
R E S E A R CH A R T I C L E

Functional connectome fingerprinting accuracy in youths
and adults is similar when examined on the same day
and 1.5-years apart

Maria Jalbrzikowski1 | Fuchen Liu2 | William Foran1 | Lambertus Klei1 |

Finnegan J. Calabro1,3 | Kathryn Roeder2,4 | Bernie Devlin1 | Beatriz Luna5,6,7

1University of Pittsburgh, Pittsburgh,

Pennsylvania

2Department of Statistics, Carnegie Mellon

University, Pittsburgh, Pennsylvania

3Department of Bioengineering, University of

Pittsburgh, Pittsburgh, Pennsylvania

4Department of Computational Biology,

Carnegie Mellon University, Pittsburgh,

Pennsylvania

5Department of Psychiatry, University of

Pittsburgh, Pittsburgh, Pennsylvania

6Department of Psychology, University of

Pittsburgh, Pittsburgh, Pennsylvania

7Department of Pediatrics, University of

Pittsburgh, Pittsburgh, Pennsylvania

Correspondence

Maria Jalbrzikowski, University of Pittsburgh,

Pittsburgh, PA.

Email: jalbrzikowskime@upmc.edu

Funding information

National Institute of Mental Health, Grant/

Award Numbers: K01MH112774,

R01MH080243, R37MH057881

Abstract

Pioneering studies have shown that individual correlation measures from resting-

state functional magnetic resonance imaging studies can identify another scan from

that same individual. This method is known as “connectotyping” or functional

connectome “fingerprinting.” We analyzed a unique dataset of 12–30 years old

(N = 140) individuals who had two distinct resting state scans on the same day and

again 12–18 months later to assess the sensitivity and specificity of fingerprinting

accuracy across different time scales (same day, �1.5 years apart) and developmental

periods (youths, adults). Sensitivity and specificity to identify one's own scan was

high (average AUC = 0.94), although it was significantly higher in the same day (aver-

age AUC = 0.97) than 1.5-years later (average AUC = 0.91). Accuracy in youths (aver-

age AUC = 0.93) was not significantly different from adults (average AUC = 0.96).

Multiple statistical methods revealed select connections from the Frontoparietal,

Default, and Dorsal Attention networks enhanced the ability to identify an individual.

Identification of these features generalized across datasets and improved fingerprint-

ing accuracy in a longitudinal replication data set (N = 208). These results provide a

framework for understanding the sensitivity and specificity of fingerprinting accuracy

in adolescents and adults at multiple time scales. Importantly, distinct features of

one's “fingerprint” contribute to one's uniqueness, suggesting that cognitive and

default networks play a primary role in the individualization of one's connectome.
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1 | INTRODUCTION

Accumulating evidence from resting-state functional magnetic reso-

nance imaging (rsfMRI) indicates that brain network architecture is

highly individualized [Gordon et al., 2017; Gratton et al., 2018; Laumann

et al., 2015; Laumann et al., 2015]. Improving our understanding of

individual-level brain activity is leading to a mechanistic understanding

of how neural activity contributes to individual differences. Further-

more, using individual-level neuroimaging markers to reflect indicators

of pathology could, in the future, significantly improve our ability to

make informed clinical decisions. A first step toward achieving this “per-

sonalized neuroscience” is to understand normative variation in
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individual-level features of brain activity, particularly through a develop-

mental period when psychiatric illness typically emerges.

In participants with high-quality, densely sampled neuroimaging

information, within-subject variability explained approximately one third

of the variance in the data and is similar in magnitude to the explanatory

power of the average canonical network structure (Gratton et al., 2018;

Power et al., 2011; Yeo et al., 2011). Using alternative methods, others

have obtained similar estimates of intra- and inter-subject variation in

rsfMRI data (Betzel et al., 2019; Mueller et al., 2013). While these stud-

ies have produced important insights, such large amounts of neuroimag-

ing data (�5–84 hr of data per individual, see (Gratton et al., 2019) for a

review) may be infeasible for clinical samples.

In a related line of research, several studies show that individual pat-

terns from one scan can identify another scan from that same individual

at a high level of accuracy (Finn et al., 2015; Horien, Shen, Scheinost, &

Constable, 2019; Miranda-Dominguez et al., 2014). This method is

known as “connectotyping” (Miranda-Dominguez et al., 2014) or func-

tional connectome “fingerprinting” (Finn et al., 2015). This analytic frame-

work is effective with smaller amounts of rsfMRI data (3–15 min).

Understanding the individual-level network measurement characteristics

in a normative sample could provide a foundation for later parsing out

meaningful differences in behavior and/or pathology.

Here, we aimed to build on initial findings indicating individualized

brain functional architectonics (Finn et al., 2015; Miranda-Dominguez

et al., 2014; Waller et al., 2017; Xu et al., 2016) to characterize how

and which brain patterns are unique to an individual and to what extent

this pattern is stable or changes over time. First, we assessed the sensi-

tivity of fingerprinting measures, that is, the likelihood of obtaining true

positives, and the specificity of these measures, that is, the probability

of distinguishing true negatives (Florkowski, 2008; Youngstrom, 2014).

To determine the specificity and sensitivity of fingerprinting, we applied

a classification procedure. Scans from the same individual were viewed

as positive pairs while all the others were considered negative pairs.

