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Abstract
Background Testing and treating symptomatic malaria cases is crucial for case management, but it may also prevent 
future illness by reducing mean infection duration. Measuring the impact of effective treatment on burden and 
transmission via field studies or routine surveillance systems is difficult and potentially unethical. This project uses 
mathematical modeling to explore how increasing treatment of symptomatic cases impacts malaria prevalence and 
incidence.

Methods Leveraging the OpenMalaria stochastic agent-based transmission model, we first simulated an array of 
transmission intensities with baseline effective treatment coverages of 28%, 44%, and 54% incorporated to reflect 
the 2023 coverage distribution across Africa, as estimated by the Malaria Atlas Project. We assessed the impact of 
increasing coverage to as high as 60%, the highest 2023 estimate on the continent. Subsequently, we performed 
simulations resembling the specific subnational endemicities of Kenya, Mozambique, and Benin, using the Malaria 
Atlas Project estimates of intervention coverages to reproduce historical subnational prevalence. We estimated the 
impact of increasing effective treatment coverage in these example settings in terms of prevalence reduction and 
clinical cases averted in children under 5 years old and the total population.

Results The most significant prevalence reduction – up to 50% – was observed in young children from lower 
transmission settings (prevalence below 0.2), alongside a 35% reduction in incidence, when increasing effective 
treatment from 28% to 60%. A nonlinear relationship between baseline transmission intensity and the impact 
of treatment was observed. Increasing effective treatment coverage to 60% reduced the risk in high-risk areas 
(prevalence in children under 5 years old > 0.3), affecting 39% of young children in Benin and 20% in Mozambique 
previously living in those areas. In Kenya where most of the population lives in areas with prevalence below 0.15, and 
case management is fairly high (53.9%), 0.39% of children were estimated to transition to lower-risk areas.
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Background
Malaria remains a leading cause of morbidity and mor-
tality globally, and although several countries recently 
reached elimination [1] or are close to elimination [2], 
malaria endemicity remains a challenge across the globe. 
The African continent bears the greatest malaria burden 
with 93.6% of the world’s total cases in 2022, and with 
an estimated incidence of 222.6 per 1000 population at 
risk [3]. The highest burden remains in children under 5 
years old, with 78.1% of malaria deaths in Africa occur-
ring in that age group [3]. Many interventions have been 
designed and implemented to reduce malaria burden and 
transmission, including tools focusing on reducing the 
mosquito population, preventing the vector-host inter-
actions, and preventing or treating human infections [3]. 
Routine malaria case management, consisting of early 
diagnosis and treatment of malaria, is an essential com-
ponent of malaria control [4]. Three-day artemisinin-
combination therapies (ACTs) are the recommended 
first-line treatment for uncomplicated malaria [4]. Even 
though the drug efficacies are high [5, 6], many are 
unable to access them due to health system gaps, and 
effectiveness may be reduced by lack of compliance or 
non-adherence [7].

The overall health system performance for malaria 
case management in a given place can be quantified 
with the metric of effective treatment coverage. Effec-
tive treatment coverage accounts for the various com-
ponents within the cascade of care, including access to 
care from a formal or informal provider, the availability 
of and provider’s compliance to recommended treat-
ment, the patient’s adherence to treatment regimen, and 
the drug’s cure rate, which depends on the drug’s efficacy 
and possible parasite resistance [7]. Across African coun-
tries, the latest estimates of effective treatment coverage 
range from 6 to 61%, with on average 60% of the popu-
lation without effective access to care across the malaria 
endemic African regions  [8], showing both the wide 
heterogeneity between countries and the potential for 
improvement in many countries.

P. falciparum malaria infections are defined by their 
chronic nature, with untreated infections capable of last-
ing several months [9]. As such, treating symptomatic 
malaria cases is expected to reduce disease incidence 
and mortality. Additionally, by clearing the infection 
shortly after symptom onset and thus drastically short-
ening the length of infection, it might have the added 
benefit of reducing the overall transmission potential in 

the population. Measuring the effect of treating symp-
tomatic infections in a classical trial which includes an 
untreated control group is impossible for obvious ethical 
reasons. And because national malaria control programs 
in endemic countries rarely provide case management 
services in isolation, estimating the effect of case man-
agement on burden and transmission via clinical trial or 
routine surveillance systems is a challenge.

Mathematical modelling of disease transmission has 
become an essential tool to investigate complex disease 
dynamics [10, 11] not measurable in real life. Models are 
often used to investigate the impact of novel interven-
tions or intervention scenarios on disease burden and 
transmission. In the context of P. falciparum, for exam-
ple, modeling studies have estimated the public health 
impact of RTS, S/AS01 immunization strategies across 
Sub-Saharan Africa [12], the impact of mass drug admin-
istration on transmission in settings close to elimination 
[13], the role of case management in controlling imported 
infection [14], the importance of improved diagnostics in 
mass screen and treat strategies [15], or the effect of mass 
distribution of bednets on transmission [16]. In parallel 
to the development and use of malaria disease models, 
statistical methods to estimate essential parameters to 
calibrate simulations to country-like settings have been 
developed, and publicly available databases are continu-
ously updated. These include global demographic esti-
mates from WorldPop [17] and global malaria prevalence 
estimate as well as malaria intervention coverages from 
the Malaria Atlas Project [18].

