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Abstract

Gravid female arthropods in search of egg-laying substrates embark on foraging-like forays:

they survey the environment assessing multiple patches, tasting each with their tarsi and pro-

boscis, and then, if interested, they deposit an egg (or eggs). In fruit flies, Drosophila melano-

gaster, allelic variation in the foraging gene (for) underlies the rover/sitter foraging behaviour

polymorphism. Rover flies (forR) are more active foragers (both within and between food

patches) compared to sitters (fors). In nematodes, Caenorhabditis elegans, a mutation in egl-

4, the ortholog of for, leads to aberrations in egg laying. Given this and the notion that females

may ‘forage’ for a place to oviposit, we hypothesized that for may underlie egg-laying decisions

in the fruit fly. Indeed, when given a choice between patches of low- and high-nutrient availabil-

ity, rovers lay significantly more eggs on the low-nutrient patches than sitters and also a sitter

mutant (fors2). We confirm the role of for by inducing rover-like oviposition preferences in a sit-

ter fly using the transgenic overexpression of for-mRNA in the nervous system.

Introduction

The selection of a suitable location for oviposition by females can have measurable implica-

tions on the nutrition and survival of their offspring [1]. In many species, especially arthro-

pods, this represents one of the only opportunities for ‘parental care.’ Evidence suggests that

preferred oviposition substrates include those of high resource quality and enemy-free spaces

[2–4]. In Drosophila spp. oviposition site selection (OSS) is influenced by many factors includ-

ing alcohol content [5,6], inherited preferences [7], geotactic tendencies [8], previously occu-

pied food sources [9–11], food texture [12], availability [13] and proximity [14] of substrates,

social cues [15] and perceived larval foraging costs [16]. Recently, Yang et al. [17] show D. mel-
anogaster flies prefer to oviposit on substrates with lower sugar concentrations. Yang et al. [17]

also provide evidence that Drosophila females probe each site with her proboscis and lay eggs

on an egg-by-egg basis (i.e. not in batches), suggesting that females are constantly assessing

their surroundings for suitable oviposition substrates and appear to do so using foraging-like
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behaviours. Although foraging and oviposition behaviours have been linked previously

[18,19], the genetic underpinnings of natural variation in oviposition strategies is unknown.

First characterized by Sokolowski [20], naturally occurring allelic variation in for was ini-

tially shown to affect larval foraging behaviour. Larvae with the forR allele (called rovers) travel

greater distances within and between food patches than individuals homozygous for the fors

allele (called sitters) [20–22]. Using reciprocal crosses, for was localized to the 2nd chromo-

somes [23] and it was later found to encode a cGMP-dependent protein kinase (PKG). Rovers

have greater mRNA transcript levels and PKG activity than sitters [24]. Aside from larval for-

aging, natural variation in for also influences other phenotypes including adult foraging behav-

iour [25, 26], dispersal [27], pupation site selection [28, 29], sucrose responsiveness and

habituation [30, 31], food intake/energy homeostasis [32], learning and memory in larvae [33]

and adults [34], and stress tolerance [35, 36].

The role of for in food-related behaviours may be evolutionarily conserved [37] with formal

associations in bees (honeybee: [38], bumblebee [39]), nematode worms (C. elegans: [40]; Pris-
tioncus pacificus: [41]), and ants (Pogonomyrmex barbatus: [42]; Phediole pallidula: [43]). Inter-

estingly, in C. elegans, egl-4, the ortholog of for, was originally described to affect egg-laying

[44]. Therefore, given this and the fact that OSS contains many elements similar to foraging

behaviour, we hypothesized that natural allelic variation in for influences OSS in D. melanoga-
ster. Based on classical approaches to studying foraging behaviour, we varied habitat quality to

elicit potential differential responses in the egg-laying preferences of rovers and sitters.