The area under the curve (AUC)-receiver operating characteristics

(ROC) curve was utilized as a performance measurement to identify the

sensitivity (true positive rate) and specificity (1-false positive rate) of

fingerprinting at different thresholds and time scales. To measure

group-level influences, we first identified predictive edges from a dis-

covery sample and then examined to what extent these edges

improved fingerprinting in a replication sample.

The majority of psychiatric disorders emerge during adolescence

(Paus, Keshavan, & Giedd, 2008), a period of remarkable neuro-

plasticity and change (Larsen & Luna, 2018; Luna, Marek, Larsen,

Tervo-Clemmens, & Chahal, 2015; Murty, Calabro, & Luna, 2016).

Thus, is it important to establish individualized brain markers of finger-

printing accuracy in this period and contrast them to that of adults.

The extent to which there are age-associated differences in finger-

printing measures is an open question, given inconsistent findings in

the literature (Demeter et al., 2019; Horien et al., 2019; Kaufmann

et al., 2017). One study used a combination of resting-state and task-

based MRI scans to assess fingerprinting accuracy from same day

scans (Kaufmann et al., 2017). They found that fingerprinting accuracy

significantly improved from late childhood through adulthood

(Kaufmann et al., 2017). However, others found that fingerprinting

accuracy is not affected by age when scans were months to year apart

(Horien et al., 2019); furthermore, fingerprinting accuracy in pediatric

and adult samples is quite similar within a 5–18 month time frame

(Demeter et al., 2019). Insofar as we are aware, there has not yet been

a direct comparison of scans completed on the same day versus those

completed much later (i.e., a year), and to what extent this direct com-

parison changes or remains the same across adolescence. It is possible

that the neuroplasticity observed in resting state scans during adoles-

cence (Calabro, Murty, Jalbrzikowski, Tervo-Clemmens, & Luna, 2019;

Jalbrzikowski et al., 2017) and/or motion artifact known to be more

predominant in youth (Power et al., 2011; Satterthwaite et al., 2012);

reduces the ability to accurately identify an individual's scan. Alterna-

tively, “functional fingerprinting” of an individual's resting state scan

could be robust to these changes.

In our discovery sample, we leveraged a unique, two-time point

data set that had two resting state scans from an individual conducted

on the same day (Visit 1, V1), and two resting state scans from the

same individual collected on the same day 12–18 months later (Visit

2, V2; henceforth 1.5 years). We then assessed the level of sensitivity

and specificity of fingerprinting accuracy; compared whether it is as

stable for the same day as it is 1.5 years later. We also determined if

sensitivity and specificity at these different time scales were similar in

youths and adults. We used multiple statistical methods to determine

connections that are “predictive” of individuals' scans, reflecting one's

uniqueness. Finally, we explored how these edges performed in a rep-

lication sample.

1.1 | Participants

The final discovery sample consisted of 140 participants (1–2 visits,

mean time between visits: 18 months, range of time between visits:

17–25 months). To test the generalizability of the predictive edges

identified in our discovery sample, we tested the extent to which the

previously identified features from each method improved fingerprint-

ing accuracy in a replication sample with longitudinal data (N = 208,

1–3 visits, mean time in between visits: 20 months, range of time

between visits: 12–50 months).

All participants were recruited from the greater Pittsburgh metro

area. Participants and their first-degree relatives did not have a psychi-

atric disorder, as determined by phone screen and a clinical question-

naire. Exclusion criteria for all participants included any drug use within

the last month, history of alcohol abuse, medical illness affecting the

central nervous system function, IQ lower than 80, a first-degree rela-

tive with a major psychiatric disorder, or any MRI contraindications.

There are previous publications using rsfMRI data from individuals

within the replication sample that address separate questions

(Jalbrzikowski et al., 2019; Jalbrzikowski, Murty, Tervo-Clemmens,

Foran, & Luna, 2019; Marek, Hwang, Foran, Hallquist, & Luna, 2015).

Demographic information for both samples is reported in Table 1.

Detailed inclusion/exclusion criteria are reported in the Supplemental

Material.
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1.2 | MR data acquisition: Discovery sample

Data were acquired using a Siemens 3 Tesla mMR Biograph with a

12-channel head coil. Subjects' heads were immobilized using pillows

placed inside the head coil, and subjects were fittedwith earbuds for audi-

tory feedback to minimize scanner noise. For each rsfMRI run, we col-

lected 8 min of resting-state data, eyes open. Resting state data were

collected using an echo-planar sequence sensitive to BOLD contrast (T2*).

rsfMRI parameters were Repetition Time/Echo Time = 1500/30.0 ms; flip

angle = 50�; voxel size = 2.3 × 2.3 × 2.3 mm. Structural images were

acquired using a T1weightedmagnetization-prepared rapid gradient-echo

(MPRAGE) sequence (TR/TE = 2300/2.98 ms; flip angle = 9�; voxel

size = 1.0 × 1.0 × 1.0 mm).

Participants completed a unique two-visit scan protocol. In the

first visit, individuals participated in a MRI protocol (Visit 1, V1) that

included two rsfMRI runs (Pre-Task, Post-Task), with an fMRI

reward learning task (�40 min) conducted between these two runs.

Approximately 1.5 years later, the same individuals returned and

completed an identical MRI protocol (Visit 2, V2), which also

included two rsfMRI runs (Pre-Task, Post-Task) separated by the

same fMRI task. A visual depiction of the scan protocol, along with

the respective names given to each run or scan, are presented in

Figure 1.

1.3 | MR data acquisition: Replication sample

Scan parameters for the replication sample are detailed in Supplemen-

tary text.