To overcome the complexities in assessing routine 
case management impact on transmission in the field, 
we use mathematical modelling of malaria transmission 
to investigate the potential impact of increasing effective 
treatment coverage across a range of endemic settings.

Methods
OpenMalaria model
This study uses OpenMalaria (version 44), an agent-
based model of malaria transmission, detailed in [19, 
20]. Briefly, it combines a deterministic, periodically-
forced difference equation model of the vector life-cycle 
[21] – where new mosquitos emerge from water bodies, 
actively search for blood meals, encounter and feed on 
different types of hosts, search for a resting place, and 
lay eggs before seeking for new hosts [22] – with an indi-
vidual based model of P. falciparum parasite population 
in humans, updated in a 5-day time step [19]. Infection 

Conclusions Improving case management directly reduces the burden of illness, but these results suggest it also 
reduces transmission, especially for young children. With vector control interventions, enhancing case management 
can be an important tool for reducing transmission intensity over time.
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of humans depends on the age specific entomological 
inoculation rate (EIR), and accounts for a decreased suc-
cess of inoculation with increased EIR due to innate 
and acquired immunity [23]. Asexual blood-stage infec-
tions were calibrated using historical data from patients 
infected with P. falciparum as treatment for neuro-
syphilis, which show large variation of infection lengths 
(median 205 days, minimum and maximum 37 and 405 
days) [24] and are characterized by stochastic variation in 
infection duration and parasite densities, with a general 
decrease in parasitemia over time of infection, and inter-
individual variation [25]. Acquired asexual immunity act 
on parasite densities and results from cumulative density 
of asexual parasites (since birth), the cumulative number 
of prior infections that the host experienced, and mater-
nal immunity in babies [23, 26]. Infectiousness to a feed-
ing mosquito depend on parasite densities 10, 15 and 20 
days previously, allowing time for gametocytes to develop 
and circulate, and the probability that at least one male 
and one female gametocyte is taken up in the blood meal 
[27]. A pathogenesis model is used to estimate incidence 
of uncomplicated and severe cases of malaria, with the 
probability of acute morbidity dependent on the asexual 
density and a pyrogenic threshold, the latter increas-
ing with the host’s past exposure as an implicit result of 
immune response. Severe malaria results from high para-
site load [28, 29].The probability that an uncomplicated 
malaria case is successfully treated equals the effective 
access to treatment estimate. If a case is treated, asexual 
parasites are cleared in the next time step (5 days), with 
no additional prophylactic effect and without explicitly 
defining the type of drug nor its efficacy profile.

Simulation fits of key indicators can be found in the 
initial publications (collected in the supplement to the 
American Journal of Tropical Medicine and Hygiene, 
Volume 75: Issue 2 supplement). In particular, plots of 
calibrations with data across multiple African sites are 
shown for age-specific indicators for prevalence [23, 26, 
29], incidence [23, 29], severe incidence and severe inci-
dence-prevalence curves [28], and parasite density [26, 
29]. Relationships between body surface area and mos-
quito biting rates, as well as incidence-EIR relationships, 
are found in [23], and the fits for parasitemia and maxi-
mum parasite densities in the first wave of parasitemia 
in malaria therapy patients are found in [23, 25]. A sum-
mary of the extensive datasets used for calibration can be 
found in [20].

Effective access to treatment estimates
Effective access to treatment is defined as effectively 
clearing blood-stage malaria parasites upon receiving 
treatment. Estimates of effective access to treatment at 
admin-1 level (administrative boundaries of the first sub-
national level) are taken from the Malaria Atlas Project 

(MAP), and are defined as a composite of modelled rates 
of care-seeking [30], proportional use of ACT versus 
non-ACT drug classes, and the effectiveness of each drug 
class [31], thus estimating the proportion of the popula-
tion with access to curative treatment for uncomplicated 
malaria. Data and models are stratified by sector, reflect-
ing differential rates in ACT uptake [31].

Simulations in hypothetical settings
Using OpenMalaria, we first explored more generally 
how the changes in case management impact malaria 
burden across different transmission levels. For this pur-
pose, we built a set of “hypothetical” malaria settings 
starting from the characteristics of the Alibori depart-
ment in Benin in terms of demography, seasonality and 
vector composition [32]. The model was simulated for 
yearly EIR between 1 and 320 (with a 0.5 step), repre-
senting PfPR2 − 10 levels between [0.003–0.6], to inves-
tigate the impact of case management across the full 
range of transmission intensities. A seasonality pattern 
with a transmission peak in October was assumed. Three 
baseline effective treatment coverages were assumed, 
28%, 44%, and 54%. These values represent the median 
and interquartile range of 2023 estimates across African 
admin-1 units in 2023 from MAP [8]. The model was run 
over 30 years. The simulation was initiated with no case 
management; then, a baseline level of case management 
was deployed after 10 years, for 13 years. A uniformly 
incremental increase in case management coverage was 
then implemented over 3 years to reach a new coverage, 
which then remained constant until the end of simulation 
time. The improved coverage was either set to the abso-
lute target level of 60% – which represents the highest 
2023 estimate from MAP across admin1 units, found in 
Uganda,  and used as an operationally feasible best-case 
target – or it was set as an intermediate relative increase 
of either 50% or 75% from baseline coverage to the tar-
get level. No other interventions were implemented. 
Each scenario was simulated 10 times in a population of 
10’000.