Materials and methods

(a) Fly stocks

Rover and sitter strains are homozygous for the forR and fors alleles, respectively, on the second

chromosomes and share co-isogenic third chromosomes from the forR strain [20]. fors2 is a sit-

ter-mutant strain that was generated on a rover genetic background with an induced mutation

at the foraging locus which confers sitter-like for mRNA-expression, PKG activity levels, and

foraging behaviour [24, 25, 45]. The three strains used in the transgenic overexpression crosses

(w1; fors; elav-GAL4, w1; fors; UAS-forT1a, and w1; fors; +) were obtained from M. Sokolowski.

The GFP flies used in the preseeding experiment (+; fors; Ubi-GFP and +; forR; Ubi-GFP) were

previously described in [46].

(b) Fly rearing conditions and media

Fly stocks were maintained in 170 mL plastic culture bottles (VWR) with 40 mL of standard

culture medium and were reared at 23 ± 1˚C, and 65 ± 5% relative humidity, and a 12L:12D

photocycle (lights off at 1900 h). One litre of standard culture medium contained 50 g of active

dry yeast (Fleischmann’s), 100 g of sucrose, 16 g of agar, 0.1 g of KH2PO4, 8 g of C4H4KNaO6,

0.5 g of NaCl, 0.5 g MgCl2, and 0.5g Fe2(SO4)3.

(c) Nutrient-adjusted food patches for oviposition

To approximate naturally occurring heterogeneity in substrate quality, we exposed females to

‘patches’ that varied in nutrient abundance (low and high). The high-nutrient food represents

the standard culture media described above whereas the low-nutrient food contains an 85%

reduction in the yeast (protein source) and sugar (carbohydrate source) components of the

standard media [32, 46]. Larvae reared on this low-nutrient diet have been shown to be signifi-

cantly smaller at third instar and have increased development time than those reared on
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standard fly media [32]. Experimental media was darkened using powdered charcoal (0.0026

mg/L), a non-nutritive addition that facilitated egg counting [47].

(d) Isolating flies for oviposition experiments

Founding flies were removed from the stock bottles prior to the eclosion of their offspring.

Each day thereafter, newly emerged adult flies were removed from the stock bottles and placed

in new vials (50 mL, VWR, containing 10 mL of media) overnight. The following day, these

flies were subdivided into vials that ultimately housed 64 females and 20 males until one day

prior to the experiment. The establishment of these vials served two purposes: i) it facilitated

the preparation for the oviposition assay (64 females), and ii) fewer flies and a 3:1 ratio of

females to males allows for mating without excessive stressing of females by males (MJF, pers

obs). Males were removed from the vials after 24 hours. All females were 3 day old adults when

assayed.

(e) Experimental arena & setup

Oviposition arenas consisted of translucent plastic containers (11 cm × 11 cm × 5.5 cm, Dollar-

ama). A sponge was placed in a hole cut in the centre of the lid to allow for sufficient air

exchange and the transferring of flies into the container. The food patches for oviposition con-

sisted of the caps from 1.5 mL microcentrifuge tubes (Axygen, VWR) filled with media. Each

trial is a binary comparison of food types with two microcentrifuge caps filled with each type.

Two ‘patches’ per food type allowed us to account for any possible aggregation tendencies. The

filled caps were placed randomly (coin flip) at the corners of an unmarked 4 cm × 4 cm square

centered on the bottom of the testing arena and were secured using small blobs of plastiscine.

For each individual trial, one food type was marked with a small dot from a black felt pen

(Sharpie) and this was determined randomly by a coin flip. Between 15:30 and 16:00 h the

females were placed into the testing arenas which are then immediately placed in the incubator

25 ± 1˚C and 65 ± 5% relative humidity. Flies were housed in the incubator overnight since the

majority of egg-laying occurs in the evening hours [48]. The following morning, females were

removed from the arenas by CO2 anaesthetization. The oviposition caps were removed and

the number of eggs on each cap was counted under a stereoscope at 1.6 × magnification.

(f) Preseeding

To assess whether the presence of another genotype’s eggs affected the subsequent egg-laying

preferences of rovers and sitters, we ‘preseeded’ oviposition food patches with either rover or

sitter eggs in either a ‘rover’ or ‘sitter’ pattern. This scenario has potential relevance to the nat-

ural world since flies are known to prefer oviposition sites that have been previously occupied

[9, 10, 11]. The preseeded eggs were marked with GFP (+; fors; Ubi-GFP and +; forR; Ubi-GFP)

to facilitate ease of differentiation between focal (unmarked) and preseeded (marked) eggs.