1.4 | rsfMRI processing

First, we performed simultaneous slice-timing and motion correction

of all functional images. Then, we implemented wavelet despiking to

remove nonstationary events in the fMRI time series (Patel &

Bullmore, 2015). Third, functional images were warped into MNI

standard space using a series of affine and nonlinear transforms.

Then, after normalization, functional images were spatially smoothed

using a 5-mm full width at half maximum Gaussian kernel. ICA-

Aroma was then implemented to remove any remaining motion arti-

facts (Pruim et al., 2015; Pruim, Mennes, Buitelaar, & Beckmann,

2015). Finally, to control nuisance-related variability (Hallquist,

Hwang, & Luna, 2013), we then conducted simultaneous multiple

regression of nuisance variables and bandpass filtering at 0.009 Hz

< f < 0.08. Nuisance regressors included were nonbrain tissue (NBT),

average white matter signal, average ventricular signal, six head

realignment parameters obtained by rigid body head motion correc-

tion, and the derivatives of these measures. NBT, average white

matter, and average ventricular signal nuisance regressors were

extracted using MNI template tissue probability masks (>95% white

mater, >98% cerebral spinal fluid) (Fonov, Evans, McKinstry, &

Almli, 2009).

For all subjects, we calculated a quality control measure with

respect to head motion, namely volume-to-volume frame displace-

ment (FD). Consistent with recent developmental cognitive neurosci-

ence publications (Bathelt, Johnson, Zhang, & Astle, 2019; Calabro

et al., 2019; Hafeman et al., 2019; Li et al., 2019), subjects were

removed from rsfMRI analyses if the average frame displacement

across the run was >0.5 mm (N = 5).

TABLE 1 Participant Information for discovery and replication samples

Discovery sample

Pre-task Post-task

N M/F Mean age (SD) Age range Mean FD (SD) N M/F Mean age (SD) Age range Mean FD (SD)

Visit 1 140 67/73 19.7 (5.0) 12.0–31.0 0.24 (0.1) 126 57/69 20.1 (4.9) 12.0–31.0 0.25 (0.1)

Visit 2 93 48/45 22.2 (5.0) 13.5–32.6 0.22 (0.1) 86 45/41 22.3 (4.9) 13.5–32.6 0.23 (0.1)

Replication sample

N M/F Mean age Age range Mean FD

Visit 1 208 104/104 18.5 (4.4) 10.1–25.9 015 (0.05)

Visit 2 85 45/40 17.0 (2.8) 11.9–21.8 0.12 (0.03)

Visit 3 59 32/27 18.2 (2.7) 13.3–23.0 0.14 (0.03)

Note: Detailed exclusion criteria are provided in Figure S1.

F IGURE 1 Visualization of protocol set-up. The colors refer to
comparisons that are made throughout the manuscript (oranges: same
day comparisons, blues: 1.5 year comparisons)
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1.5 | Functional network parcellation

We applied a previously-defined, functional connectome parcellation

of 333 functional regions of interest (ROIs) across cortical structures

(Gordon et al., 2016) to each participant's rsfMRI data (Figure 2a). This

parcellation consists of 13 reliable rsfMRI networks, many of which

have been identified in other studies, including the Frontoparietal,

Default, and Visual networks (Glasser et al., 2016; Power et al., 2011;

Shen, Tokoglu, Papademetris, & Constable, 2013). See Table S1 for a

list of 13 networks and details about them (for each network: number

of nodes, number of within-connectivity edges, and number of

between-connectivity edges).

For each participant, we computed Pearson's correlation of each

ROI's time series with that of every other ROI, producing a 333 × 333

correlation matrix (Figure 2b). The upper diagonal of the correlation

matrix for each individual was stacked into a vector (55,278 edges),

and each vector was normalized to a mean of zero and variance of

one (Figure 2c). We performed this procedure for each subject's

rsfMRI run, resulting in four normalized vectors for the majority of

participants. The correlation between any two of these normalized

vectors, V and U, was their dot product:

corr V,Uð Þ=
XE

e=1

V eð ÞU eð Þ=E

where E is the total number of edges and e is an individual edge.

1.6 | Identification accuracy

Next, we sought a classifier to identify resting state fMRI-measured

connectomes that “match”; ideally these would be connectomes from

the same subject. To do so, we first computed the correlation of nor-

malized vectors, V and U, for all possible pairs of subjects, as described

above (Figure 2c). The classifier seeks a threshold t for these correla-

tion values that yields a high rate of true positive identification,

namely connectomes from the same subject, while minimizing the

number of false positive identifications, connectomes from different

subjects labeled as from the same subject. We varied t from interval

of zero to one to create a receiver operating characteristic (ROC)

curve. We then estimated the area under the curve (AUC) to deter-

mine the accuracy of the classifier (Figure 2d). The t that maximized

true positive rate-false positive rate (TPR-FPR) was chosen for

reporting. ROC curves were generated for the entire sample for

(a) same day identification accuracy (Pre-Task vs. Post-Task) and

(b) identification accuracy 1.5 years apart (V1 vs. V2). To compare

identification accuracy for same day versus 1.5 years later, we com-

pared ROC curves to each using DeLong's test for two ROC curves

((DeLong, DeLong, & Clarke-Pearson, 1988; Robin et al., 2011),

Figure 2d).