Simulations resembling admin-1 regions of Benin, Kenya, 
and Mozambique
Next, the model simulations were updated to reflect 
country-specific data on case management and other 
malaria interventions. Specifically, the model was 
parameterized for the contexts of Benin, Kenya, and 
Mozambique, and run to capture sub-national variation. 
Simulations were performed at the admin-1 level - which 
represents administrative boundaries of the first sub-
national level - corresponding to 12 regions in Benin, 48 
in Kenya, and 11 and Mozambique. Precisely, for each 
administrative region within a country, yearly regional 
estimates between 2000 and 2022 of bednet coverage, 



Page 4 of 14Camponovo et al. BMC Infectious Diseases         (2024) 24:1267 

indoor residual spraying (IRS) coverage, and effective 
treatment coverage were implemented in the model. 
These estimates were computed by the MAP [8]. In the 
model, bednets affect parameters in the model of mos-
quito feeding cycle by decreasing the availability of hosts 
to mosquitos, decreasing the probability that a mosquito 
bites the host upon encounter, and decreasing the prob-
ability that the mosquito finds a resting place after feed-
ing [22]. The effect of IRS is translated in the model by 
decreasing the availability of hosts to mosquitos, and 
decreasing the probability that a mosquito survives in 
its resting place after feeding [22]. Pyrethroid insec-
ticide treated bednets were parameterized previously 
and assume a high initial efficacy with mean insecticide 
concentration of 55.5mg.m− 2 (SD 14), that decays with 
time [33]. IRS was initially parametrized in [33], and rep-
resents the Actellic 300CS insecticide, such that in the 
model, after deploying IRS, the availability of a protected 
host to mosquito is reduced by 0.28, the probability of a 
mosquito successfully biting a chosen protected host is 
decreased by 0.23, and the probability of a mosquito suc-
cessfully escaping from a protected host after feeding is 
decreased by 0.38.

To fit the simulations to geographic-specific transmis-
sion settings, the model requires an estimate of the EIR. 
To estimate region specific EIRs, the model was cali-
brated to PfPR2 − 10 estimates [8], by selecting through a 
grid search the simulated EIR that maximizes a Gaussian 
likelihood function. Uncertainty in prevalence estimates 
is propagated by adapting the Monte-Carlo profile likeli-
hood intervals [34]. Further details about the calibration 
method can be found in Lemant et al. (preprint) [35]. 
Calibration was performed on the historical PfPR2 − 10 
time-series between years 2005 and 2021, simulation fits 
and historical intervention coverages can be found in the 
Supplementary materials.

Simulations for each admin-1 region for Kenya, 
Mozambique, and Benin, were performed with mean 
EIR, and upper and lower uncertainty intervals result-
ing from the calibration. Historical interventions were 
implemented from 2000 to 2022, starting in 2023 bed-
net coverage remained constant (with the same coverage 
than 2022) and an incremental increase of effective treat-
ment levels was implemented to reach 60% coverage in 
2026, after which it remained constant. Simulations were 
repeated 10 times and ran up to the year 2031. Simula-
tion inputs can be found in the Additional File 1.

Impact estimates
Three metrics of impact associated with increase in case 
management coverage were computed. Firstly, the impact 
on prevalence was computed as the relative prevalence 
reduction, 100 ∗ PfPRx,baseline−PfPRx,CM

PfPRx,baseline
, with subscript 

baseline indicating the prevalence in simulations without 

any increase in case management coverage  (counterfac-
tual), CM indicating the prevalence in simulations with 
an increase in effective treatment coverage, and subscript 
x indicating the age group for which prevalence was esti-
mated. x refers to either the population of children under 
5 years old or the entire population. The impact was 
estimated in 2031, 5 years after access to treatment had 
increased.

Next, impact on clinical cases was computed as the 
cumulative cases averted from the start of case manage-
ment increase in 2023 to 5 years after case management 
increase, thus in 2031. Cases averted indicate the differ-
ence between cumulative number of cases in simulations 
without any case management increase (counterfactual) 
versus the number of cases for simulations with increased 
effective treatment coverage. Both total number of clini-
cal cases averted, and severe clinical cases averted, were 
computed.

Lastly, to estimate the proportion of population liv-
ing in different malaria risk areas, administrative regions 
in Benin and Mozambique were categorized as either 
lower risk (PfPR below 0.15), medium risk (PfPR between 
0.15 and 0.3) and higher risk (PfPR above 0.3) for chil-
dren under five (PfPR0 − 5) and for the entire population 
(PfPR0 − 100). As the within-country prevalence in Kenya 
was much lower, administrative regions were categorized 
as regions with PfPR below or above 0.01 for that coun-
try. For each age group, the proportion of population per 
given age group living in each malaria risk category (from 
the population estimates for each administrative region) 
was recorded, and the differences with and without 
improved effective access to care was computed.

