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Abstract

Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling
lignin content, structure, and other wood properties important to the bioenergy and biomate-
rial industries. A crucial component of this strategy is predicting how single and combinato-
rial knockdowns of monolignol specific gene transcripts influence the abundance of
monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Compu-
tational models have been developed to estimate protein abundances from transcript pertur-
bations of monolignol specific genes. The accuracy of these models, however, is hindered
by their inability to capture indirect regulatory influences on other pathway genes. Here, we
examine the manifestation of these indirect influences on transgenic transcript and protein
abundances, identifying putative indirect regulatory influences that occur when one or more
specific monolignol pathway genes are perturbed. We created a computational model using
sparse maximum likelihood to estimate the resulting monolignol transcript and protein abun-
dances in transgenic Populus trichocarpa based on targeted knockdowns of specific mono-
lignol genes. Using in-silico simulations of this model and root mean square error, we
showed that our model more accurately estimated transcript and protein abundances, in
comparison to previous models, when individual and families of monolignol genes were per-
turbed. We leveraged insight from the inferred network structure obtained from our model to
identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcrip-
tional and/or post-translational regulation. Our model provides a useful computational tool
for exploring the cascaded impact of single and combinatorial modifications of monolignol
specific genes on lignin and other wood properties.
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tation of their abundances is key to understanding how lignin and wood traits are altered.
We developed a computational model to estimate how the abundance of monolignol tran-
scripts and proteins are changed when one or more monolignol genes are knocked down.
Specifying only the abundances of the targeted genes as the input, our model estimates
how the abundances of the untargeted transcripts and proteins are altered. Our model
captures indirect regulatory influences at the transcript and protein levels observed in
experimental data. The model is an important addition to current models of lignin bio-
synthesis. By incorporating our approach into the existing models, we expect to improve
our ability to explore how new combinations of gene knockdowns impact lignin and
many other wood properties.

Introduction

Lignin is an important phenylpropanoid polymer that is embedded with cellulose and hemi-
celluloses in plant secondary cell walls [1, 2]. It plays an important role in plant physiology,
defense, and adaptation by providing structural integrity, conducting water through vascular
tissues, and acting as a barrier to pests and pathogens [1, 3]. Lignin is composed of three main
sub-units, the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monolignols. These mono-
lignols define the composition and interunit linkages that determine other characteristics of
lignin [1, 2, 4]. How these monolignols are formed and synthesized into lignin has been an
important research area for more than five decades [5].

The monolignol biosynthetic pathway is composed of a series of enzymatic reactions,
involving 23 enzymes, that convert phenylalanine into the three monolignols through 24 inter-
mediate metabolites (Fig 1). A key step to controlling lignin phenotypes is by precise manipu-
lation of the monolignol biosynthesis pathway. Genetic modifications are a useful method for
manipulating metabolic pathway behavior. These modifications alter transcript production or
abundance resulting in a change to the amount of proteins available to catalyze key pathway
reactions. It is not always intuitive how genetic modifications propagate through biological
systems culminating in changes to phenotypic traits. Many approaches have been presented to
understand phenotypic changes based on single layers of biological information, such as
GWAS [6, 7] and QTL analysis [8, 9]. However, biological systems regulate themselves through
diverse mechanisms including, transcriptional [10-12] and post-transcriptional [10, 13, 14]
regulation, and post-translational modifications [14-16] among others. By improving our
understanding of the factors that arise when knocking down genes, we can better discern how
metabolic pathway activity and phenotypic responses change in response to knockdowns and
other modifications.

Extensive study of the metabolic reactions associated with monolignol biosynthesis in P. tri-
chocarpa has resulted in a detailed mechanistic computational model of the pathway, com-
posed of 24 ordinary differential equations with 104 Michaelis-Menten and 103 inhibition
kinetic parameters [17, 18]. Wang et al. expanded their mechanistic metabolic model of the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007197  April 10, 2020 2/27


https://doi.org/10.1371/journal.pcbi.1007197

PLOS COMPUTATIONAL BIOLOGY

Cross-regulatory influences between monolignol transcripts and proteins

PtrPAL1-5
cinnamic acid phenylalanine
PtrC4H1&2
v
( N\ PtrC3H3 () PrAIdJOMT2 7 PrCAId5H182 A7) PtrAIdOMT2 Q
J-coumaric aci caffeic acid ferulic acid 5-hydroxy- sinapic acid
ferulic acid
Ptr4CL3&5 Ptr4CL3&5 Ptr4CL38&5 Ptr4CL38&5 Ptr4CL3&5
\ 4 y \ 4 A\ 4
D\ PtHCT1&6 A  PrC3H3 PrHCT1&6  AA\PIrCCoAOMT1-3 /7 PrCCoAOMT1-3
(S L4 ¢
p-coumaroyl-CoA p-coumaroyl caffeoyl caffeoyl-CoA feruloyl-CoA 5-hyqroxy- sinapoyl-CoA
shikimic acid shikimic acid feruloyl-CoA
PtrCCR2 PtrCCR2 PtrCCR2 PtrCCR2 PtrCCR2
\ 4 y N v
Q D\ PrAIdOMT2 = 7\ PtrCAId5H1&2 PtrAIdOMT2 2 )
p-coumaraldehyde caffeylaldehyde coniferaldehyde 5-hydroxy- sinapaldehyde
coniferaldehyde
PtrCAD1&2 PtrCAD1&2 PtrCAD1&2 PtrCAD1&2 PtrCAD18&2

6

p-coumaryl alcohol

v

H-lignin

S\ PHAIOMT2 5\ PHCAISH182 A\ PIAIOMT2 /0
() . (O .

caffeyl alcohol coniferyl alcohol 5-hydroxy sinapyl alcohol
coniferyl alcohol

G-lignin S-lignin

Fig 1. Monolignol biosynthetic pathway in P. trichocarpa.
https://doi.org/10.1371/journal.pcbi.1007197.9001

monolignol pathway to incorporate information spanning the genome, transcriptome, prote-
ome, and 25 lignin and wood traits [4]. This multi-scale model was used to help identify novel
combinatorial genetic modifications that result in desired lignin and wood characteristics such
as increased saccharification efficiency without negatively impacting plant growth. Wang

et al., made the simplifying assumption that the abundance of each protein was dependent
only on the transcript abundance of its monolignol gene. This simplification does not take

into consideration potential epistatic transcriptional, post-transcriptional, or post-translational
regulation mechanisms [12, 15, 16, 19-21] that may explain the sometime poor correlations
between monolignol gene transcripts and proteins in some transgenic P. trichocarpa [4]. The
development of approaches that can more accurately predict how the abundances of intercon-
nected transcripts and proteins change under single and combinatorial transgenic knock-
downs, while also providing insight on the topological structure of these cross-influences,
would greatly improve our ability to predict how metabolic pathways and phenotypic traits
will be altered under these modifications. In addition, these approaches would provide insight
to the regulatory mechanisms responsible for the cross-influences among the transcripts and
proteins. Such approaches would need to leverage available steady-state transcript and protein
abundance data [4] but go beyond traditional inference and gene regulatory network modeling
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approaches such as Bayesian-based [22-24] or nested effect [25, 26] models to enable predic-
tion of both transcript and protein abundances.

