. Meanwhile, Shao et al. devel-
oped a magnet-separating Mf-IAC system using mag-
netic capture beads and isolated EVs with a high yield
[85]. Zhao et al. successfully developed a serpentine
channel combined with magnetic capture beads that
showed significant diagnostic potential [86]. The
advantage of Mf-IAC with capture beads compared to
Mf-IAC with inner surface modification is its relative
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convenience for follow-up analysis. Furthermore, we
believe that the combination of a size-based method
and an antibody-based method will provide a more
advanced input–output ratio and enable isolation of
EV subpopulations.

Mf-IAC can isolate EVs from culture medium or
body fluid. However, only EVs with a known surface
antigen can be isolated. This might not be a problem
when using EVs as therapeutic agents. However, when
using them as diagnostic agents, it is better to capture

all EVs, and not just a subpopulation with a specific
antigen. Hence, an antigen-independent method would
be better for developing an on-a-chip system for EV-
based diagnosis.

Mf-F is based on the specific size of EVs. In their
pioneering work, Davies et al. developed two kinds of
Mf-F devices – pressure- and electrophoresis-driven –
that separate cells, debris and small EVs via a nanopor-
ous membrane with an adjustable pore size [87]. The
limitation of pressure-driven Mf-F is that the pores

Figure 2. Current methods of on-chip isolation, detection and analysis. (a) A double-filtration Mf-F system for isolating small EVs. (b)
An NT system with nanowire-on-a-micropillar structure to trap EVs. (c) A pillar-array-based microfluidic device or nano-DLD to
isolate EVs by sorting particles in a continuous flow. (d) An acoustic isolation system to isolate EVs. (e) An Mf-IAC device using inner
surface modification with capture antibodies. (f) An Mf-IAC device using capture beads. (g) ExoTIC: a modular platform with the
ability to isolate EV subpopulations based on size. (h) A fluorescence imaging system integrated with Mf-IAC. (i) Multicolour FCM
integrated with Mf-IAC. (j) Mf-IAC integrated with an “analyser-on-a-chip”.
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become blocked after obtaining approximately 4 μL of
filtrate. Using electrophoresis avoids this problem and
increases the separation efficiency and purity [87]. Cho
et al. isolated EVs using electrophoretic migration
across a dialysis membrane with 30-nm pores [88].

Subsequently, double-filtration approaches were devel-
oped. For example, Liang et al. constructed a double-
filtration Mf-F system (Figure 2(a)) comprising a filter
with a pore size of 200 nm to remove cells and large
impurities and a second filter with a pore size of 30 nm
that allows proteins to pass through [89]. This system
achieves high throughput and yield, in comparison with
ultracentrifugation, for isolation of 30–200 nm EVs. Woo
et al. constructed a different double-filtration Mf-F system
(called Exodisc) using membranes with pore sizes of 20
and 600 nm. This method co-isolates small EVs and some
large EVs with high throughput, high yield and low levels
of protein contaminants [90]. Liu et al. demonstrated a
size-based modularisedMf-F system called ExoTIC, which
is a modular platform with the ability to isolate EV sub-
populations based on size [91] (Figure 2(g)).

The NT system is a multiscale filtration system using
nanowires (Figure 2(b)).Wang et al. built a porous silicon
nanowire-on-a-micropillar structural NT system to trap
EVs [92]. In principle, NT selectively traps specific sizes
of particles, and the idea is similar to SEC.

Nano-DLD is a type of pillar-array-based microflui-
dic device that sorts particles in a continuous flow
(Figure 2(c)). In 2004, Huang et al., for the first time,
successfully constructed a high-throughput particle-
separation system to separate microparticles (0.8, 0.9
and 1.0 μm in diameter), in which the path taken by
the particles is determined by their size [93], but the
separation of nanoparticles remained challenging for a
long time. Recently, considering the electrostatic inter-
actions between nanoparticles and pillars, the ionic
strength of the buffer solution was modulated and
improved. As a result, 51–1500 nm particles were suc-
cessfully separated by a large-pore DLD device (with 2
μm gaps between pillars) [94]. The true nano-DLD
system was first constructed by Wunsch et al. to sepa-
rate colloids and EVs using a pillar-constituent array
with gap sizes ranging from 25 to 235 nm [95].

The viscoelastic flow system is a continuous, size-
based and label-free method of directly separating EVs
from culture medium or body fluid using viscoelastic
forces [96]. This method has a very high level of purity
(>90%) and good yields [96]. Nevertheless, there has
been little research in this area, so further studies are
still needed.