Results
An increase in case management leads to prevalence 
reduction, across transmission intensities
In the simulations of hypothetical settings spanning 
a wide range of transmission intensities, improving 
effective treatment coverage from 28 to 60% - that is, 
improving from the 25th percentile to the best cover-
age currently estimated in Africa – resulted in malaria 
prevalence reduction in children under 5 years old and 
in the total population (Fig.  1A). In lower transmission 
settings (EIR < 8, PfPR2 − 10 < 0.25), PfPR0 − 5 was reduced 
by 62.27% (interquartile range: [55.85–83.16]) and pop-
ulation level PfPR was reduced by 40.24% (interquar-
tile range: [30.55–74.62]). In intermediate transmission 
settings (EIR between 8 and 32, PfPR2 − 10 between 0.25 
and 0.45) the reduction was 42.47% for PfPR0 − 5 (inter-
quartile range: [39.91–46.63]) and 16.6% for popula-
tion level PfPR (interquartile range : [14.73–19.4]); and 
in high transmission settings (EIR between 32 and 320, 
PfPR2 − 10 between 0.45 and 0.65) the reduction was 
25.06% for PfPR0 − 5 (interquartile range: [22.02–29.34]) 



Page 5 of 14Camponovo et al. BMC Infectious Diseases         (2024) 24:1267 

Fig. 1 (See legend on next page.)
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and 8.51% for population level PfPR (interquartile range : 
[7.52–9.86]) (Fig. 1B and Table S1). Relative reduction in 
incidence was also observed in the simulations, although 
at lower magnitude (Fig. 1C). In lower transmission set-
tings (EIR < 8), incidence in young children was reduced 
by 40.2% (interquartile range: [30.32–70.82]) and popu-
lation level incidence was reduced by 25.74% (interquar-
tile range: [17–64.67]). In intermediate transmission 
settings (EIR between 8 and 32) the reduction in inci-
dence was 16.95% in young children (interquartile range: 
[14.97–19.79]) and 7.17% for population level incidence 
(interquartile range : [5.62–8.78]); and in high trans-
mission settings (EIR between 32 and 320) the reduc-
tion was 6.08% for young children (interquartile range : 
[4.66–8.02]) and 2.05% for population level incidence 
(interquartile range : [1.21–2.99]) (Fig. 1C and Table S2). 
Considerable impact was also observed both for higher 
baseline effective treatment levels and smaller case man-
agement increases, especially on prevalence (Figs.  1B-C 
and 2A, and Table S1-2and Figure S1). By increasing 
access to care, more clinical malaria cases are treated, 
thus shortening the length of treated infections. This 
leads to a reduction in the infectiousness of humans to 
mosquitoes in the population, which explains the indirect 
effect of access to care on transmission intensity.

Although the impact of expanded access to care was 
observed across transmission settings, the greatest rela-
tive prevalence reduction was observed in low trans-
mission settings. The inverse relationship between 
transmission intensity and the impact of case manage-
ment increase was nonlinear (Fig. 2A and Fig S2). To fur-
ther investigate in which settings prevalence reduction 
was most consequential, the impact on prevalence was 
plotted against baseline PfPR2 − 10, and settings resulting 
in a 10% or higher prevalence reduction were identified 
(Fig. 2B, and Fig S2). More than 10% reduction in preva-
lence in children under 5 years old was observed across 
the investigated prevalence range (PfPR0 − 5 below 0.6) as 
a result of increasing effective access to treatment from 
28 to 44% (Moderate increase) of higher. Similarly, more 
than 10% reduction in prevalence in children under 5 
years old was reached across the prevalence range as a 
result of increasing effective access to treatment from 
44 to 52% (Moderate increase) or higher. For higher ini-
tial effective treatment coverages of 54%, 10% of higher 
prevalence reduction was observed only for lower 
PfPR2 − 10 levels. In the total population, the magnitude 

of prevalence reduction was lower Fig S2. Transmission, 
defined as the population level infectiousness to bit-
ing mosquitos, is not easily assessed in the field but was 
estimated in the models. Population level infectiousness 
is defined as the sum of individual level infectiousness, 
which results from the host’s gametocyte density, body 
surface area, and availability to mosquitoes [27, 36]. Like 
prevalence, the relative reduction in transmission was 
observed following increased effective treatment, with 
more than 10% reduction in children under 5 years in 
settings of PfPR2 − 10 below 0.4 when increasing effective 
treatment from 28% to target level of 60% (Figure S3).

An increase in case management leads to averted clinical 
cases
For the same observed prevalence, a higher treatment 
rate corresponds to a higher EIR compared to a setting 
with lower treatment rates, as the EIR-prevalence rela-
tionship is influenced by treatment rates (Figure S4, and 
described in Penny et al. 2015 [37]). Higher EIRs increase 
population immunity, which in turn leads to a higher 
relative proportion of cases in younger age groups where 
exposure-driven natural immunity has not yet developed. 
Consequently, for the same prevalence levels — espe-
cially at higher prevalence levels — we observe fewer 
overall cases but a greater concentration of cases in the 
0–5 age group when case management is more effective 
(Figure S5). In addition, natural immunity prevents pat-
ent parasitemia from progressing to symptomatic dis-
ease. As a result, an increase in prevalence does not lead 
to a proportional increase in incidence (Figure S5-A). 
Conversely, a reduction in prevalence due to increased 
effective treatment does not produce a reduction in inci-
dence of the same magnitude, especially in higher trans-
mission settings (Figure S6).