In this paper we performed differential abundance analyses on the monolignol gene tran-
script and protein abundances to further characterize epistatic influences on the expression of
the monolignol genes in differentiating xylem tissue of P. trichocarpa. We then used the exper-
imental transcript and protein abundance measurements [4] to develop a model that describes
the indirect relationships between the monolignol genes as transcript to transcript, transcript
to protein, protein to transcript, and protein to protein influences. To accomplish this, we
adapted a modeling framework that is based on a structural equation framework that has been
used to identify relationships between genes by incorporating eQTL information [27, 28].
Through the use of a sparse maximum likelihood (SML) estimator [28], our framework allows
us to identify potential key indirect regulatory influences between the monolignol gene tran-
scripts and proteins that we use to computationally estimate how the monolignol transcripts
and protein abundances change in different transgenic simulations. Our model captures many
of the putative epistatic influences between the monolignol transcripts and proteins by specify-
ing only the abundances of the targeted transcripts as an input.

Through in-silico simulations, we show that our model more accurately estimates mono-
lignol transcript and protein abundances in transgenic plants where individual and families of
monolignol genes were knocked down than a model that does not incorporate such regulatory
influences. We identified and modeled apparent regulatory influences among the PtrCAId5H,
Ptr4CL, PtrPAL, PtrC3H3, PtrC4H, and PtrHCT gene families and among the PtrHCT, Ptr4CL
gene families and PtrCCoAOMT3, which manifest as relationships between protein abun-
dances but not the transcripts. Further, we identified two topological network motifs in our
model that suggest the PtrHCT, Ptr4CL, and PtrCAD families are involved in the post-tran-
scriptional or post-translational regulatory mechanisms, and would be good candidates for
further experiments to identify the specific regulatory mechanisms responsible.

Predicting what transgenic modifications will lead to desired lignin and wood phenotypes
is of current interest in the bioenergy and biomaterial industries among others [29, 30].
Computational models of the monolignol pathway have become an important tool in the past
decade to understanding how changes to the monolignol enzymes result in changes to the
pathway outputs [18, 31-34] and lignin and wood phenotypes [4]. We add to this body of
work by developing a model that incorporates observed influences at both the transcript and
protein levels to estimate how the enzymes in the monolignol biosynthetic pathway are influ-
enced by one or more monolignol gene knockdowns.

Results

Data description

Wang et al. [4] performed a series of systematic transgenic experiments that knocked down 21
of the 23 lignin specific genes and their gene families in the model tree P. trichocarpa. The caf-
feoyl shikimate esterases (PtrCSE1¢+2) (Fig 1) were discovered after the onset of their study
[4], and therefore were not included in their experiments or model. The absolute transcript
abundances were measured using RNAseq, and the absolute protein abundances were
obtained using protein cleavage coupled with isotope dilution mass spectrometry (PC-IDMS)
[35]. Multiple independent lines were grown for each transgenic construct. Up to three of
those lines were selected to show the effects of a range in the level of the targeted knockdown
gene expression. This provided an indication of the complexity of putative interactions as
responses can be linear or nonlinear. For each line, up to three biological replicates were col-
lected after six months of growth, resulting in 207 transgenic measurement profiles and 18
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wildtype measurement profiles. Due to limited greenhouse space, these experiments were
grown in six batches. To account for batch effects on the data, Wang et al. normalized the data
to the wildtype mean in each batch [4]. Additionally, the PC-IDMS approach for quantifying
protein abundance was not able to differentiate between the PtrPAL4 and PtrPAL5 proteins
because of the near identity of these proteins [35]. The transcript and protein abundances for
PtrPAL4 and PtrPALS5 were combined into one, which we refer to as PtrPAL4/5.

Differential abundance analysis

To further examine the influence of targeted knockdowns on other non-targeted genes, we
performed a differential abundance analysis on both the transcripts and protein data. Fig 2
contains heatmaps showing the results for five of the knockdown experiments: construct 169,
which targeted PtrC3H3, PtrC4H1, and PtrC4H?2 (Fig 2A); construct 129, which targeted
PtrCAId5H] and PtrCAIld5H?2 (Fig 2B); construct i35, which targeted PtrCADI and PtrCAD2
(Fig 2C); construct i15, which targeted Ptr4CL3 and Ptr4CL5 (Fig 2D); and construct i21,
which targeted PtrCCoAOMT3 (Fig 2E). Heatmaps for the remaining transgenics can be
found in S1-54 Figs. Each column represents a different line of that experiment, with each line
containing up to 3 replicates. The rows indicate the monolignol specific gene name with the
purple names indicating the gene(s) that were knocked down. The colorscale of these heat-
maps corresponds to the log fold change (logFC) from their wildtype. Red represents a nega-
tive fold change, i.e., a decrease in expression, and green corresponds to a positive fold change
or an increase in expression. Gray boxes represent missing data. Changes in abundance that
had a p-value adjusted for multiple comparisons less than 0.05 are considered statistically sig-
nificant and are indicated with an asterisk.

We see significant changes in abundance in several of the untargeted monolignol genes.
This indicates that there are cross-influences among the targeted monolignol genes impacting
the abundances of untargeted monolignol transcripts and proteins. Collectively examining
the responses of both the monolignol gene transcripts and proteins provides insight to the
regulatory influences between the monolignol genes that would not be detected by just exam-
ining the transcripts. While we observe some instances of the same differential abundance
patterns in the transcripts and proteins, suggesting transcriptional regulation, we also observe
several cases where only a monolignol gene’s transcript or its protein abundance is signifi-
cantly altered. This suggests the presence of post-transcriptional or post-translational
regulation.

In the PtrC3H3, PtrC4H1, and PtrC4H2 knockdown experiments we observe significant
increases in the abundances of the Ptr4CL, PtrHCT, and PtrPAL proteins and significant
decreases in the PtrCAld5H proteins (Fig 2A). However, their corresponding transcript abun-
dances, with the exception of some of the PtrPAL transcripts, are not found to be differentially
expressed. Similarly, in the PtrCAId5H1 and PtrCAIld5H2 knockdown experiments we observe
significant increases in the abundances of the PtrHCT and PtrC3H3 proteins that are not
observed in the transcript data (Fig 2B). In the PtrCADI and PtrCAD2 knockdown experi-
ments (Fig 2C), we observe a decrease in the abundance of both the transcripts and proteins of
PtrCAId5HI and PtrCAId5H2, as well as most of the other monolignol transcripts. Despite
this, many of the proteins are not significantly different from their wildtype levels. This could
be explained by the same behavior as in the PtrCAId5H1 and PtrCAIld5H2 knockdowns and
PtrC3H3, PtrC4H]1, and PtrC4H2 knockdown experiments where we also observed an increase
in several of the protein abundances. The increase we observe in the proteins in those two
knockdowns could lead to wildtype levels in the PtrCADI and PtrCAD2 knockdown experi-
ments because the transcript abundances are significantly decreased. This behavior is seen to a

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007197  April 10, 2020 5/27


https://doi.org/10.1371/journal.pcbi.1007197

PLOS COMPUTATIONAL BIOLOGY Cross-regulatory influences between monolignol transcripts and proteins