Eggs were obtained by allowing GFP females to oviposit on a grape juice-agar medium (grape

plates) overnight at 25 ± 1˚C, 65 ± 5% relative humidity (sensu [49]). The next morning, adults

were removed and egg-laden grape plates were covered and placed at 4˚C. The following day,

between 13:00 and 14:30 h, 40 eggs were transferred to experimental food caps using a probe.

Four treatments were tested using all four possible combinations of preseeding genotype

(rover/sitter) and egg-laying pattern (rover/sitter). Egg-laying pattern was determined using

the rover/sitter egg-laying proportions laid on high- and low-nutrient food seen in Fig 1. A

density of 40 preseeded eggs was maintained across all combinations. Given that rovers lay

approximately 65% of their eggs on low-nutrient food and sitters lay approximately 65% of

their eggs on high-nutrient food (Fig 1), eggs were distributed in a 26:14 ratio with L:H
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representing rover-like OSS and H:L representing sitter-like OSS. An equal number of eggs

were distributed haphazardly on each of the two patches per food type. Following this preseed-

ing step the oviposition assay was carried out as described above.

(g) Effect of nutrient abundance on the survival of rovers and sitters

32 first instar larvae of a given genotype were competed in vials (50 mL, VWR) containing 6

mL of either low- or high-nutrient food. Specific methods for harvesting larvae and conduct-

ing the competition experiments can be found in [46].

(h) Analyses

Normality was assessed using Wilk-Shapiro statistics and since there were no significant devia-

tions from normality we proceeded with parametric analyses. We used arcsine square root

transformations for all statistical analyses involving proportions [50]. We display the untrans-

formed proportions in the figures for ease of interpretation. In the experiment comparing the

proportion of eggs laid on low-nutrient substrate of rovers, sitters and the sitter mutant (Fig

1), we used a One-Way ANOVA to test the main effects of genotype on egg-laying preferences.

We conducted a similar One-Way ANOVA on preferences for low-nutrient substrate when

assessing proportion of eggs laid in the transgenic manipulation experiment. In the preseeding

egg experiment, we conducted a Three-Way ANOVA to test for the main effects of ovipositing

(i.e. focal) genotype (rover/sitter/sitter mutant), preseeded egg type (rover/sitter), and pre-

seeded pattern (rover/sitter) and all possible interactions. All statistical tests were performed

using JMP 8.0 (SAS Institute).

Fig 1. Oviposition preferences are mediated by for. forR flies preferentially lay on low-nutrient substrates

whereas both fors and fors2 flies preferentially lay on high-nutrient substrates. Dark bars represent low-nutrient

patches and open bars represent high-nutrient patches. Values represent the mean ± s.e.m. n = 20 replicate

trials per genotype.

https://doi.org/10.1371/journal.pone.0179362.g001
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Results

(a) Role of the foraging gene in rover/sitter OSS

We were unable to detect any significant effect of ‘patch’ for the three genotypes (ANOVA,

F1,475 = 0.04, p = 0.85) which indicated that the flies were not clumping their eggs on specific

food caps. Consequently, we pooled both patches per food type together for this and all future

analyses. We found that rovers lay a significantly greater proportion of their eggs (66 ± 2%,

mean ± s.e.m., n = 20 trials) on low-nutrient food compared to sitters (31 ± 3%, n = 20 trials)

and the sitter mutant (34 ± 2%, n = 20 trials) (Fig 1; F2,117 = 56.30, p< 0.0001, Tukey post hoc).
We also found that rovers lay significantly more eggs on average per trial (66.25 ± 5.03, n = 20

trials) than sitters (23.60 ± 3.00, n = 20 trials) and sitter mutants (32.20 ± 2.54, n = 20 trials)

(F2,117 = 37.43, p< 0.0001, Tukey post hoc).