Increasing effective access to treatment resulted in 
fewer malaria cases. Highest averted clinical cases were 
observed in the simulations in low transmission settings 
(EIR < 8) and with low effective treatment coverages prior 
increase (28%) (Figure S8 and Table S3). In those settings, 
simulations resulted in 2’683.11 clinical cases averted 
per 1’000 children under 5 years old (interquartile range: 
[2367.42–2872.13]) and 1’895.22 clinical cases averted 
per 1’000 population (interquartile range: [1549.94–
2498.5]), cumulative over 5 years following the increase 
in effective treatment. The model also estimated inci-
dence of severe cases, as a result of very high parasitemia 

(See figure on previous page.)
Fig. 1 Increased case management leads to prevalence and incidence reduction across hypothetical settings. (A) Prevalence levels over 11 years of simu-
lation time, across high transmission settings (EIR between 32–320), intermediate transmission (EIR between 8–32), and low transmission (EIR between 
0.5–8), with an increase in effectively treated cases from 28–60% (gradual increase over 3 years, grey shaded area on the plots). (B) Relative reduction in 
prevalence 5 years after case management increased to 60%. (C) Relative reduction in incidence 5 years after case management increased to 60%. B-C) 
Relative reductions are shown for different transmission intensities (x-axis) and three different baseline coverage of effective treatment (colours). Panels in 
A-C) show outputs in total population in the left panels and in children under 5 years old in the right panels. Mean and interquartile range are shown for 
10 seeds for each EIR level (EIR levels from 0.5 to 320 with 0.5 step) for prevalence and relative prevalence and incidence reduction
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or co-infection [28]. The number of severe cases averted 
in low transmission settings in children under 5 years old 
was 98.74 per 1’000 (interquartile range: [71.81–113.3]) 
and 32.89 per 1’000 in total population (interquartile 
range: [27.69–36.94]) Table S3.

The relationship between cases averted and underly-
ing prevalence was nonlinear, with greatest impact in 
total population peaking at low transmission intensities 
(PfPR2 − 10 around 0.05) and in children under 5 years 
old peaking around PfPR2 − 10 = 0.2 (Figure S9). In the 
model, uncomplicated clinical cases in the total popula-
tion followed a steep increase with transmission in very 
low transmission settings (PfPR2 − 10 below 0.1) and then 
reached a plateau (Figure S10) as a result of higher popu-
lation level blood-stage immunity – which explains why 

most impact in case reduction was observed in this lower 
PfPR2 − 10 range. While our results indicate the possibility 
of greater marginal impact on prevalence and case reduc-
tion when increasing effective coverage from lower rather 
than higher baseline effective treatment coverages (Fig-
ure S11), additional studies are required to confirm this 
conclusion.

Increasing case management leads to a reduction 
in prevalence and burden in transmission settings 
resembling Benin, Mozambique, and Kenya
Reduction in prevalence and malaria burden can be 
achieved in countries of varying transmission context. 
Kenya, Mozambique, and Benin, which are representative 
of the subnational distribution of PfPR2 − 10 and effective 

Fig. 2 Increasing effective treatment in hypothetical settings shows greatest impact at low transmission settings and low baseline effective treatment 
coverages. (A) Relative reduction in prevalence in children under 5 years old (PfPR0 − 5) 5 years after case management increased. Reduction in prevalence 
is shown for varying transmission intensities (i.e. estimated PfPR2 − 10 when case management remains unchanged). Colours indicate different coverages 
of effective treatment after case management increase, and panels top to bottom indicate increasing baseline coverages of effective treatment. Lines rep-
resent the mean and shades the interquantile range across 10 seeds. (B) Impact, as relative reduction in PfPR0 − 5 (tiles), in function of baseline transmission 
intensity (PfPR2 − 10, x-axis), levels of effective treatment coverages increase (y-axis), and baseline coverages of effective treatment (panels top to bottom). 
Low to no impact are shown in grey shades and increasing impact in orange. Settings with impact above 10% are highlighted in black squares. In A) and 
B), increase of effective treatment is either target level (effective coverage of 60%), moderate relative increase of 50% from baseline coverage to the target 
level (Moderate increase), or intermediate relative increase of 75% from baseline coverage to the target level (Target increase)
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access coverage observed across African countries, show 
variable PfPR2 − 10 and effective treatment coverage levels 
(Fig. 3A and Table S4). The average national PfPR2 − 10 in 
Kenya, Mozambique, and Benin was estimated at 0.026 
(minimum and maximum [0.017–0.036]), 0.24 (mini-
mum and maximum [0.22–0.27]), and 0.35 (minimum 
and maximum [0.31–0.39]), respectively. Baseline effec-
tive treatment coverage was 53.86% in Kenya, 50.8% in 
Mozambique, and 37.78% in Benin, and bednet cov-
erage was estimated at 42.65% in Kenya, 58.83% in 
Mozambique, and 52.46% in Benin. Intervention cover-
ages were fairly consistent across administrative regions 
within each country, but prevalence varied considerably 
between administrative regions, with PfPR2 − 10 as low as 

0.0006, 0.0035, and 0.083, and as high as 0.29, 0.45, and 
0.55, in Kenya, Mozambique, and Benin, respectively.