To determine whether fingerprinting accuracy was affected by

age, we split the entire sample of 12–30 year olds by the median age

(20.4 years), considering the participants “youths” if they were under

the median age (V1 N = 70) or “adults” if they were over the median

F IGURE 2 (a) After resting-state fMRI data were processed, we extracted out the time series from an established parcellation and
(b) calculated a correlation matrix for each individual and their respective scan visit. (c) For each scan at each visit, we stacked a vector from the
upper diagonal of the correlation matrix. Each stacked vector represents a scan from one person. The stacked vectors could be a separate scan
from the same individual or a separate scan from a different individual. We computed correlations between each vector for all possible pairs and
nonpairs. (d) By varying the threshold of the correlation values to determine what was a true-or false-positive, we developed ROC curves for each
comparison, with a total of four comparisons: same day visit 1, same day visit 2, 1.5 years apart pre-task 1.5 years apart post-task. We then used
DeLong's method to compare the ROC curves. (e) For each of the four comparisons, we compared the ROC curves of youths versus adults
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age (V1 N = 70). We then calculated ROC curves for youths and adults

separately for (a) same day fingerprinting (Pre-Task vs. Post-Task) and

(b) fingerprinting 1.5 years apart (V1 vs. V2). To test for significant dif-

ferences in identification between youths and adults, we used

DeLong's test for two ROC curves (Figure 2e). We also assessed the

effects of sex on fingerprinting accuracy by calculating ROC curves

for each sex separately for each visit and session.

1.7 | Identification of predictive edges

Next, we sought to determine which edges contribute most to finger-

printing accuracy. We made four comparisons to assess identifiability

of each subject (V1, pre vs. post; V2, pre vs. post; V1 pre vs. V2 pre

and V1 post vs. V2 post) and the same comparisons among nonpairs,

resulting in 98,790 comparisons (same subject pairs = 532,

nonpairs = 98,258). Because there was an overrepresentation of non-

pairs (two scans, one from individual s and another from individual j),

we used synthetic minority over-sampling technique to reduce bias

when selecting the predictive features (Chawla, Bowyer, Hall, &

Kegelmeyer, 2002) and selected 532 pairs and 1,596 nonpairs. This

method uses Euclidean distance to select nonpairs closest to the pairs

(Chawla et al., 2002). We then split the discovery sample into a train-

ing (2/3 of the data: 355 pairs, 1,064 nonpairs) and test set (1/3 of

the data: 177 pairs, 532 nonpairs). The terms of the dot product

(i.e., from 52,278 edges) for each comparison were the input features.

1.7.1 | Finn method

We used a recently developed method to calculate the most predic-

tive edges (Finn et al., 2015). We then ranked all edges from most pre-

dictive to least predictive and we successively decreased the

threshold of “most predictive” edges to develop the ROC curve.

Through cross-validation in the training set, we determined that the

optimal TPR-FPR rate was when we included the 5 % “most predic-

tive” edges. Then, in the test data set, we selected only these predic-

tive edges and calculated a correlation between each scan and all

other scans (sum of the dot product). We then used the correlation

threshold to develop the ROC curve in the test data set.

1.7.2 | Support vector-machine learning and
elastic net regression methods

Both of these methods are common tools for model selection. Here,

the goal was to choose a set of predictive edges that differentiated

same-subject pairs from other pairs. For both methods, the input

information was the terms of the dot product between two scans.

We developed optimal tuning parameters in the training data set and

obtained weights for the selected edges. Elastic net regression was

implemented using R package glmnet (Friedman, Hastie, &

Tibshirani, 2009). The support-vector machine (SVM) analysis was

implemented in R package, sparseSVM (Yi & Zeng, 2018), with an

elastic net penalty. For each method described below, we used

10-fold cross validation to identify the number of edges that gives the

highest AUC and the tuning parameters were chosen from this proce-

dure. We set α = 0.1 and chose the penalty parameter (λ) with the

minimal cross-validation error. Within the discovery sample, we then

applied the model developed in the training set to the test data set.

By weighting the individual product of the selected edges, we

obtained a predicted value, Ŷ , for which Y− Ŷ ranges from −1 to

1. We developed ROC curves by changing the threshold of Y− Ŷ to

determine what constituted a “pair” in the test data.

1.8 | Assessing over-representation of network
connectivity in predictive edges

To identify network representation in the predictive edges for each

method identified above, we conducted X2 tests to assess whether

there was over-representation of (a) between (e.g., Frontoparietal-

Default edges; the off-diagonal edges) or within-network connectivity

(e.g., Frontoparietal-Frontoparietal edges; the block structure on the

diagonal), (b) specific within-network connectivity networks, and/or

(c) distinct between-network connections. We used the standardized

residuals (>3.0) to determine networks that contributed to one's

uniqueness.

1.8.1 | Performance of predictive edges in
replication sample

To test the generalizability of the predictive edges identified in our

discovery sample, we tested the extent to which the previously identi-

fied features from each method improved fingerprinting accuracy in a

replication sample with longitudinal data.

1.9 | Effects of possible confounds

Because motion is a well-known confound in rsfMRI studies of devel-

opment (Satterthwaite et al., 2012), we calculated multiple measures

of motion: framewise displacement (FD) as described by Power et al.

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), as well as mean

head displacement, maximum head displacement, the number of

micromovements (N > 0.1 mm), and head rotation as described by

Van Dijik et al. (Van Dijk, Sabuncu, & Buckner, 2012). We assessed

whether motion differed between sessions or visits by running

within-subjects t-tests of the motion variable between session (pre-,

post-task) and visit (V1, V2). To assess the effects of age on motion,

we conducted an independent samples t test between group (youths

vs. adults) for each session and visit.