Transgenic
Lines
o ® o «®
A SHEE e 2 g B T g 7 T o1 3
[~} <D [~} [~} D [~} - D i =] =3 [
© © e © © © N § N & 14 &
1 1 1 1 ] 1 1 1 1 1 1 1
o [ © @ e [l w0 w0 w0 w0 wn w0
w w [V w w w w w L w w w
12} (2] (2} o0 2] « 2] 2] 1] 1] 2] @
z - z z = z 4 z - - z z
4cL3 | - a3 | - E o 43 | - 4cL3
40L5 o 4CL5 B . 4CLS 4CL5
AIdOMT2 AOMT2 AldOMT2 AOMT2
C3H3 . C3H3 . C3H3 C3H3 .
Targeted
G C4H1 = can1 CaH1 C4H1
enes
CaH2 Catz CaH2 CcaH2
CAD1 CAD1 CAD1 CAD1
CAD2
CAD2 CAD2 e CAD2
1
CAIdSH! CAldsH1 * CAld5H2 1 CAld5H1
i CAld5H2 *
Monolignol CAId5H2 . . CAId5H2
ccR2 CCR2
Genes CCR2 CCR2
CCoAOMT1 CCoAOMT1
CCoAOMT2 CCoOMT! CCoAOMT2 CCoAOMT1
CCoAOMT3 . CCoAOMT2 : CCoAOMT3 CCoAOMT2
Hers CCoAOMTS HCTH CCoAOMT3
HoTs HCT1 P HCTs HETH e
PALY e HCT6 . PAL1 S HCT6 P
PAL2 PAL1 * * PAL2 PAL1
PAL3 . PAL2 . . PAL3 PAL2 .
PAL4 PAL3 * * PAL4 PAL3
PALS PAL45 . . PALS . PAL4S
Transcripts Proteins Transcripts Proteins
~ 2 ~ o o
C T § 7 T 53 D Y 79 E ? 0§ 9 ? % 9
wn 0 o3 wn wn w0 w w w - - - - - -
o ] {3 o ] o = = = o o o [x] o [\
s b b s b b d & & s & 4 s & &
w w w ' w w L w 'Y w w w w w w
[} (7] 0 [%2] (7] (%} [72] (%] (%} (7] (7] (7] (7] (%} (%)
= = = z = = = z = z z z = = z
4013 . 4013 4013 4013 4CL3 scs [ETETEN
4CL5 * * 4CL5 4CL5 4CL5 4CL5 4CL5
AldOMT2 * * * AldOMT2 * * AldOMT2 AldOMT2 AldOMT2 AldOMT2 -
caH3 - . CaH3 | = z 5 CaH3 CaH3 CaH3 CaHs
caHt | x - cann B CaH1 CaH1 C4H1 CaH1 =
CaH2 . caz B C4H2 CaH2 C4H2 C4H2
CADI ﬂ cor [ CAD1 : chot GAD1 cat N |
CAD2 e can2 [NENNEEN i CAD2 . it .
! 1 * Id5H1 Ald5H
ZA"SH F . CAld5H1 . . 2“5 CAldsH1 g|d51 CAldsH1
Ald5H2 . . - Ald5H2 - Ald5H2
S CAldsH2 . . — CAldsH2 CAldSH2
ccR2 - . . ccRz2 . ccr2 .
CCR2 . CCR2 CCR2 .
CCoAOMTY | = . [ CCoAOMT1 coro CCOAOMT1 coro
AOMT1 * * * = AOMT1 AOMT1
CCoAOMT2  «  + = © CCoAOMT2 © CCoAOMT2 ©
CComOMT3  + . . CCoAOMT2 [ CCoAOMT3 . | CCorOMT2 CCoAOMT3 [+ Rl oM
weri B CCoAOMT3 HieTi CCoAOMT3 HCTH CCoAOMTS
vete MR . . HCT1 HCTs HCT1 HCTs HCT1 .
PAL1 . HCTe [ PALI - . HCT8 PAL1 HCTE *
PAL2 - s 5 PAL1 PAL2 -1 PAL1 PAL2 PAL1 .
PAL3 . - - PAL2 PAL3 - PAL2 PAL3 " PAL2
PALA  » - : PAL3 PAL4 PAL3 PAL4 PAL3
PAL5 * * PAL45 * PALS PAL45 PALS PAL45
Transcripts Proteins Transcripts Proteins Transcripts Proteins
Log Fold Change _ _ * padj<0.05
T T T T

-3+ -1 1 3+

Fig 2. Monolignol gene transcript and protein differential abundance. (A) PtrC3H3, PtrC4H1 and PtrC4H2 knockdown experiments (Construct i69). (B)
PtrCAld5H1 and PtrCAld5H2 knockdown experiments (Construct i29). (C) PtrCADI and PtrCAD2 knockdown experiments (Construct i35). (D) Ptr4CL3 and
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https://doi.org/10.1371/journal.pchi.1007197.g002

lesser degree in the experimental line that had the largest decrease in the Ptr4CL3 and Ptr4CL5
transcripts and proteins. Additionally, we do not observe this behavior in the Ptr4CL3 and
Ptr4CL5 knockdown experiments (Fig 2D), suggesting that large knockdowns of the Ptr4CL
gene family may trump other regulatory influences.
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In the Ptr4CL3 and Ptr4CL5 transgenics (Fig 2D), we observe significant decreases in abun-
dance of both the transcripts and proteins of PtrCAId5H] and PtrCAId5H2 and an increase in
the PtrCAD2 abundances across multiple transgenic lines. Significant decreases in abundance
are also observed in the PtrHCT1I, PtrHCT6, and PtrCCoAOMT3 proteins in multiple lines.
Similar behavior is seen in the transgenics that individually knocked down Ptr4CL3 (S4A Fig)
and Ptr4CL5 (S4B Fig), with significant decreases observed in the PtrHCT1, PtrHCTS,
PtrCCoAOMT3, and PtrCADI proteins. The PtrHCT1, PtrHCTS6, Ptr4CL3, and PtrCADI pro-
teins are also significantly decreased in the PtrCCoAOMTS3 transgenics (Fig 2E). There are
multiple transgenics where one line showed significant changes in all or almost all of the
monolignol transcripts and proteins, but not in the other lines for the same transgenic such as
i35-7 (Fig 2C), i15-3 (Fig 2D), i19-7 (S3F Fig), and al3-6 (S4B Fig). This behavior could be due
to a nonlinear response to a change in the abundance of one or more of the monolignol tran-
scripts and proteins.

Some of the observed indirect effects occur within gene families, such as in the PtrPAL
knockdowns (S1A-S1D Fig), the PtrCCoAOMT]I knockdowns (S3C Fig), the PtrCAId5H1 and
PtrCAld5H?2 single knockdowns (S3D and S3E Fig), and in the Ptr4CL3 and Ptr4CL5 single
knockdowns (S4A and S4B Fig). These indirect effects within gene families could be due to
sequence relationships with the targeted gene instead of regulatory mechanisms.

Capturing the effect of these indirect regulatory influences is necessary to effectively esti-
mate the resulting protein levels that are responsible for driving monolignol biosynthesis. Fur-
ther, it is necessary to capture the indirect effects that affect the transcripts and the indirect
effects on the proteins separately.

Computational model

We developed a computational model that describes the observed cross-talk or interactions
among the monolignol genes by representing each monolignol transcript and protein as a lin-
ear combination of the other monolignol transcripts and proteins. This formulation allows us
to describe the indirect cross-influences as transcript to transcript and protein to transcript
influences to represent influences impacting transcription, and transcript to protein and pro-
tein to protein influences to represent the indirect influences affecting the protein abundances.
We estimated the weights of the connections that make up these linear combinations using a
sparse maximum likelihood algorithm and the mean abundances from the experimental lines
(see Methods and S1 Text). Using this model, we simulated the response of the untargeted
monolignol gene transcripts and proteins based on the desired transcript abundance of a tar-
geted monolignol gene or gene family (Fig 3A). We compare our model with the model from
Wang et al. [4] which assumed that all of the protein abundances were proportional to their
transcript levels (Fig 3B). We compare our model to two specific scenarios of this old model:
scenario 1, where the desired targeted transcript levels are specified and the untargeted tran-
scripts remain at wildtype levels, and scenario 2 where the full transcript profile is specified.
We estimate the untargeted monolignol transcript and protein abundances using our model
and both scenarios of the old model for single gene and gene family knockdowns correspond-
ing to the transgenic experiments [4]. When exploring novel combinatorial knockdowns, how-
ever, where complete transcript profiles are unknown, scenario 2 cannot be simulated. We
refer to the transcript of a gene as tGENE and the protein of a gene as pGENE in the following
sections.