(b) Neuronal increase of for-PKG leads to rover-like oviposition

preference in sitters

Sitter flies that overexpressed for in their brain and nervous system via the panneuronal elav
driver (w1; fors; elav-GAL4/UAS- forT1a) showed rover-like oviposition preferences. They laid a

significantly greater proportion of their eggs on the low-nutrient food (81 ± 7%, n = 20 trials),

than either of the two experimental controls: w1; fors; elav-GAL4/+ (40 ± 3%, n = 20 trials) or

w1; fors; UAS- forT1a/+ (40 ± 5%, n = 20 trials) (Fig 2; F2,60 = 16.73, p< 0.0001, Tukey post hoc).

(c) Preseeding results

We initially conducted a Three-Way ANOVA (F11, 228 = 17.00, p< 0.0001) that considered the

main factors of focal genotype, preseeded genotype, preseeded pattern, and all possible interac-

tions and we failed to detect a significant effect for all variables and all interactions (0.23�

p� 0.87) except for the main effect of ovipositing genotype (p< 0.0001). Consequently, we

reduced the model to a One-Way ANOVA looking only at the effect of ovipositing genotype

and found that rovers, across all treatments, laid a significantly greater proportion of their eggs

on low-nutrient food than sitters and the sitter mutant (Fig 3; F2,237 = 91.71, p< 0.0001, Tukey

post hoc). This supports the previous findings reported above (see Fig 1). Given the differences

in fecundity between rovers and sitters noted above, we conducted a Three-Way ANOVA

using the total number of eggs as the independent variable (F11,228 = 18.70, p< 0.0001) and

found significant main effects of both preseeded egg type (p = 0.04) and ovipositing genotype

(p< 0.0001). All interactions were not statistically significant although the three-way interac-

tion of ovipositing genotype × preseeded egg type × preseeded pattern was marginally non-sig-

nificant (p = 0.06). Following this we removed all interactions along with the main effect of

pattern and reduced the model to a Two-Way ANOVA looking at the main effects of oviposit-

ing genotype and preseeded egg type. We again found that rovers laid significantly more eggs

(80.46 ± 5.24 eggs, n = 80 trials) than sitters (23.31 ± 1.7 eggs, n = 80 trials) and sitter mutants

(30.01 ± 1.77 eggs, n = 80 trials) (Two-Way ANOVA, F2,236 = 88.55, p< 0.0001). We also

found that the genotypes laid marginally significantly more eggs when in the presence of sitter

eggs (rover: 89.68 ± 8.75 eggs, n = 40, sitter: 22.83 ± 2.68 eggs, n = 40 and sitter mutant: 32.96 ±
2.81 eggs, n = 40, respectively) than when in the presence of rover eggs (rover: 71.25 ± 5.50

eggs, n = 40, sitter: 23.80 ± 2.19 eggs, n = 40 and sitter mutant: 27.05 ± 2.07 eggs, n = 40, respec-

tively) (Two-Way ANOVA, F1,236 = 4.13, p = 0.04). However, this marginally significant effect

of preseeding egg type does not survive a Bonferroni correction that accounts for multiple

comparisons where the critical alpha value is revised to 0.025 (i.e. 0.05/2).
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(d) Effect of nutrient abundance on the survival of rovers and sitters

Fitness, the proportion surviving to pupation, was calculated for each vial (n = 20 per genotype

per food condition). Proportions were arcsine squareroot transformed prior to analyses [50].

We used a Two-Way ANOVA to assess the role of genotype (rover, sitter) and nutrient abun-

dance (low- and high-nutrient) on fitness and found a significant effect of nutrient abundance

(p< 0.0001) and the nutrient × genotype interaction (p = 0.04) but no significant effect of

genotype (p = 0.11)(F3,76 = 10.33, p< 0.0001, Fig 4). Given the interaction, we analysed the

two food types separately using Students t-tests. We found that rovers had higher fitness

(0.86 ± 0.02) than sitters (0.79 ± 0.02) on low-nutrient food (t = 2.98, df = 37.95, p = 0.005).