Because “same day” scans were acquired within the same MRI

session, improved same day fingerprinting accuracy could be due to

better-quality registration from the same scan session. A subset of the

JALBRZIKOWSKI ET AL. 4191



participants (ages 18–30 years, N = 76) participated in an additional

scan on the same day, but in a different scan session (i.e, the partici-

pant came out of the MRI scanner and a few hours later participated

in another MRI session). This subset of participants participated in a

position emission tomography study that included an additional MRI

scan with each visit. Classification as detailed previously was per-

formed, using the separate scans at each visit to predict identification

accuracy from this additional MRI session. See Table S2 for details on

this subset of participants.

2 | RESULTS

Participant information for both visits is presented in Table 1. Partici-

pant information for youth and adult groups are reported in Table S3.

2.1 | Same day versus 1.5 years later

Across the entire sample, identifiability on the same day was quite

high (Average AUC: 0.94). Identification accuracy between scans

1.5 years apart was also high (Average AUC: 0.91, Figure 3a). How-

ever, same day accuracy was significantly higher than identification of

scans 1.5 years apart (Figure 3a, Table 2A). Differences in fingerprint-

ing accuracy on the same day compared to scans 1.5 years apart were

observed for both youth (Figure 3b, Table 2B) and adult groups

(Figure 3c, Table 2C).

2.2 | Fingerprinting accuracy of youth versus
adults

Same day accuracy was not statistically different between youths and

adults. The two groups exhibited similar levels of same-day identifica-

tion accuracy (Table 3A). The same pattern of results emerged when

comparing youths and adults on fingerprinting accuracy 1.5 years

apart for three out of four of the comparisons (Table 3B). ROC curves

are presented in Figure 3. We also found a similar pattern of results

when we split youths and adults by the mean age (20.8 years, 5 partic-

ipants changed age group membership) and when we considered indi-

viduals as “adults” at age 18 (21 participants changed age group

membership). Finally, we obtained a comparable pattern of results

when we tested fingerprinting accuracy in males and females sepa-

rately (Table S4).

2.3 | All model selection methods tested improve
identification accuracy in the test portion of the
discovery sample

As seen in Figure 4a, the fingerprinting accuracy significantly

improved when we used predictive edges selected by the Finn

method, SVM, or Elastic Net to predict identification accuracy. The

three model selection techniques performed similarly to one another

(Table S5). When we used only the predictive edges identified by

these methods to re-assess fingerprinting accuracy in all previous

F IGURE 3 (a) Across the entire sample, identification accuracy
was higher for same day (orange) versus 1.5 years later (blue). This
pattern of results remained when youth (b) and adults (c) were

assessed separately. The asterisk in each for each curve refers to the
point when of optimal trade-off between sensitivity and specificity.
AUC, area under the curve; Thr, threshold at which optimal true
positive rate was obtained; Sen, sensitivity; Spec, specificity
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comparisons, each method improved fingerprinting accuracy but did

not change reported results. When we calculated an average,

method-driven threshold (average threshold of all methods) to deter-

mine identification accuracy, sensitivity and specificity were similar

for Elastic Net and SVM, but sensitivity of the Finn method was lower

(Table S6).

2.4 | Predictive edges from discovery sample
improves accuracy in replication sample

Similar to previous results (Finn et al., 2015; Waller et al., 2017), we

found lower identification accuracy in a replication sample with more

“standard” MRI parameters (e.g., longer TR, shorter length of scan,

fewer number of head coils, Figure 4b, pink ROC curve). When we

applied the most predictive edges from previously applied model

selection techniques, however, fingerprinting accuracy significantly

improved (Figure 4b, Table S7). When we omitted pairs from scans

conducted on the same day in the discovery sample and focused our

analyses on identifying predictive edges from pairs that were

1.5 years apart, we obtained the same pattern of results (Table S8).

The weights for predictive edges from Elastic Net and SVM are pro-

vided in Tables S9 and S10.

Optimal thresholds were determined separately in the discovery

and validation sample prior to generating an AUC. We made this

choice because of differences in the nature of the data. As shown in

Figure S2, the distributions of the correlations between pairs were

quite different in the two samples, precluding use of the selected dis-

covery threshold for the validation threshold. Despite these differ-

ences, when the predictive edges derived from the discovery sample

were applied to the validation sample, fingerprinting accuracy

improved, suggesting that edges important for prediction are similar

across samples.

TABLE 2 Identification accuracy same day and 1.5 years apart

Group Same day

1.5 years apart

1.5 YR pre-task 1.5 YR post-task

D p D p

A. Entire

sample

Same day V1 4.1 2.70E−05 4.1 3.80E−05

Same day V2 2.7 .02 2.9 .003

B. Youths Same day V1 3.2 .001 2 .04

Same day V2 2.7 .008 1.1 .24

C. Adults Same day V1 2.8 .008 3.2 .001

Same day V2 1.8 .07 2 .04

Note: (A) Across the entire sample, same-day identification accuracy was sig-

nificantly higher than identification accuracy 1.5 years apart. The D-value

represents the test statistic for the respective comparison. This pattern

remained when youth (B) and adults (C) were assessed separately.