We performed a 10x10-fold cross-validation resulting in 100 training and testing folds. The
proposed model and the old model were trained on each of the 100 training folds. For each of
the trained models, the knockdown experiments in the training fold and corresponding testing
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Fig 3. Diagram of transcript-protein models. (A) Diagram describing our model which includes positive (green
arrows) and negative (red arrows) influences among the monolignol transcripts and proteins defined by B (Eq (3)).
Using only targeted input abundances (yellow), the other untargeted monolignol transcripts and proteins are predicted
(red) (B) In the old model only the one-to-one relationships from a monolignol transcript to its protein were included.
In scenario 1, only the targeted monolignol transcripts were used as input abundances (yellow), the untargeted
transcripts remained at wildtype levels (gray) and the protein abundances were predicted (red). In scenario 2, all of the
monolignol transcript abundances were used as input (yellow) to predict (red) the monolignol protein abundances.

https://doi.org/10.1371/journal.pchi.1007197.g003

fold were emulated following the model estimation procedure (see Methods) for our model,
and following scenario 1 for the old model. In each of these emulated experiments, the trained
models estimated the untargeted monolignol gene transcripts and proteins. Fig 4 shows box-
plots of the resulting root mean square errors (RMSE) of the estimated abundances across the
100 training (Fig 4A and 4C) and 100 testing folds (Fig 4B and 4D) for both our proposed
model and the old model (Fig 3A and 3B—scenario 1). We performed a t-test to compare the
distributions of the RMSEs from the new model and the old model for each monolignol tran-
script and protein. The x-axis labels with an asterisk had a significant difference (p <0.05) in
the means of the distributions from the new model (red) and scenario 1 of the old model (yel-
low). The RMSE:s for each transcript and protein were consistent between the testing sets and
training sets (Fig 4), and 14 out of 20 of the transcripts and 11 out of 20 of the proteins in the
testing sets were shown to have a significant difference in their predicted RMSEs (Fig 4B and
4D). In each of the significant cases, the distributions from the new model have a lower mean
predicted RMSE. These cross-validation results show that our model performs as well or better
than the scenario 1 of the old model.

Fig 5A shows a heatmap of the relationships identified in our model (B in Eq 3) when
trained on the means from all of the experimental lines. Green represents a positive influence,
and red represents a negative influence. Each column represents the transcript or protein that
is the source of an influence, and the row represents the transcript or protein that is being
influenced. The top left quadrant contains the transcript to transcript influences, the top right
quadrant contains the protein to transcript influences, the bottom left quadrant contains the
transcript to protein influences, and the bottom right quadrant contains the protein to pro-
tein influences. There were 295 relationships detected out of a possible 1540 (19.16% sparse).
The full set of relationships and their weights for our model can be found in S1 Table. For
comparison, Fig 5B shows the equivalent representation of the old model, which just contains
the t; — p; relationships. As expected, a positive influence was detected for each transcript to
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https://doi.org/10.1371/journal.pcbi.1007197.9004

its associated protein (¢; — p;). The transcript to transcript and protein to protein influences
make up the majority of the remaining influences estimated. There are not many protein to
transcript influences detected, suggesting that protein abundances that are altered due to

post-transcriptional or post-translational mechanisms may not result in changes at the tran-

scriptional level that you would see with a targeted knockdown of that gene. Such as when the
abundance of pCADI is decreased in the PtrCCoAOMT3 (Fig 2E), Ptr4CL3 (S4A Fig), or
Ptr4CL5 (S4B Fig) knockdowns, but the changes in transcript abundance that occur when
PtrCADI is knocked down (Fig 2C, S2C Fig) are not observed.

Through the cross-validation analysis, we showed that our new model is able to improve on
the average estimation over all of the transgenic knockdowns in 14 of the transcripts and 11 of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007197  April 10, 2020

9/27


https://doi.org/10.1371/journal.pcbi.1007197.g004
https://doi.org/10.1371/journal.pcbi.1007197

PLOS COMPUTATIONAL BIOLOGY Cross-regulatory influences between monolignol transcripts and proteins

B (new model) B (old model)
1]

tCCOAQMT:
tCCR:
tAIdOMT
1H8T
tHCT
pPAL
PPAL2
%PALJ
PPAL45 [T
p4GL:
p4GL!
PG3H:
pGaH
pG4H
pGAD
RCAD
pGAId5H
- CAId5H
1 PGCOAOMT.
PGCOAQMT:
- pCCoAQMT:
- | - E. PCCR
. ] PAIdOMT:
Cl - T PRGT i
w —ArFrANOANNTO~NMWO® ANr-ar-NmN—© i
3 IICESRECEIY28S Sr¥cfpagry Protein to R R R T R R R R e e e e
i BIBS330= ronTS <OBSIS=0= tei L]0 0OMITIIBBSSS0S00IIIZ00NIIIIBHSSSOS00
T OS000QR0ET i OZD0000Q0II protein e <TIT00Q0038T 08ZIaaaIIIO00008T O8II
P 2 doad 2Baaaa: agaa TLELFTIIRRREY OO0O0QOIIEEEF T 80090
T t -] <<IIITD [ LI 2T & IIIIITD - coodagILIg 25 22
ranscrip 888 < [S16X-3-3-24 (SIS R-R- -4 Q0333 T
r 300 22000 § 22388 = 22338 S
to protein Qe 2% Qe 82

Fig 5. Heatmaps of the relationships in the transcript-protein models. (A) Heatmap of the edge matrix B (Eq 3) solved using a sparse maximum likelihood
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(19.16% sparse). (B) The corresponding heatmap for the relationships considered in the old model (t; — p;).

https://doi.org/10.1371/journal.pchi.1007197.9005

the proteins. However, we are more interested in looking at the specific transgenics where we
are able to improve our prediction of the untargeted monolignol transcripts and proteins. To
further evaluate how well our model captures these cross-influences affecting the monolignol
transcript and protein abundances, we used our model and scenarios 1 and 2 of the old model
to emulate the five transgenic experiments from our differential abundance analysis. For each
of the five targeted experiments, we further described the results from the models for a subset
of the untargeted monolignol genes that had a significant change in the abundance of their
transcripts, proteins, or both in the differential abundance analysis.

PtrC3H3, PtrC4H1, and PtrC4H2 knockdowns. Three experimental lines were analyzed
where PtrC3H3, PtrC4H]1, and PtrC4H2 were knocked down (Fig 6). From the differential
abundance analysis, 5 transcripts and 11 proteins of the untargeted genes had a significant
change in abundance in at least one of the experimental lines, which are signified by asterisks
(Figs 2A and 6A). We include significant changes that occur in at least one of the lines since
each line represents a different amount of knockdown of the targeted genes. We selected
Ptr4CL5, PtrCAld5H2, and PtrHCT1 transcripts and proteins to compare the simulated results
from our model with scenarios 1 and 2 of the old model. The three targeted transcript abun-
dances ranged from ~110% to ~10% of wildtype levels over the three experimental lines (Fig
6B). These tC3H3, tC4H]1, and tC4H2 abundances were used to emulate these knockdown
experiments in our model and scenario 1 of the old model. For scenario 2 of the old model,
measurements from all of the monolignol transcripts were used.