An acoustic isolation system can also separate nano-
sized particles (Figure 2(d)). For instance, differential
acoustic radiation forces can separate small particles

based on their mechanical properties including com-
pressibility, diameter and density [97]. In addition,
surface acoustic waves opened a new frontier in
“separator-on-a-chip” technology, with a variety of
advantages, including simple fabrication and integra-
tion with other microfluidic components, biocompat-
ibility and contact-free manipulation of nanoparticles
[98,99]. Lee et al. recently established a symmetric
standing surface acoustic wave perpendicular to the
direction of flow, which causes larger particles to
move to the channel wall and then allows isolation of
nanoscale vesicles (<200 nm)[100]. Wu et al. employed
an acoustofluidics technique that consisted of two
modules: a cell-removal module and an EV-isolation
module [101]. This two-step device greatly simplifies
the pre-processing of complex samples consisting of
cells such as blood [101]. However, further studies in
this area are still needed.

Non-destructive methods to isolate intact EVs from
culture medium or complex body fluids are very
important for subsequent detection and application.
As outlined above, development of such methods is
proceeding rapidly and it is now feasible to build a
microfluid-based isolating device on a chip, providing
convenience, miniaturisation and potential high expan-
sibility. A brief summary is provided in Figure 3.

Microfluidics-based detection and analysis
systems

The above on-a-chip isolation methods not only can be
used as the preparatory work for downstream conven-
tional detection and analysis but can also be integrated
with a downstream microfluidics-based detection or
analysis system. A detection system is defined as one
that directly detects EVs without lysis, whereas an
analysis system is defined as one that analyses the
constituents of EVs. Compared to conventional meth-
ods, a microfluidics-based platform can provide high
throughput, low consumption of reagents and micro-
miniaturisation, as well as the potential for portability.
Here, we describe microfluidics-based detection and
analysis systems, then later discuss their integration
with isolation systems.

Detection on-a-chip

Microfluidics-based EV detection methods include
those based on (1) fluorescence (fluorescence imaging
and fluorescence analysis via flow cytometry, FCM), (2)
colourimetric techniques (colourimetric detection), (3)
optical properties (surface plasmon resonance (SPR)),
(4) magnetism (miniaturised nuclear magnetic
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resonance) and (5) electrical properties (electro-kinetic
systems and electrical detection).

The ExoChip platform stains isolated EVs with a
fluorescent carbocyanine dye, and the chip is analysed
using a plate reader with a sensitivity of up to 0.5 pM
[76]. Fang et al. also used a fluorescent dye but instead
used a microscope-based imaging system for detection
[102]. In an alternative approach, Ko et al. designed a
smartphone-enabled portable on-a-chip optofluidic
detection system, in which bead-captured EVs are
recognised by a horseradish peroxidase-modified anti-
body. A smartphone-based fluorimeter can then detect
the fluorescent signal generated by enzyme amplifica-
tion [17]. Therefore, fluorescence-based detection sys-
tems have become increasingly portable.

Fluorescent FCM systems also have great potential.
Dudani et al. detected capture beads using a fluorescent
FCM assay [84]. Zhao et al. reported a multiplexed mea-
surement system (detecting CA-125, EpCAM and CD24)
via multicolour FCM imaging [86]. Another FCM-based
array consisting of parallel nanochannels was successfully
built by Friedrich et al. and accurately performs vesicle
counting down to 170 fM [103]. The trend of fluorescent
FCM systems seems to be from monochrome (single
index) and mono-channel to polychrome (multiple
indices) and multichannel (Figure 2(i)).

The results of colourimetric detection can be either
visually observed or detected via absorbance.
Vaidyanathan et al. used nanoshearing induced by
alternating current electrohydrodynamics to quantify
EVs both visually and by measuring absorbance, with
a three-fold enhancement in sensitivity over other
reported assays based on hydrodynamic flow[81]. In
their Exodisc system, Woo et al. performed an on-disc
enzyme-linked immunosorbent assay (ELISA) and
measured the OD value at 450 nm after transferring
the solution to a detection chamber [90]. To make the
system more portable, Liang et al. used a smartphone
camera to measure the results of a colourimetric ELISA
[89]. Using colourimetric detection helps to make the
system increasingly portable and simple.

SPR is gradually coming to the forefront in the field
of label-free biosensor technology. Im et al. used trans-
mission mode SPR to detect EVs with 670 aM sensi-
tivity [104]. Furthermore, Sina et al. used SPR
detection as part of a two-step isolation and detection
strategy [105]. This system is gradually being integrated
with the “separator-on-a-chip”, but further advances
are still needed, such as a portable SPR system.

Miniaturised nuclear magnetic resonance (μNMR) is
based on the superparamagnetic characteristics of mag-
netic nanoparticles. Shao et al. used μNMR to detect

Figure 3. A brief summary of present isolation technology. The present isolation technologies are classified into conventional
methods and microfluidics-based methods. There are three main guiding ideologies: stratification, interception and capture. For
stratification, the idea is to sort EVs by some property (such as size or density). For interception, the idea is to set a cut-off or
threshold value to influence the passage of specific particles. For capture, the idea is to proactively identify the specific particles
with a particular characteristic (such as a specific surface marker). In addition, there are also some other technologies which need
further study.
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target-specific magnetic nanoparticles after on-chip
isolation [106].