Prevalence reduction following an increase of effec-
tive treatment coverage to 60% was expected in all three 
countries. Impact was highest in Benin – where baseline 
case management was lowest compared to the two other 
investigated countries – with an estimated reduction in 
national level PfPR2 − 10 of 24.99% (minimum and maxi-
mum [23.90 − 27.42]). A lower impact was observed in 
Mozambique, with an estimated reduction in PfPR2 − 10 
of 11.84% (minimum and maximum [11.04–12.24]), and 
in Kenya where baseline access to effective treatment 
was highest and, as such, with the lowest case manage-
ment increase, the reduction in prevalence was modest 
(Fig. 3A-B, and Table S4).

Fig. 3 Malaria prevalence is reduced following an increase of case management to 60% coverage in Kenya, Mozambique, and Benin. (A) Bednet cov-
erage, effective access to treatment and prevalence estimates for total population (light green), and children under 5 years old (purple), are shown in 
2035, when effective treatment levels remain unchanged. Points represent mean estimates for each administrative unit within countries, and diamonds 
indicate the national level average (with minimum, and maximum across 10 seeds in the error bars). (B) Prevalence estimates for total population (light 
green), and children under 5 years old (purple), are shown in 2035, when effective treatment levels increased to 60%. Points represent mean estimates for 
each administrative unit within countries, and diamonds indicate the national level average (with minimum, and maximum across 10 seeds in the error 
bars). Relative prevalence reduction in both age-groups at national level are indicated by bars. (C) Proportion of children under 5 living in regions with 
lower malaria risk (PfPR0 − 5 less than 0.15), intermediate risk (PfPR0-5 between 0.15 and 0.3), and higher risk for malaria (PfPR0 − 5 greater than 0.3). Solid bars 
indicate the total proportion of the children under 5 years old living in each area (x-axis) in 2031 – with the orange bars the proportion of children who 
were not in given area prior case management increase – and dashed bars indicate the proportion of children under 5 years old that was living in given 
area prior case management increase but do no longer live in given area after case management increase. Mean across 10 seeds is shown

 



Page 9 of 14Camponovo et al. BMC Infectious Diseases         (2024) 24:1267 

By reducing prevalence, improving case manage-
ment led to fewer populations living in high-risk areas 
for malaria. By categorizing each administrative region 
in each country by their PfPR0 − 5 level, regions were 
assigned to lower risk (PfPR0 − 5 < 0.15), moderate risk 
(PfPR0 − 5 between 0.15 and 0.3), and higher risk (PfPR0 − 5 
between 0.3 and 0.45). The proportion of children under 
5 years old of regions in each risk category is shown in 
Fig. 3C. An estimated 39% of children under 5 years old 
in Benin and 20% in Mozambique would no longer live 
in higher risk areas with access to effective treatment 
increasing to 60%. The same pattern was observed across 
the entire population, with an estimated 21% and 7.6% of 
the total population that would move from high-risk area 
to lower risk area in Benin and Mozambique, respectively 
(Figure S11). In Kenya where most of the population lives 
in areas with prevalence below 0.15, and case manage-
ment is fairly high (53.9%), 0.39% of children moved to 
lower-risk areas.

Subnational heterogeneity in prevalence, and to 
some extent heterogeneity in effective treatment cover-
age, resulted in subnational differences in the impact 
of improved effective access to treatment. The inverse 
relationship between impact and transmission intensity 
predicted in the hypothetical settings was confirmed in 
the subnational simulations, where highest impact in 
relative prevalence reduction was observed in adminis-
trative units of lowest PfPR2 − 10 (Figure S12). Uncertain-
ties in the model estimates were generally higher in very 
low transmission areas, as for example in Turkana, Bun-
goma, Mombasana, Kwale, and Kakamega in Kenya, and 
in Maputo, Maputo City, and Gaza in Mozambique. This 
is both because modeling low transmission settings in 
OpenMalaria is less certain and because of the stochas-
tic nature of the model. For the administrative regions 
cited above, interruption of transmission was reached in 
some iterations of the simulation (i.e. relative reduction 
in prevalence of 100%).