Our model correctly estimated an increase in the Ptr4CL5 and PtrHCT1I proteins to
~175% and ~ 180% of wildtype levels respectively (Fig 6D and 6H), and a decrease in the
PtrCAId5H?2 protein to ~45% of wildtype levels (Fig 6F). In contrast, neither scenario of the
old model captured these changes in the three proteins. Our new model also correctly esti-
mated a decrease in t4CL5 (Fig 6C) and estimated tHCT1 to remain around wildtype levels
(Fig 6G). It did, however, predict a slight decrease in tCAId5H2 abundance, which was not
observed experimentally (Fig 6E). Note that scenario 1 of the old model assumes all untargeted
transcripts remain at wildtype, while scenario 2 uses all of the experimental transcript
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abundance in at least one of the experimental lines (*). (B) Level of knockdown of the targeted gene transcripts across the experimental lines. Experimental and
estimated untargeted monolignol gene transcript and protein abundances for (C) t4CL5, (D) p4CL5, (E) tCAld5H2, (F) pCAld5H2, (G) tHCT1, and (H) pHCT1.

https://doi.org/10.1371/journal.pchi.1007197.9006

abundances as inputs when predicting the protein abundances. As such, these models are not
able to estimate transcript abundances.

PtrCAld5H]1 and PtrCAld5H2 knockdowns. Three experimental lines were analyzed
where PtrCAId5H]1 and PtrCAld5H2 were knocked down to the values seen in the experimen-
tal constructs (Fig 7). From the differential abundance analysis, there were 3 transcripts and 4
proteins of untargeted genes that showed significant changes in abundance in at least one of
the experimental lines (Figs 2B and 7A). From these, we selected the PtrPAL2, PtrC3H3, and
PtrHCTS6 transcripts and proteins to compare the simulated results from our model with sce-
narios 1 and 2 of the old model. Fig 7B shows the levels of knockdown, ranging from ~ 80% to
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https://doi.org/10.1371/journal.pchi.1007197.9007

~20% of wildtype levels, for each of the three lines for the PtrCAId5H1 and PtrCAId5H2 tran-
scripts. These tCAld5H]1 and tCAld5H2 abundances were used to emulate these knockdown
experiments in our model and scenario 1 of the old model. For scenario 2 of the old model,
measurements from all of the monolignol transcripts were used.

Our model captured the increase from wildtype in all three proteins, pPAL2, pC3H3, and
pHCTS6, up to ~ 185%, ~200%, and ~ 265% of wildtype levels, respectively (Fig 7D, 7F and
7H). Neither scenario of the old model captured the increase in pC3H3 or pHCT6 (Fig 7F and
7H). Scenario 2 of the old model estimated the increase in pPAL2 similar to the estimates from
our model (Fig 7D). Additionally, the estimates from our model were consistent with the
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experimental tC3H3 and tHCT6, which were measured to remain around wildtype levels (Fig
7E and 7G). Our model also correctly estimated an increase in tPAL2 abudance (Fig 7C).

PtrCADI and PtrCAD2 knockdowns. Three experimental lines were analyzed where
PtrCADI and PtrCAD2 were knocked down (Fig 8). From the differential abundance analy-
sis, there were 18 transcripts and 12 proteins of untargeted genes that showed significant
changes in abundance in at least one of the experimental lines (Figs 2C and 8A). We selected
the Ptr4CL3, PtrC4H]1, and PtrCAId5H1 transcripts and proteins to compare the simulated
results from our model with scenarios 1 and 2 of the old model. Fig 8B shows the amount
that tCAD1 and tCAD2 were knocked down in the three experimental lines. For all three of
these lines, tCAD1 was knocked down to ~ 5% of wildtype levels while tCAD2 ranged from
no change from wildtype to ~25% of wildtype. These tCAD1 and tCAD2 abundances were
used to emulate these knockdown experiments in our model and scenario 1 of the old model.
For scenario 2 of the old model, measurements from all of the monolignol transcripts were
used.

In this case, scenario 2 of the old model did the best at estimating all three of the proteins
(Fig 8D, 8F and 8H) because the decrease was captured in the transcript abundances. However,
our model still captured the decrease from wildtype in both the transcripts and proteins (Fig
8C-8H) despite only using the PtrCADI and PtrCAD?2 transcript abundances as inputs to the
model. The estimates from our model for the transcripts and proteins are very similar across
the three experimental lines. This is due to the sparse maximum likelihood algorithm identify-
ing PtrCAD1, which was knocked down similarly for all three lines, as a stronger influence on
the other transcripts and proteins than PtrCAD2.

Ptr4CL3 and Ptr4CL5 knockdowns. Three experimental lines were analyzed where
Ptr4CL3 and Ptr4CL5 were knocked down (Fig 9). The differential abundance analysis identi-
fied 18 transcripts and 18 proteins of untargeted monolignol genes that showed significant
changes in abundance in at least one of the experimental lines (Figs 2D and 9A). We selected
the PtrCAld5H2, PtrCCoAOMT3, and PtrHCT1 transcripts and proteins to compare the simu-
lated results from our model with scenarios 1 and 2 of the old model. Fig 9B shows the differ-
ent levels that t4CL3 and t4CL5 were knocked down for the three experimental lines. For all
three of the lines, the transcripts were knocked down to around the same levels, ~5%-10% of
wildtype levels. These t4CL3 and t4CL5 abundances were used to emulate these knockdown
experiments in our model and scenario 1 of the old model. For scenario 2 of the old model,
measurements from all of the monolignol transcripts were used.

For all three of the proteins, our model correctly estimated a decrease from their wildtype
abundances. Our model predicted a decrease down to ~ 55% of wildtype for pCAId5H2 and
pCCoAOMTS3 (Fig 9D and 9F) and to ~40% of wildtype levels for pHCT1 (Fig 9H). Scenario
2 of the old model did a better job of capturing the decrease in pCAId5H2 estimating a
decrease ranging from ~40% to ~ 10% wildtype levels (Fig 9D), but only estimated a
decrease in the third line for both pCCoAOMT?3 and pHCT1 (Fig 9F and 9H). Our model
also captured the decrease in tCAId5H2 (Fig 9C), and its estimates for tCCoAOMT3 and
tHCT1 (Fig 9E and 9G) are reasonable considering the range of the measured abundances
across the three lines.

PtrCCoAOMT3 knockdowns. Three experimental lines were analyzed where
PtrCCoAOMT3 was knocked down (Fig 10). The differential abundance analysis identified 3
transcripts and 16 proteins of untargeted monolignol genes that had significant changes in
abundance in at least one of the experimental lines (Figs 2E and 10A). We selected the
Ptr4CL3, PtrCADI, and PtrHCT1 transcripts and proteins to compare the simulated results
from our model with scenarios 1 and 2 of the old model. Fig 10B shows the range that
tCCoAOMT3 was knocked down over the 3 experimental lines. In the first line, 21-03,
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Fig 8. Experimental and estimated abundances of untargeted monolignol gene transcripts and proteins under PtrCADI and PtrCAD2 knockdowns. (A)
Diagram showing targeted monolignol gene transcripts (purple), the transcripts and proteins that were found to have a significant change in abundance in at least
one of the experimental lines (*). (B) Level of knockdown of the targeted gene transcripts across the experimental lines. Experimental and estimated untargeted
monolignol gene transcript and protein abundances for (C) t4CL3, (D) p4CL3, (E) tC4H1, (F) pC4H1, (G) tCAld5H1, and (H) pCAId5HI.

https://doi.org/10.1371/journal.pchi.1007197.9008

tCCoAOMT3 was not knocked down from wildtype. In the other two lines it was knocked
down to ~20% of wildtype levels. These tCCoAOMT3 abundances were used to emulate
these knockdown experiments in our model and scenario 1 of the old model. For scenario 2 of
the old model, measurements from all of the monolignol transcripts were used.