Akagi et al. introduced an electro-kinetic system to
detect a marked positive shift in the distribution of zeta
potential to detect the presence of EVs [107], while
Fraikin et al. demonstrated a high-throughput electrical
detection method for multicomponent mixtures of
nanoparticles [108]. Zhou et al. designed an aptamer-
based electrochemical biosensor to detect EVs, and
when the EVs were bound to complementary aptamers,
the released probing strands with redox moieties
caused a decrease in the electrochemical signal [109].

Analysis on-a-chip

Microfluidics-based EV analysis includes (Figure 2(j))
(1) analysis of protein content (on-chip immuno-che-
miluminescence) and (2) analysis of RNA content (on-
chip quantitative PCR, qPCR). He et al. captured
EpCAM(+) EVs and incubated them with lysis buffer
to obtain the cargo proteins [110]. They then analysed
total IGF-1R and p-IGF-1R using an immuno-chemi-
luminescence assay after on-chip mixing with specific
antibodies [110]. Shao et al. performed on-chip RNA
extraction, reverse transcription (RT) and qPCR to
detect and quantify mRNAs [85]. Richards et al. used
RT-qPCR to quantify the microRNA (miRNA) level in
EVs [111]. In addition to quantifying the level of
selected RNAs, Ko et al. employed a machine learning
algorithm to analyse the RNA profile and further dis-
tinguish cancer, pre-cancer and healthy control tissues
[112]. However, research into the field is still in the
initial stages and needs further attention and study.

Efforts and progress towards integrated on-a-
chip systems for EVs

There is increasing interest in point-of-care (POC)
devices. Much effort has been put into the development
of various in vitro diagnostic approaches such as POC
devices, whose market volume is estimated to be 75.1
billion US dollars by the year 2020 [113]. The aim of
POC devices is the realisation of rapid, highly sensitive,
user-friendly and portable medical facilities [114,115].
Highly integrated microfluidic devices have shown
great promise for making such POC devices a reality.

In recent years, researchers have designed integrated
microfluidic systems for the isolation and detection of
EVs, and the quantification of their cargoes. Compared
to conventional protocols, these integrated devices have
advantages including time saving, high throughput,
high sensitivity and a low sample volume requirement.
Currently, most of these POC candidates are based on

Mf-IAC, and this indicates that immunoaffinity-based
systems have better extensibility and are likely to be the
“mainline” of future integrated on-a-chip systems or
POC devices.

The first integrated microfluidic system, ExoChip,
integrates immunocapture by a CD63 antibody and
fluorescence quantification using a plate reader [76].
Although it used an old detection method, ExoChip
showed the way to future integrated devices.

Later, FCM was incorporated into these systems.
Dudani et al. employed fluorescent FCM to detect
EVs after capture using an Mf-IAC system [84].
Moreover, Zhao et al. used multicolour FCM as a
multiplexed measurement system (detecting CA-125,
EpCAM and CD24) [86]. Meanwhile, Friedrich and
colleagues created an FCM-based parallel nanochannel
array and were able to accurately perform vesicle
counting down to 170 fM [103].

The advent of a smartphone-based system will bring
excellent portability and accessibility to POC devices.
Ko et al. designed a smartphone-based on-a-chip sys-
tem, in which the smartphone-based fluorimeter can
detect a fluorescent signal generated by enzyme ampli-
fication [17]. In addition, colourimetric detection sys-
tems are also showing potential, especially with regard
to portability and expandability. Liang et al. obtained
results of a colourimetric ELISA using a smartphone
camera [89], demonstrating the great potential of this
approach in creating a portable POC device.

In addition, SPR is gradually showing potential in
becoming a leader of various label-free biosensor tech-
nologies with multiplexing ability, high sensitivity and
high-level integration as described by Im et al. [104].
Furthermore, Sina et al. integrated SPR detection into
their two-step isolation and detection strategy [105].