However, the survival of rovers and sitters was statistically indistinguishable when reared on

high-nutrient food (rover: 0.90 ± 0.02, sitter: 0.90 ± 0.02) (t = 0.30, df = 38, p = 0.76).

Discussion

Recent evidence from Miller et al. [14] shows there is natural variation in the egg-laying prefer-

ences of fruit flies. The results from our study suggest that naturally occurring genetic variation

in foraging is a strong contributor to population-level variation in OSS. Rover flies, character-

ized by more exploratory foraging behaviour, lay a significantly greater proportion of their

eggs on low-nutrient substrates whereas sitters and the sitter mutant (fors2) show significantly

greater preference for high-nutrient substrates. In addition to the fors2 mutation, we further

confirm a role for the for gene from our observations when for expression is increased transge-

nically in sitters to rover-like for transcript and PKG protein levels [24, 31], and rover-like egg-

laying preferences. Results from the preseeding experiment suggests that rover/sitter egg-lay-

ing decisions are not influenced by social cues (previously laid eggs).

Fig 2. Overexpression of for in neurons induces forR-like oviposition preferences in fors flies. The

propensity of sitters to ovposit on low nutrient substrates is increased by transgenic overexpression of for in

their nervous system using the panneuronal elav-GAL4 driver (fors; elav-GAL4/UAS-forT1a). Control crosses

containing only GAL4 (fors; elav-GAL4/+) or UAS (fors; UAS-forT1a/+) had sitter-like oviposition preferences.

Dark bars represent low-nutrient patches and open bars represent high-nutrient patches. Values represent

the mean ± s.e.m. n = 20 replicate trials per genotype.

https://doi.org/10.1371/journal.pone.0179362.g002
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Fig 3. Genotype-specific oviposition preferences are independent of conspecific eggs. forR flies

consistently lay more eggs on low-nutrient patches regardless of the presence of either forR or fors eggs
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The PKG molecule encoded by for is a major signaling molecule with many downstream

effects (reviewed in [51]). PKG functions by phosphorylating serine and threonine residues on

a diverse array of proteins [52] and is responsible for major cellular processes such as signal

transduction, muscle relaxation, nociception, and platelet function [53, 54]. The effect of for
on behaviour was first described on larval foraging [20, 23] and in recent years this has also

been extended to several other phenotypes (see Introduction). This vast assortment of pleiotro-

pic effects associated with for is likely facilitated by the diverse role of PKG at the molecular

and cellular level [54].

At the physiological level, the specific substrate preferences of rovers and sitters may be

rooted in taste. Previous work has shown that for-PKG modulates sensitivity to sugar [30, 31]

wherein sitters are less responsive to sucrose than rovers. The low- and high-nutrient food

types used on our study differed in both yeast and sugar levels. Therefore, it is possible that, in

addition to differences in sugar sensitivity, rovers and sitters may differ in other tastants asso-

ciated with yeast such as bitter and umami [55, 56]. Therefore, necessary future work includes

experiments that explicitly address the notion of taste underlying rover/sitter OSS, and that

dissect the specific preference cues.

According to our results, rover flies lay a greater proportion of their eggs in a sub-optimal

environment compared to sitters. In the proceeding paragraphs we suggest that the: i) better

preseeded on the patches. Similarly, fors and fors2 preferences for high-nutrient patches are also maintained.

Dark bars represent low-nutrient patches and open bars represent high-nutrient patches. Values represent

the mean ± s.e.m. n = 20 replicate trials per genotype, per condition.

https://doi.org/10.1371/journal.pone.0179362.g003

Fig 4. Effect of nutrient availability on rover (forR) and sitter (fors) fitness. Rovers were more fit

(expressed as the proportion surviving to pupation) than sitters when reared on low-nutrient food. Fitness was

higher and the genotypes were indistinguishable when reared on the high-nutrient food. Dark bars represent

low-nutrient conditions and open bars represent high-nutrient conditions. Values represent the mean ± s.e.m.,

n = 20 replicate trials per genotype, per food type.

https://doi.org/10.1371/journal.pone.0179362.g004
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nutrient absorption, ii) higher fecundity, and iii) greater inter patch movement and dispersal

of rovers compared to sitters may explain these egg-laying differences.