Neither our model, nor the old model, did a good job at estimating the experimentally
observed changes for the Ptr4CL3 and PtrHCT1 transcripts and proteins (Fig 10C, 10D, 10G
and 10H). However, our model did do a better job of capture the decrease in pCAD1, estimat-
ing a decrease to ~ 55% wildtype levels in two of the three lines (Fig 10F).
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Fig 9. Experimental and estimated abundances of untargeted monolignol gene transcripts and proteins under Ptr4CL3 and Ptr4CL5 knockdowns. (A)
Diagram showing targeted monolignol gene transcripts (purple), the transcripts and proteins that were found to have a significant change in abundance in at least
one of the experimental lines (*). (B) Level of knockdown of the targeted gene transcripts across the experimental lines. Experimental and estimated untargeted
monolignol gene transcript and protein abundances for (C) tCAld5H2, (D) pCAld5H2, (E) tCCoAOMTS3, (F) pPCCoAOMT3, (G) tHCT1, and (H) pHCT1.

https://doi.org/10.1371/journal.pcbi.1007197.g009

Analysis of network topology

We further examined the specific connections identified in B from Eq 3, by identifying the
edges that contribute most to changing a transcript or protein abundance from its wildtype
abundance. For each transcript and protein, we identified the transgenic constructs where (1)
our model correctly estimated the results within a certain tolerance, and (2) the transcript or
protein was differentially expressed in at least one of the experimental lines (Fig 2, S1-54 Figs).
We then computed the difference between the contribution of each relationship in a wildtype
simulation and in the transgenic simulation. The edges that did not contribute at least +50% of
the net change were removed. After this filtering, 159 of the original 295 edges remained to
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Fig 10. Experimental and estimated abundances of untargeted monolignol gene transcripts and proteins under PtrCCoAOMT3 knockdowns. (A) Diagram
showing targeted monolignol gene transcripts (purple), the transcripts and proteins that were found to have a significant change in abundance in at least one of the
experimental lines (*). (B) Level of knockdown of the targeted gene transcripts across the experimental lines. Experimental and estimated untargeted monolignol
gene transcript and protein abundances for (C) t4CL3, (D) p4CL3, (E) tCAD1, (F) pCAD1, (G) tHCT1, and (H) pHCT1.

https://doi.org/10.1371/journal.pchi.1007197.9g010

make up a network of the influences that contributed most to a transcript or proteins change
from wildtype abundance.

In this network, the transcripts were generally the source of more edges than the target,
with several transcripts only having outgoing edges (Fig 11A, tC3H3, tCAD2, tCAld5H], tAl-
dOMT?2, and tHCTS6). This suggests that these transcripts are less likely to be altered in trans-
genics where they were not the target. The median out-degree of the transcripts was 4 edges
and the median in-degree was 1.5 edges. The PtrPAL, Ptr4CL, PtrCCR2, and PtrHCT1 tran-
scripts had the most incoming edges of all the transcripts, with most of their edges coming
from other transcripts (Fig 11A). The outgoing edges for the transcripts were split almost
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Fig 11. In-degrees and Out-degrees for the monolignol transcripts and proteins. (A) Transcripts. (B) Proteins. Dark blue—Edges originating from a transcript;
Light blue—Edges originating from a protein; Dark Orange: Edges going to a transcript; Light orange—Edges going to a protein.

https://doi.org/10.1371/journal.pcbi.1007197.g011

evenly to edges going to transcripts and edges going to proteins, indicating that changing tran-
script abundances results in altering both other transcript abundances and some protein abun-
dances separately of their associated transcript.

The proteins (Fig 11B) were generally the target of more edges than the source with a
median in-degree of 4 edges and a median out-degree of 3 edges. The proteins were influenced
about equally by transcripts ( ~52% of incoming edges) and other proteins (~48% of incom-
ing edges), but had more edges influencing other proteins (~ 73% of outgoing edges) than
transcripts (~27% of outgoing edges).

The PtrPAL family had more incoming edges impacting their transcript abundances than
their protein abundances, suggesting that they were mostly influenced at the transcriptional
level. The PtrC3H3, PtrC4H, PtrCAD, PtrCAld5H, and PtrCCoAOMT families had more
incoming edges impacting their protein abundances, suggesting that they may be more likely
to be influenced post-transcriptionally or post-translationally. This follows our results from
the differential abundance analysis where changes in the abundance of these proteins did not
always track with changes in their transcript abundance (Fig 2). The Ptr4CL and PtrHCT fami-
lies had incoming edges impacting both their transcripts and proteins, indicating that they are
impacted at both transcription and after transcription.

We identified two network motifs that suggested possible post-transcriptional or post-
translational regulatory influence. We define these motifs as Motif 1 and Motif 2. Motif 1
occurs when the transcript/protein pair of gene A affect the transcript (or protein) of gene B,
and the influence of the transcript is opposite of the influence of the protein (Fig 12A). Motif 2
occurs when the transcript (or protein) from gene A influences both the transcript and protein
of gene B, but the influence on transcript B by gene A is opposite the influence on protein B
(Fig 12B). In Motif 1, when both the transcript and protein of gene A show a change in abun-
dance, their influences combine to have little or no change on the abundance of the influenced
transcript (or protein) B. Only when either the abundance of transcript A or the abundance of
protein A are independently altered, such as from post-transcriptional or post-translational
regulation, would there be a net change on the transcript (or protein) B. Similarly in Motif 2, a
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change in abundance of transcript (or protein) A results in a change in the abundance of tran-
script B but either no change, or a change in the opposite direction, in protein B. There were 8
instances of Motif 1 in our network (Fig 12C) and 5 instances of Motif 2 (Fig 12D).

Thirteen of the monolignol genes are represented at least once in these motifs, with the
PtrHCT, PtrCAD, and Ptr4CL gene families being the most represented (Table 1). PtrHCT1I is
a source in all four of the motifs it is a member of, while PtrCAD1, Ptr4CL5, and PtrHCTG6 act
as both sources and targets. This suggests that these three gene families are potential targets for
further experimentation to elucidate the post-transcriptional and post-translational regulatory
mechanisms at work.

Discussion

We used the connections identified by the sparse maximum likelihood estimator to define our
new transcript-protein model for monolignol biosynthesis. Using this model, we emulated the
225 wildtype and transgenic knockdown experiments using only the measured transcript
abundances from the targeted monolignol genes as an input and estimating the abundances of
the other, untargeted, transcripts and proteins. We compared these estimates to those found
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using the old model [4], which assumes the protein abundances are linearly proportional to
the transcript abundance of the same monolignol gene. We performed a 10x10-fold cross-vali-
dation and compared the resulting RMSE distributions from the old model and our new
model. The mean predicted RMSEs for 14 of the 20 transcripts and 11 of the 20 proteins were
found to be statistically lower in our new model than the old model.