TABLE 3 Identification accuracy comparison between youths and
adults

Comparison

Adults versus youth

D p

A. Same day V1 −1.7 .08

Same day V2 0.16 .87

B. 1.5 YR: Pre-task V1 vs. pre-task V2 −2.7 .006

1.5 YR: Pre-task V1 vs. post task V2 −0.42 .67

1.5 YR: Post-task V1 vs. post-task V2 −0.7 .46

1.5 YR: Post-task V1 vs. pre-task V2 −1.7 .09

Note: (A) Same-day fingerprinting accuracy is similar for youth and adults.

(B) Fingerprinting accuracy 1.5 years apart is similar for youth and adults

in three of four comparisons.

F IGURE 4 (a) When edge selection was performed via various
methods (Finn method (green), Elastic Net (orange), and SVM
(purple)), identification accuracy was significantly improved in
comparison to using all edges (pink) for identification accuracy.
(b) When we applied predictive edges previously identified in the
training sample to an independent sample, all methods significantly
improved identification accuracy. The asterisk in each for each curve
refers to the point when of optimal trade-off between sensitivity and
specificity
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2.5 | Predictive edges are over-represented in
Frontoparietal, default, and dorsal attention networks

Figure 5a–c shows the relative contribution, normalized for number of

edges in each network (or off/diagonal edge group) and number of edges

determined to be predictive by each method. Across all methods, in

comparison to between-connectivity edges (e.g., Frontoparietal-Visual

connections, Table S11), within-connectivity edges (e.g., Frontoparietal-

Frontoparietal connections) were relatively more important in predicting

identification accuracy. More specifically, within-connectivity edges from

the frontoparietal, default, and dorsal attention networks drove this find-

ing (Figure 5b). These networks had standardized residuals greater than

3.0 in all comparisons. With SVM and Elastic Net, edges from the Ventral

Attention network were also important predictors for fingerprinting

accuracy. A similar pattern emerged when we examined same-day and

1.5-year comparisons separately (Table S12) and in youth and adults sep-

arately (Tables S13 and S14).

We also examined which between-network connectivity edges

were relatively important for fingerprinting accuracy. Across all

three methods, connections between the Frontoparietal-Default,

Frontoparietal-Dorsal Attention, Ventral Attention-Cingulo-opercular,

and Frontoparietal-Ventral Attention networks were overrepresented

in comparison to other connections (Figure 5c). See Table S15 for stan-

dardized residuals from a χ2 test of between-network connectivity and

F IGURE 5 (a) The ratio of predictive edges to nonpredictive edges in each network connection, normalized for total number of edges in each
connection for the three different methods. Warmer colors on the heatmap indicate that edges from a particular network are more important for
identification accuracy. (b) Within-network connections that are particularly important for identification accuracy in all three methods examined.

In all methods, within connectivity edges in Frontoparietal (yellow), Default (red), and Dorsal Attention (bright green) networks are considered
predictive. In the Finn method and SVM, within connectivity connections in the Ventral Attention network were also predictive of identification
accuracy. (c) Between-network connections that are particularly important for identification accuracy. The colors around the circle reflect the
different networks examined. Thicker bands of color indicate a greater number of edges from that particular network were considered predictive.
The between connectivity edges (lines going across the circle) were randomly chosen from one of the two connected networks (e.g., Between
network connectivity between the Default and Cingulo-Opercular network is red, but between network connectivity between the Default and
Ventral Attention network is green)
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Table S16 for standard residuals from a χ2 test of over-representation

of all network connections. Similar patterns emerged when we exam-

ined same-day and 1.5-year comparisons separately (Table S17) and

youth and adults separately (Table S18).

2.6 | Testing effects of possible confounds

To ensure that the improved same-day accuracy was not because

individuals were in the same scan session and benefiting from

improved MRI registration, we examined a subset of individuals

(N = 76) who completed an additional MRI session on V1 and V2 after

being taken out of the scanner and repositioned. Table S19 reports

similar AUC, threshold levels, and sensitivity/specificity for identifica-

tion accuracy within the same MRI session (V1 Pre-Task predicting

accuracy of V1-Post-Task) and different MRI session on the same day

(e.g., V1 Pre-Task predicting identification of extra session V1).

When we compared head motion between sessions, one of two

of the session comparisons (pre-task V1 vs. post-task V1) was statisti-

cally significant. Individuals had higher FD during post-task V1 in com-

parison to pre-task V1; t = −2.5, p = 0.01). One of two of the visit

comparisons (post-task V1 vs. post-task V2) was also statistically sig-

nificant. FD at post-task V2 was lower in comparison to FD at post-

task V1 (t = 2.8, p = .006). Notable, while FD was elevated in post-task

V1 in comparison to other sessions/visits, the impact of visit and ses-

sion on fingerprint accuracy was similar in other comparisons,

suggesting that motion differences were not driving our results. A

similar pattern of findings was observed in other motion metrics

(Table S19).

There were no statistically significant differences between youths

and adults at any session or visit in FD, mean head displacement, max-

imum head displacement, or number of micromovements (all p ≥ .05).

Results are reported in Table S19.

To ensure that our results were not driven by parcellation choice,

we also re-ran all analyses after extracting ROIs from two separate

parcellations (Power et al., 2011; Shen et al., 2013) and obtained a

similar pattern of results.