Increasing case management leads to a moderate 
reduction in incidence in countries like Benin and 
Mozambique
Five years after increase of effective access to treatment, 
yearly incidence per 1’000 children under 5 years old was 
predicted to decrease from 2’182.72 [1’998.64–2’317.67] 
to 1’926.44 [1’744.02–2’078.47] in Benin, from 1’646.59 
[1’512.02–1’740.23] to 1’561.97 [1’433.78–1’663.11] in 
Mozambique, and from 204.61 [124.48–274.50] to 188.02 
[117.81–253.29] in Kenya (Fig.  4A and Table S5). Over 
the 5 years following the increase in effective treatment, 
an estimated 1’682.33 averted cases per 1’000 children 
under 5 years old (minimum and maximum [1’628.35–
1’742.6]) and 74.24 averted severe cases per 1’000 
children under 5 years old (minimum and maximum 

[65–83.33]) were observed in Benin, 555.58 averted cases 
per 1’000 (minimum and maximum [494.5–588.67]) 
and 12.65 averted severe cases per 1’000 children under 
5 years old (minimum and maximum [9.47–18.73]) in 
Mozambique (Fig. 4B-C, and Table S6).

Discussion
Treating uncomplicated malaria cases prevents severe 
outcomes and deaths, but the indirect effects of treat-
ment on transmission have remained unclear due, in part, 
to the complexity of disentangling effects across simulta-
neous interventions in surveillance or other data sources. 
Using an agent-based model of malaria dynamics [19], 
we were able to investigate the potential impact on trans-
mission of expanding access to effective treatment to 
60% coverage, across transmission settings. Simulations 
indicated that better effective treatment coverage leads 
to prevalence and incidence reduction. Reduction in 
prevalence was observed across transmission intensities, 
with a nonlinear relationship between baseline preva-
lence levels and impact of case management. Impact was 
observed across the population but was highest in young 
children. Reduction in incidence was of lesser magnitude 
(1–35% in young children) than reduction in prevalence 
(5–58% in young children), especially in higher endemic 
settings where little to no impact on incidence was 
observed (1–5% in young children). Although in some of 
the simulations where prevalence was low, elimination 
was achieved by increasing case management to 60%, 
this might be an over-optimistic result. While sustained 
case management is crucial for elimination, the integra-
tion of active case detection and more aggressive vec-
tor control strategies is likely necessary as well [38, 39]. 
Nevertheless, a recent study on sub-national elimination 
in Myanmar showed that intensifying early diagnosis 
and treatment led to elimination in several villages [40], 
suggesting that an upscale in case management could be 
enough for elimination given the right context.

Simulations calibrated to resemble malaria transmis-
sion in Benin, Mozambique, and Kenya – countries where 
insecticide treated nets are already in place – indicated 
that increased case management would lead to a reduc-
tion in prevalence and burden in those three countries. 
In particular, we anticipate that for countries with trans-
mission dynamics and effective treatment coverage levels 
similar to Benin and Mozambique, increasing effective 
treatment coverage would lead to substantial reduction 
in the proportion of young children living in areas with 
high malaria risk. For countries similar to Kenya with 
low prevalence and fairly high effective treatment cover-
age, improving treatment coverage would further reduce 
prevalence.

We investigated the potential impact of better access 
to care in three African countries, but the impact would 
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be major across the continent. Global estimates of effec-
tive coverage of treatment indicated that in 2020, consid-
erable African countries had suboptimal access to care, 
with 12 countries where effective access was below 30%, 
and 31 countries below 50% in 2020, out of the 40 coun-
tries [18]. As such, there is a need to sustainably improve 

access to effective care across Africa, and achieving a 
60% coverage would have a tremendous impact, not only 
on burden, but also on transmission. Our analysis sug-
gests that improving case management should be a tool 
to reduce transmission and prevalence in both low and 
high endemic areas. Indeed, when in low endemic areas 

Fig. 4 Moderate incidence reduction following an increase of case management to 60% coverage in Kenya, Mozambique, and Benin. (A) Incidence 
and incidence reduction after increase of effective treatment to 60%. Incidence after effective coverage increased to 60% (Incidence 60% tmt access), 
and without increase in effective treatment coverage (Incidence baseline) are indicated for each administrative unit within countries by points and the 
national level average by diamonds (with minimum, and maximum across 10 seeds). Relative reduction in incidence 5 years after treatment coverage 
increase are indicated for national level estimates by bars. (B) Cumulative clinical cases averted, and (C) cumulative severe clinical cases averted, per 1’000 
population in total population (green), and in children under 5 years old (purple). Cases averted computed as the cumulative over 5 years from 2026 to 
2031. In each plot A-C), mean, minimum, and maximum across 10 seeds are shown
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it would be an additional step towards elimination, in 
higher endemic areas it would reduce malaria risk areas. 
Countries where current case management coverage is 
lowest should be prioritized given the biggest need and 
biggest impact predicted in this context.

The effect of treatment of uncomplicated malaria 
cases on transmission and burden may be several fold. 
By treating infections early, the average infection length 
in a population is reduced, leading to a decrease in the 
average infectivity in the population. This is particularly 
important in a pathogen like Plasmodium falciparum, 
where infections are known to be persistent or recur-
rent over months or years [41]. Recent studies indicate 
that the parasite’s commitment to gametocytes and thus 
transmission is smaller early in the infection compared 
to the longer chronic stages of the infections [42], thus 
treating infections early might have an even higher effect 
on transmission than anticipated in our study. Effective 
treatment may reduce incidence of uncomplicated cases 
and severe cases by its direct action of treating cases, and 
by reducing transmission, but the relative proportion of 
both effects could not be assessed here. While the cur-
rent model does not include this feature, future model-
ing efforts that seek to disentangle the direct and indirect 
effects of case management on prevalence could pro-
vide valuable insights. In the current modelling study we 
found lesser impact of increasing effective treatment on 
incidence than prevalence, especially in higher endemic 
settings, which might be explained in part by the 
acquired immunity in the population protecting against 
clinical disease and gained through repeated exposure 
[43]. As such, impact of effective treatment might be 
underestimated if measured with routine reporting sys-
tems of clinical cases rather than community surveys of 
prevalence.