We simulated the transgenic experiments using our model and scenarios 1 and 2 of the old
model, and compared the estimated transcript and protein abundances of selected untargeted
genes of interest. As expected, scenario 2 of the old model, which uses the full transcript abun-
dance profiles, did the best at estimating the proteins whose abundance levels tracked the
abundance levels of its transcripts, such as Ptr4CL3, PtrC4H]1, and PtrCAld5H]1 in the PtrCAD]I
and PtrCAD2 knockdown experiments (Fig 8C-8H), and PtrCAId5H2 in the Ptr4CL3 and
Ptr4CL5 knockdowns (Fig 9C and 9D). However, using only the targeted PtrCAD1 and
PtrCAD?2 or Ptr4CL3 and Ptr4CL5 transcripts respectively, our model was still able to estimate
the decreases in both the transcripts and proteins for all four of these genes. Additionally, our
model was able to capture several changes in protein abundances that the old model was not,
including Ptr4CL5, PtrCAId5H2, and PtrHCT1 in the PtrC3H3, PtrC4H1, and PtrC4H2 knock-
downs; PtrC3H3 and PtrHCTG6 in the PtrCAId5H1 and PtrCAld5H2 knockdowns; and
PtrCCoAOMT3 and PtrHCT1 in the Ptr4CL3 and Ptr4CL5 knockdowns.

Neither model was able to estimate the changes in abundance of the Ptr4CL3 and PtrHCT1
proteins in the PtrCCoAOMT3 transgenics. Our model includes relationships from
pCCoAOMTS3 to p4CL3 and pHCT1. Despite this, our model does not capture the size of the
decrease in the abundances of these proteins. One explanation for why the extent of these reg-
ulatory influences are not captured in our simulations could be due to constraining the regula-
tory influences to additive linear relationships. Some of the shortcomings of an additive linear
model include not allowing for nonlinear relationships and not being able to capture synergis-
tic influence behaviors (i.e., when multiple components are needed to see an effect).

In our differential abundance analysis, we observed several instances of differential expres-
sion in untargeted transcripts and proteins. The PtrCADI and PtrCAD?2 transgenics (Fig 2C)
showed several changes in the untargeted monolignol transcript abundances and protein
abundances across all three experimental lines. In our analysis of the network topology, we
found that the PtrCADI transcript is the source of several influences, especially to other tran-
scripts (Fig 11A). These results suggest that knocking down PtrCADI and PtrCAD?2 sets off a
transcriptional regulatory response. Chen et al., recently constructed a hierarchical transcrip-
tional regulatory network for wood formation in P. trichocarpa, identifying 7 transcription fac-
tors regulating 10 of the monolignol specific genes [12]. Most of these transcription factors
were also found to be differentially expressed in the PtrCADI1 and PtrCAD2 transgenics (S5
Fig), further supporting that the cross-influences impacting the abundances of these tran-
scripts are occurring through transcriptional regulation.

In addition to changes in transcript abundance, we also observed several cases where
monolignol protein abundances were significantly altered when their transcripts were not (Fig
2, S1-54 Figs), suggesting the presence of post-transcriptional or post-translational regulation.
In our network topology analysis, ~73% of the edges originating from a protein influenced
another protein (Fig 11B), indicating that a change in the abundance of a protein is more likely
to impact the abundance of another protein without influencing the abundance of the associ-
ated transcript. Further, 13 of the monolignol genes were either a source, target, or both in the
two motifs that represent potential post-transcriptional or post-translational relationships (Fig
12). Compared to transcriptional regulation, less is known about the role of post-transcrip-
tional and post-translational regulation in monolignol biosynthesis. Phosphorylation of the
PtrPAL protein was proposed over two decades ago, though the role of this phosphorylation is
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unknown [36, 37]. Wang et al., [15] characterized the phosphorylation of the PtrAIdOMT2
protein in P. trichocarpa, finding it to impact its activity but not abundance. Loziuk et al.,
recently identified 12 monolignol proteins in P. trichocarpa that contain sequence motifs for
glycosylation, a post-translational modification that can impact protein abundance levels [16].
Six of the genes they identified are represented at least once in the two network motifs from
our model (PtrHCT1, Ptr4CL3, PtrCCR2, PtrPAL4, PtrPAL5, and PtrC3H3), and the other

six genes have a family member represented in the motifs. The PtrHCT, PtrCAD, and Ptr4CL
families were the most involved in the topological network motifs (Table 1), and were also rep-
resented in the genes containing a glycosylation motif [16]. We believe that these three mono-
lignol gene families are good starting points for further experimentation to explore and
identify the post-transcriptional or post-translational regulatory mechanisms responsible for
the observed differential abundance behavior.

The monolignol proteins are the driving forces in the biosynthesis pathway. Being able to
accurately understand and estimate how these proteins change under different combinations
and degrees of targeted genetic modifications is important for the accuracy of predictive mod-
els. Regulatory influences that occur after transcription appear in the monolignol data of stem
differentiated xylem tissue in P. trichocarpa, and we have developed a computational model
that incorporates influences on both the monolignol transcripts and proteins. We have dem-
onstrated specific examples where our model produces better estimates of experimental mono-
lignol gene proteins than the old model when both models use only the targeted monolignol
transcript abundances as input. In several cases our model, using only the targeted transcript
abundances, produced better estimates than scenario 2 of the old model where all of the exper-
imental transcript abundances were used. By incorporating these indirect regulatory influ-
ences, we believe our model has improved ability to explore the cascaded impact of genetic
modifications on resulting lignin and wood characteristics. Additionally, we identified three
gene families, PtrHCT, PtrCAD, and Ptr4CL that appear to be most involved in the post-tran-
scriptional or post-translational influences, which could be further experimentally examined
to elucidate the specific regulatory mechanisms responsible for the observed behavior.

The approach presented provides a phenological representation for predicting the tran-
script and protein abundances resulting from specific knockdowns of monolignol genes. This
approach does not, however, capture nested causal relationships that are inherent to complex
gene regulatory networks. Using this approach we were able to predict the impact of cross-
influences between transcripts and proteins. Additionally, the results from the topological
analysis provide insight into potential candidates for future experiments aimed at elucidating
the specific regulatory mechanisms responsible for the observed cross-influences. Future work
will evaluate how our model performs on independent data, incorporate the model into the
multi-scale model in [4], and use the multi-scale model to explore the possible changes in lig-
nin and wood characteristics under combinations of lignin gene modifications.

Methods

Monolignol transcript-protein model

The multi-scale lignin biosynthesis model presented in [4] spans multiple biological layers
from the genome to observed lignin and wood physical and chemical traits. However, that
model [4] makes the simplifying assumption that each monolignol gene’s protein abundance
is dependent only on its transcript abundance. This does not reflect any changes that are
observed in the abundance of the non-targeted genes. Here, we present a new model that
incorporates the observed influences that estimate the production of untargeted monoligninol
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transcripts and proteins. The code associated with this model can be found at https://github.
com/leighmatth/Monolignol-Cross-Regulation-Model.

Because we are interested in identifying regulatory influences at not only the transcriptional
level, but also the translational level, we combined the two datasets, such that we are now look-
ing at each of the 20 transcripts and 20 proteins as 40 total variables in our model.

Model development. The goal of the model development is to find the underlying influ-
ences on each monolignol gene product (its transcripts and proteins) when the expression of
other monoligninol genes are modified. We describe each transcript and protein as a linear
combination of the other transcripts and proteins as shown in Eq (1).

Yi=#+ By +--+ By, + -+ Byyyte ViFi (1)

Where y; is the abundance of the i gene product, and we have M total gene products (% tran-

scripts and % proteins). Bj; is a constant term that reflects the influence of gene product j on
gene product i, y; is a constant that represents the portion of y; that is not described by the
other lignin gene products, and e is the error. The influences described by B;; should be consis-
tent across multiple experiments, so we can describe Eq (1) over a collection of experiments as
shown in Eq (2).