Firstly, the low-nutrient substrate used in our experiment is known to have a significant

impact on both rover and sitter fitness as evidenced by an increased development time and

reduced survivability relative to the high nutrient substrate ([32, 46], Fig 4). However, work by

Kaun et al. [32] has also shown that rovers are better able to absorb carbon from glucose than

sitters despite the fact that rovers consume less food than sitters during a given period of time.

This difference in absorption and metabolism in rovers and sitters is possibly evidenced by the

fact that despite an overall fitness decrease due to the low-nutrient food (Fig 4; ANOVA, F3,76 =

10.33, p< 0.0001) there was a nutrient 0078 genotype interaction whereby rovers survived sig-

nificantly better than sitters on the low-nutrient food but both survive equally well on high-

nutrient food (interaction, p = 0.04). Thus, it is possible that this ability to better manipulate

and utilize a typically ‘suboptimal’ source allows rover females to exploit a nutrient poor egg-

laying substrate at minimal cost to offspring fitness.

Secondly, in our experiments we found that rovers laid approximately 2.8 times as many

eggs as sitters. Therefore, the lower survivorship associated with the low-nutrient substrate

may be compensated in rovers by their increased fecundity.

Finally, although our results show differences in where eggs are laid, the developmental life

history of those larvae in nature is unknown. Larvae developing in nature experience heteroge-

neity in food patches, heterogeneity of food sources (fruits), predators, and parasitoids. From

laboratory studies we know that rover larvae regularly leave food patches and explore new

food patches whereas tend to stay on a single food patch [57]. It is therefore possible that the

egg-laying decisions we observed do not directly correlate with the ultimate location of devel-

opment of the emergent larvae. Given the tendency of sitters to remain on a food patch, it may

be important for sitters to hatch on a substrate that can support their full development. Laying

on a higher nutrient substrate, which may represent an optimally fermenting ripe fruit in

nature, will satisfy this goal. However, this may also come with consequences including a high

probability of competition with other larvae, competition with other organisms, and greater

exposure to predators and parasitoids. Rover egg-laying decisions may reflect a means to

reduce these consequences since the low-quality food in our experiments might be analogous

to a newly fermenting, less ripe fruit (lower yeast and sugar availability) having few larvae and

predators. Following hatching, the greater foraging and exploratory tendencies of rovers could

allow them to optimally adjust their feeding location.

Our study exposes the necessity for more field-based studies looking at the movement of

rover and sitter larvae in natural environments. Little is known about the life history of rovers

and sitters in nature despite a wealth of laboratory-based studies. Understanding the natural

range in ‘quality’ of food patches (nutrient availability), the distribution of food patches and

food sources, and the natural ranges in larval density and competition would greatly help to

put the findings of our study into a more natural context.

To fully understand the fitness consequences of the observed rover and sitter egg-laying

preferences, future work should look at larval survivorship when reared in proportions similar

to egg-laying preferences. This will allow for a greater understanding of whether rover/sitter

differences in oviposition preferences have effects on offspring fitness and the role of fre-

quency-dependent selection in maintaining the rover/sitter polymorphism [46].

With multiple lines of evidence, our study shows that naturally varying expression levels of

the for gene influences egg-laying decisions. Rover flies, with naturally higher expression of

for, lay a significantly greater proportion of eggs on low-nutrient food when compared with

sitters and the sitter mutant, each with naturally lower for expression. This was verified by

assaying transgenic crosses for oviposition preferences using the panneuronal driver elav-
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GAL4 to overexpress for-mRNA in sitter flies to rover-like levels. Indeed, when for-mRNA is

increased in sitters, their oviposition preferences changes to that of a rover. Our study further

dissects oviposition behaviour in D. melanogaster by both looking at the mechanisms underly-

ing observed egg-laying preferences as well as inferring the ecological reasons as to why such

differences exist in nature.
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