In addition to the integration between isolation and
detection, there is also growing attention being paid to
the integration between isolation and analysis, which
could reveal more in-depth information about EVs.
He et al. captured EpCAM(+) EVs using magnetic
Mf-IAC, and analysed the total IGF-1R and p-IGF-
1R levels on-chip [110]. Shao et al. performed chip-
based EV isolation, RNA extraction and RT-qPCR in
one device to detect and quantify multiple target
mRNAs [85]. Considering that the quantification of
the level of selected mRNAs alone is far from enough,
Ko et al. employed a machine learning algorithm to
analyse the RNA profile and were able to further
distinguish cancer, pre-cancer and healthy control
tissues [112]. This aspect is very important, but the
recent studies are not sufficient, so further research is
needed. A brief summary of efforts on this area is
shown in Figure 4.
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Discussion and outlook

In many cases, an inherently invasive and risky surgical
biopsy is the “gold standard” of malignant tumour
diagnosis. However, in some situations, the suspected
region cannot be frequently sampled or is surgically
inaccessible. By contrast, liquid biopsies, which test
body fluids, are minimally invasive. The liquid biomar-
kers include cell-free nucleic acids (including DNAs,
mRNAs and ncRNAs), circulating tumour cells and
EVs [116]. These liquid biomarkers usually represent
the microenvironment of malignant tumours, whereas
surgically biopsied tissues are often heterogeneous,
leading to ambiguous conclusions [116]. EVs, which
contain the overwhelming majority of cell-free nucleic
acids [52,117,118] and whose cargoes are specific to the
cell of origin [52,117,118], show the greatest potential
in non-invasive liquid biopsy.

In particular, T-EVs have the potential to be the
most informative predictors in non-invasive tumour
monitoring [119,120]. For example, Taylor et al.

found and verified eight miRNAs of EVs that could
identify and differentiate stages of tumours, and poten-
tially be diagnostic/prognostic biomarkers of ovarian
cancer [121]. However, many issues remain to be
resolved, including the isolation of EVs from complex
body fluids.

Before liquid biopsies can be developed, the devices
for isolation, detection and analysis need to be high
throughput, portable and intelligent. Fortunately,
recent advances in microfluidic devices, especially on-
a-chip EV isolation systems, have come a long way
towards achieving these goals. Furthermore, there
have been promising advances in technology used in
the manipulation of cells and particles other than EVs,
among which one of the most promising is label-free
microfluidic manipulation technology or negative mag-
netophoresis-based technology [122]. These technolo-
gies also have the potential to advance the current state
of liquid biopsies.

Over the past few years, many studies have reported the
potential of EV-based cell-free therapy in the treatment of

Figure 4. Recent efforts towards integrated on-a-chip systems for generation of EVs.
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different diseases. In addition, clinical trials using thera-
peutic EVs have gradually begun to appear. To make EVs
more versatile rather than limited to their native functions,
there have been an increasingnumber of studies focused on
molecular engineering of EVs. The traditional or conven-
tional methods of using engineered EVs as a DDS have
been comprehensively reviewed in our previous literature
review [123]. Technically speaking, these strategies for EV
engineering could be briefly classified into two levels: (1)
engineering at the parent cell level – involving manipula-
tion using genetic or metabolic methods; and (2) engineer-
ing at the EV level – including surface molecular
modification methods and permeabilisation of the
membrane.

For engineering at the parent cell level, after genetic
modification of parent cells to generate EVs carrying
proteins/peptides, microfluidics-based isolation tech-
nology, instead of a conventional isolating method,
could be employed to isolate EVs. This is a relatively
easy way to bring microfluidic technology into engi-
neered EVs as a DDS.

For engineering at the EV level, much effort has been
made to bring the advantages of microfluidics into the
region of engineered EVs as a DDS, although the devel-
opment is still at a very early stage. One potential avenue
of exploration is the microfluidic extrusion method. In
2014, Jo et al. developed a microfluidic instrument to
mechanically break down cells into EV-mimetics
(EVMs), which have similar properties to naturally
secreted EVs [124]. Then, EVMs were used to load
siRNA via random packaging and re-assembly after the
breakdown [125]. As research delves deeper, EVMs gra-
dually show their potential as a DDS [126]. However, we
believe that bringing the fundamental principles of con-
ventional methods into microfluidic instruments has
more potential for such applications. For example, the
principles used in conventional methods, including the
use of lipophilic/amphipathic molecules, electropora-
tion and combination with liposomes [123], can be
combined with the advantages of a microfluidic system
such as accurate control of mass transfer [127].
Unfortunately, there have been barely any major break-
throughs in this direction. This field of study might offer
potential for future in-depth studies.

The potential of integration of a smartphone [17] in
such a microfluidic system cannot be underestimated.
In the future, data from smartphone-based portable
POC devices could be uploaded to a cloud drive.
With the development of AI technology, we envision
a situation in which data on a cloud drive could be pre-
examined by AI. AI may recognise suspicious early
signs, and, could then recommend appropriate experi-
enced experts. Experienced physicians could use the

data on the cloud server to further diagnose the issues,
and then make an appointment for necessary auxiliary
examinations and meetings with appropriate medical
experts. After a definite diagnosis, doctors and scien-
tists could have access to massive amounts of data to
study diseases and to improve the diagnostic level of
the medical community, as well as improving the pre-
examination level of AI.
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