Yz‘T:nuilT+BiIY{+.“+Bijyj‘T+'“+BiMY;4+€T Vj;ﬁi (2)

Where y; € RV is the abundances of i gene product over N experiments. We can combine
this into one model for all the transcripts and proteins as shown in Eq (3).

Y=BY+pul"+E, st.B,=0Vi (3)

WhereY =

] € RMN is a matrix composed of the abundances for the & transcripts (T)

RMM ig the collection of

and associated & proteins (P) for each of the N experiments. B €
influence terms B;;. Because each y; is a function of the other gene products y; Vj # i, the diago-
nal elements of B, B;; = 0 Vi. Additionally, we also enforce a constraint that a transcript cannot
be influenced by its associated protein (p; » ;). y € RM is a vector containing a constant term
for each gene product, and 1 € R" is a vector of all ones. E = [€, €, - - - €, ] represents the error
where €, ~ (0, ¢°I) and is considered independent and identically distributed.

We used a sparse maximum likelihood (SML) estimator [28] adjusted for our model and
data structure (S1 Text) to solve for B and g. SML adds an ¢;-norm regularization term to the
maximum likelihood, encouraging elements of B to be zero if they are not sufficiently useful to
describing Y. A coordinate-ascent algorithm is used, allowing us to solve for the influences
defined in B and g on a row-by-row basis as described in Eq (2). This allows us to control
which experiments are used to solve for the "™ row of B and g, b and y; respectively. This is
important because we do not want to include the experiments where component i was tar-
geted. In those experiments, an outside influence that is not included in the model is impacting
its abundance. Only transcripts were considered to be targets at this stage, as those are what is
directly modified in the knockdown experiments. See S1 Text for more details on the model
development and SML approach.

Estimating monolignol transcripts and proteins. We can use the influences B and y
solved for in the model development stage and Eq (4) to estimate how knocking down a single
or combination of monolignol genes alters the abundances of the untargeted monolignol
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transcripts and proteins.
yPred = (I - KlargB)il(Klarg” + Xtarg)' (4)

We set the abundance of our targeted components to the desired knocked down amount
using the vector Xy, € RM, and remove the model influences that would alter these set abun-
arg € RYM. Where X = Sictarg x/€; and K L= €6l - e s the ith

unit vector. This configuration allows us to set the targeted monolignol gene components to a

dances using K; rg =
desired value while keeping the relationships that influence the untargeted monolignol tran-
scripts and proteins.

A drawback of using the additive linear model to describe both the monolignol tran-
scripts and proteins, is that a complete knockout of a targeted transcript may not result in
our model estimating its protein to be completely knocked out as well. This presents an
issue if the goal is to examine the impact of complete knockouts of targeted monolignol
genes. To get around this issue, we assume that the targeted change in a transcript results in
a proportional change to its protein abundance. For example, if we want to see what hap-
pens when we knock transcript 1, t; down to 10% of its wildtype abundance, then xf;rg =
[0.1-#* 0 --- 01-pt 0O --- OJandK_ =I—eel —e

eT
targ 1+M/2%1+M /2"

Differential abundance analysis

We performed the differential abundance analysis for the monolignol gene transcripts [4]
using the R package DESeq2 [38] for each batch individually using the RNA-seq libraries avail-
able under GEO accession number GSE78953. The proteomics data [4] was log2 transformed
and the limma package [39, 40] was used for each batch to identify significant differential
abundance [41]. The proteomics data set is available on CyVerse (http://mirrors.
iplantcollaborative.org/browse/iplant/home/shared/LigninSystesmDB).

Missing data imputation

In the proteomics data set, 83 out of the 4500 proteins measured (1.8%) could not be quanti-
fied. We employed a series of rules to estimate these missing values: 1) If the protein was suc-
cessfully measured for at least one other replicate in the same line, then the missing value was
replaced with the average abundance of the protein from the other replicates of that line. This
accounted for 42 of the missing values. 2) If a protein was not quantified for all replicates of an
experimental line, then 2a) if the missing value is for a protein associated with the monolignol
gene targeted for knockdown, we replaced the missing value with the fraction of its average
wildtype abundance that its associated transcript was knocked down. For example, if the asso-
ciated transcript was knocked down to 10% of its average wildtype value, then the missing pro-
tein value was replaced with 10% of its average wildtype value. This accounted for 30 of the
missing values. 2b) The remaining missing values were replaced with the average wildtype
value of that protein. This accounted for 11 of the missing values.

Supporting information

S1 Text. Supporting information.
(PDF)

S1 Fig. Monolignol gene transcript and protein differential abundance (cont.). (A) PtrPALI
knockdown experiments (Construct al). (B) PtrPAL2, PtrPAL4, and PtrPAL5 knockdown
experiments (Construct i7). (C) PtrPAL4 knockdown experiments (Construct a3).
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(D) PtrPAL5 knockdown experiments (Construct a4). (E) PtrPAL2 knockdown experiments
(Construct a5). (F) PtrPALI and PtrPAL3 knockdown experiments (Construct i6). Gray boxes
are due to missing data. Rows are the monolignol gene names, with the targeted genes for each
experiment in purple. Columns are the experimental lines. * indicates p,q;<0.05.

(TIF)

S2 Fig. Monolignol gene transcript and protein differential abundance (cont.).

(A) PtrPALI-PtrPALS5 knockdown experiments (Construct i8). (B) PtrC3H3 knockdown
experiments (Construct i20). (C) PtrCADI knockdown experiments (Construct i33). (D)
PtrC4H2 knockdown experiments (Construct a9). (E) PtrC4H1 knockdown experiments
(Construct a10). (F) PtrCCR2 knockdown experiments (Construct i26). Gray boxes are due to
missing data. Rows are the monolignol gene names, with the targeted genes for each experi-
ment in purple. Columns are the experimental lines. * indicates p,q;<0.05.

(TIF)

S3 Fig. Monolignol gene transcript and protein differential abundance (cont.).

(A) PtrHCT1 knockdown experiments (Construct al7). (B) PtrHCT6 knockdown experi-
ments (Construct al8). (C) PtrCCoAOMT1 knockdown experiments (Construct a22). (D)
PtrCAIld5H1 knockdown experiments (Construct a27). (E) PtrCAld5H2 knockdown experi-
ments (Construct a28). (F) PtrHCTI and PtrHCT6 knockdown experiments (Construct i19).
Gray boxes are due to missing data. Rows are the monolignol gene names, with the targeted
genes for each experiment in purple. Columns are the experimental lines. * indicates
Padj<0.05.

(TIF)

$4 Fig. Monolignol gene transcript and protein differential abundance (cont.). (A) Ptr4CL3
knockdown experiments (Construct al2). (B) Ptr4CL5 knockdown experiments (Construct
al3). (C) PtrCCoAOMT1 and PtrCCoAOMT?2 knockdown experiments (Construct i24). (D)
PtrAldOMT2 knockdown experiments (Construct i30). Gray boxes are due to missing data.
Rows are the monolignol gene names, with the targeted genes for each experiment in purple.
Columns are the experimental lines. * indicates p,q;<0.05.

(TTF)

S5 Fig. Transcription factor expression in PtrCADI and PtrCAD2 knockdowns. Rows are
the TFs identified in [12] that regulate the monolignol genes. Columns are the experimental
lines. * indicates p,4;<0.05.

(PDF)

S1 Table. Table of relationships identified using SML approach.
(CSV)
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