3 | DISCUSSION

For neuroimaging to have clinical utility, it is essential to understand

what to expect from an individual's network characteristics in multiple

contexts. Here we show that identification accuracy of one's resting

state scan—how much it reflects a “functional fingerprint”—depends

on the timespan between assessments. We provide supporting evi-

dence that adolescents have similar levels of fingerprinting accuracy

to adults when visits are years apart (Horien et al., 2019; Miranda-

Dominguez et al., 2018) and extend this literature to show that this

finding is consistent on a same-day visit. Furthermore, we used multi-

ple methods to identify a small number of edges consistently predic-

tive of an individual's scan. These edges are more likely to be in the

Frontoparietal, Default, and Dorsal Attention networks. We identified

these edges in a discovery sample and then used these edges to

improve identification accuracy in a replication sample. We propose

that particular edges in the Frontoparietal, Default, and Dorsal Atten-

tion networks contribute to an individual's “uniqueness” and are simi-

lar in youths and adults. These results bring us a fuller understanding

of functional networks in the human brain.

3.1 | Stability of identification accuracy
across time

Our results indicate a high level of subject identification accuracy,

even after 18 months. However, greater time intervals between scans

incurred a significant decrease in identification. This result provides

compelling evidence that there are extant foundational properties of

resting state network organization that are persistent and specific to

each individual. The significant degradation in identification after

18 months was not driven by registration. Reduced fingerprinting

accuracy with time could reflect greater noise between two scans;

alternatively, or in addition to, the small degradation in identification

accuracy could reflect inherent plasticity in network organization in

both youths and adults.

3.2 | Networks that underlie prediction

We found evidence that identification was driven by edges particu-

larly in the Frontoparietal, Dorsal Attention, and Default mode net-

works. These networks were consistently identified by different

analytical approaches. This is a striking result that identifies networks

critical for higher-order cognitive processing and endogenous self-

referential processing. Thus, these results provide suggestive evidence

that how we engage in foundational cognitive and endogenous pro-

cesses contributes to individuality. This finding also has the potential

to inform our understanding of how altered development contributes

to the onset of psychopathology, as these higher-order cognitive net-

works are often altered in psychiatric disorders.

3.3 | Predictive edges from the discovery sample
improve fingerprinting accuracy in the validation
sample

We also show that predictive edges identified in one sample can be

applied to an independent sample to improve identification accuracy,

even when the validation sample has somewhat different properties

than the discovery sample (Figure S2). Sets of edges making dominant

contributions to fingerprinting accuracy vary among individuals.

Though the original goal of fingerprinting accuracy was, in part, to

identify the specific predictive edges to identify specific individuals

(Finn et al., 2015), we implemented a different approach. In dermal

fingerprinting, �30 islets or forks on the ridges or “identification

points” are used to demonstrate uniqueness (Galton, 1892;
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Stigler, 1995). It is highly unlikely that any other individual will have

the same combination of these distinct ridges. By showing predictive

edges from one data set improve fingerprinting accuracy in an inde-

pendent data set, we demonstrate that a similar phenomenon is taking

place with rsfMRI fingerprinting.

Multiple methods performed quite well in the discovery sample;

however, as is consistent with the literature, a reduction in sensitivity

and specificity in the replication sample suggests some over-fitting in

this sample. On the other hand, our replication sample is a strength of

our study, because the majority of fingerprinting accuracy studies

have not tested the utility of predictive edges in another data set. The

robustness of these results demonstrates that particular edges carry

the most information for identifiability. This is a first, important step

for understanding how fingerprinting accuracy can be used in a clinical

context. However, as observed in the two separate samples, the dis-

tributions of correlations for pair identification between the two sam-

ples are remarkably different (Figure S2). In line with other fields of

medicine that use a biological measure to detect risk or disease status

(Greenwood et al., 2012), in the future, it will be important to deter-

mine the quality of the rsfMRI scans to ensure valid analyses.

The lower sensitivity and specificity in our replication sample is

consistent with reports of fingerprinting accuracy in lower quality

rsfMRI protocols (Finn et al., 2015; Waller et al., 2017). A number of

factors could be contributing to the degradation in fingerprinting

accuracy, including a shorter scan time (Finn et al., 2015) or decreased

resolution of the rsfMRI scan. Additionally, the discovery sample had

higher resolution structural scans to assist with more accurate regis-

tration of the rsfMRI data. Partial volume effects could also be con-

tributing this degradation in fingerprinting accuracy. In the future, it

will be informative to test if incorporating methods to correct for par-

tial volume effects (Dukart & Bertolino, 2014) will improve rsfMRI fin-

gerprinting accuracy in less optimized rsfMRI protocols.

3.4 | Identification accuracy is similar in youths
and adults

We did not observe differences in the fingerprinting accuracy between

youth and adults, for both same day and 1.5-year comparisons. Indeed,

others have recently found that identification accuracy is similar in

youth and adults (Demeter et al., 2019; Horien et al., 2019). We extend

these findings by showing accuracy is high both for same day and

longer-term (1.5 years) intervals in the same sample. Furthermore,

because identification accuracy in both youth and adults was lower

across a longer period of time and similar edges contributed to same

day and 1.5-year identification accuracy, our results suggest that this

reduction is not solely due to known developmental changes. Signifi-

cant cognitive development occurs through adolescence (Larsen &

Luna, 2018; Luna et al., 2015; Steinberg, 2005), in the context of evi-

dence for stability at the group level in network properties (Hwang,

Hallquist, & Luna, 2013; Jalbrzikowski, Murty, et al., 2019; Marek

et al., 2015; Marek et al., 2019). The stability in identification accuracy

across development further supports that implication that network

properties contain individualized foundational properties that define

uniqueness.