Our results align with previously published modeling 
work. For example, Okell et al. demonstrated a signifi-
cant role of ACTs in transmission reduction strategies, 
especially in lower tranmission settings [44]. Similarly, 
a model by Gatton and Cheng suggests that interup-
tion of transmission could be feasible in low to moder-
ate transmission settings by treating symptomatic cases 
[45]. Another malaria transmission model showed that 
untreated infections, low treatment adherence leading 
to chronic untreated infection, and delayed treatment, 
all led to increased transmission [46]. Reducing the time 
between symptom onset and treatment through better 
access to care – for example by reducing the distance to 
the closest health facility [47] by increasing the number 
of health centers in a country – was shown to reduce the 
risk of severe malaria in a meta-analysis [48].

Increasing effective access to care through greater 
health systems performance can be tackled at different 
levels in the cascade of care [7, 49]. WHO recommends 

early diagnosis and treatment for effective case manage-
ment [4]. Thus, better access to testing and treatment is 
essential [50, 51] and could be achieved by increasing 
the availability of diagnostics tests [52] and the num-
ber of trained workers to perform the tests and provide 
treatments [53, 54]. The provider compliance and the 
patient adherence to treatment regimen are other essen-
tial components impacting the effective coverage of care 
[7], and especially in adults appropriate care of malaria 
cases could be improved [55]. Finally, in order to maxi-
mise the drug’s efficacy, parasite resistance to drugs 
needs to be monitored and addressed rapidly if it arises 
[56]. Adherence, compliance, and drug quality has been 
found to vary substantially between countries [7], as 
such, improving effective treatment would involve iden-
tifying the source of inefficiency within this care cascade. 
In addition, better malaria case management would be 
achieved by strengthening health systems as a whole, 
thus moving from a malaria-focused approach towards a 
disease-holistic solution [57]. The current estimates show 
that the highest estimate of effective treatment was found 
in Uganda, of 61%. Previous analysis indicated that this 
country performed well across all components of the care 
cascade, in particular it showed high access to any pro-
vider (84%) and high adherence levels (93.9%) [7].

OpenMalaria has been previously developed and is 
discussed in detail elsewhere [19], but the model has 
some limitations relevant to this work. The model was 
mainly fitted to cross sectional surveys, limiting the cer-
tainty on implemented parasite dynamics. The absence 
of longitudinal data of malaria infections in endemic 
areas makes it challenging to accurately model immune 
dynamics. This difficulty extends to representing realistic 
– yet unknown – within-host malaria infection dynam-
ics and understanding how changes in endemicity influ-
ence these dynamics through the acquisition or loss of 
immunity [26]. Assumptions on the length and intensity 
of infections in endemic areas directly affect population 
level infectivity, and thus impacts the computed effect of 
treatment on transmission. In addition, data for severe 
incidence in older age groups are lacking, and thus the 
model has been fitted to severe incidence in children 
under 10 years old [28]. As such, estimates of popula-
tion level severe incidence remain uncertain. The model 
is calibrated primarily for moderate to high transmis-
sion settings, as a result, the accuracy of outcomes in low 
transmission settings is less certain. In addition, treat-
ment seeking behavior for malaria infections in Africa 
are complex and remain uncertain [58], limiting both the 
estimates of effective access to care and the translation 
of improving access in the model to behavioral changes 
in country. The estimates of intervention coverages, 
effective access to treatment, and historical prevalence 
estimates from the Malaria Atlas Project to simulate 
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sub-national settings in Benin, Mozambique, and Kenya, 
are modelled quantities, with areas of data paucity 
reflected in increased uncertainty.

Simulations focus on the effect of increasing effective 
treatment of symptomatic malaria cases across the pop-
ulation. This is only one aspect of improving case man-
agement, and further modeling studies could investigate 
the effect of expanding treatment by targeting vulnerable 
populations specifically, such as children under 5, or hard 
to reach communities. In addition, instead of investigat-
ing the effect of higher effective treatment, specifically 
modeling better treatment regimen resulting in greater 
compliance or higher cure rate, for example, deserves 
further investigation to understand its impact on trans-
mission and malaria burden.

Although over the years there has been a shift towards 
greater investment into health system strengthen-
ing among major donors, such as the Global Fund or 
other Global Health Initiatives [59, 60], the potential 
to improve case management if investments are met 
are considerable across endemic countries. This work 
emphasizes the need to prioritize health system strength-
ening resulting in better effective treatment of malaria 
cases, which, in complement to vector control interven-
tions, could achieve substantial burden reduction and 
transmission reduction across transmission settings.
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