In one case, we did find that youths had significantly worse iden-

tification accuracy in comparison to adults (Table 3B: 1.5 YR: Pre-task

V1 vs. Pre-task V2) when the scans were 1.5 year apart. However, in

three of four similar relevant comparisons, we did not observe differ-

ences in fingerprinting accuracy between youths and adults. In this

particular comparison (i.e., Pre-Task V1 to Pre-Task V2), reduced

accuracy in these youths was driven by the lower identification accu-

racy in the pre-task scans: we speculate that youths are more variable

and excitable when first getting in a scanner, perhaps because they

have had less experience with life events akin to an MRI scan than do

adults. Furthermore, we know that identification accuracy is reduced

with increased head motion (Horien et al., 2018), and youth have

greater levels of head motion in comparison to adults (Satterthwaite

et al., 2012). However, in our sample, we did not see a statistical dif-

ference between head motion in these two groups and our results

remain stable when we use more conservative framewise displace-

ment thresholds (FD < .3).

3.5 | An improved statistical framework for
identification accuracy

We show that edges important for identification accuracy are similar

across the different methods used to identify them. Furthermore, pre-

dictive edges identified in one sample can be applied to an indepen-

dent sample to improve identification accuracy. The robustness of

these results demonstrates that particular edges carry the most infor-

mation for identifiability.

We also believe this statistical framework improves upon the

majority of previous methods used in this area. Previous methods, for

instance, presume there is a “match” for each respective scan in the

data set (i.e., each individual has at least two scans in the pool of avail-

able data) and do not consider false positives. Furthermore, given that

identifiability of an individual decreases as the sample size increases

(Waller et al., 2017), it is important to account for sample size in the

model. Additionally, while many studies show that the identification

test metric for individual identifiability is significantly greater than

would be expected by chance, it is difficult to know how meaningful

this metric is when identification accuracy is in the range of �40–60%

(e.g., (Horien et al., 2019)). Moreover, we were interested in under-

standing how feature selection approaches (e.g., elastic net and SVM)

compare with the original method presented by Finn et al. (2015).

Similar to our approach, SVM was recently applied to better under-

stand genetic similarity in fingerprinting accuracy (Demeter

et al., 2019). Finally, we assured that our statistical procedures were

both replicable and generalizable to a replication data set. We

(a) trained a portion of our data to identify predictive edges (i.e., 75%

of discovery sample, the training data), (b) assessed the performance

of the training set in a test portion of the training data (i.e., 25% of dis-

covery sample, the test data), and (c) determined the generalizability

of our results in an independent replication sample.
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3.6 | A framework for future investigations in
psychiatric research

We also provide a statistical framework that can later be used to

assess the clinical utility of identification accuracy. Viewing identifica-

tion accuracy of rsfMRI scans as a classification problem is useful to

other relevant questions in neuropsychiatric research. To improve

early identification and detection of those at risk for psychiatric disor-

ders, we need to answer questions such as, do people with similar

connectivity profiles share common psychiatric features? Does

reduced accuracy in functional connectome fingerprinting indicate

increased risk for developing a psychiatric disorder? These questions

all fall within the realm of a classification problem, and the framework

we present can be applied to relevant data to answer these questions.

There is work showing that distinct fingerprinting patterns map onto

particular phenotypes or outcomes of interest. While two studies report

that fingerprinting accuracy is reduced in psychiatric samples (Kaufmann

et al., 2017; Kaufmann et al., 2018), these were cross-sectional and relied

upon comparison of already established clinical phenotypes (i.e., level of

fingerprinting accuracy did not determine a future variable of interest). In

the future, it will be important to use a sensitivity-specificity analytic

framework to test our ability to identify sub-groups of individuals, such

as adolescents who eventually go on to develop a psychiatric disorder or

to predict treatment response in a group of patients.

3.7 | Limitations

As with any study, there are limitations in our present design. First, we

split our sample by the median age and identified the two groups as

“youths” and “adults.” This approach could obscure subtle differences

in identification accuracy that occur across adolescent development.

We chose this approach because identification accuracy increases with

smaller sample sizes, and our sample size would be quite small if we

split our sample into more age groups, as we have done in previous

publications. Another approach could be to view age as a continuous

variable; however, this imposes a strong linear assumption, when we

know that development through adolescence is curvilinear in nature as

stability is reached. In the future, examining identification accuracy in

large samples of youth (i.e., the adolescent brain cognitive development

study, (Casey et al., 2018)) in comparison to large samples of adults

(e.g., Human Connectome Project, (Van Essen et al., 2013)) may prove

to be the most fruitful in terms of more fully understanding identifica-

tion accuracy across development. Additionally, although we made all

attempts remove noise in our processing steps (e.g., wavelet despiking

and ICA-Aroma), we did not adjust for physiological noise (e.g., cardiac

and respiratory cycles) in our analyses. Thus, we cannot rule out the

possibility that this source affected our results. Physiological noise

could be obscuring results in our data; it is even possible it could be

generating part of the signal. In the future, it will be important to test

fingerprinting accuracy after regressing out physiological influences or

implementing analytic approaches to account for this noise in the data

(Aslan, Hocke, Schwarz, & Frederick, 2019).

4 | CONCLUSIONS AND FUTURE
DIRECTIONS

In this study, we showed that identification accuracy is high in both

youths and adults at both short (same-day) and extended (1.5 years

apart) periods of time. Importantly, our results suggest that networks

properties have an individualized foundational characterization that is

inherent to individuation, with some room for flexibility in expression.

In the future, we predict that combined use of group- and individual

level data will become the sine qua non for identifying meaningful

relationships between brain and behavior.
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