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Abstract: The global prevalence of obesity has been increasing at a staggering pace, with few 

indications of any decline, and is now one of the major public health challenges worldwide. 

While obesity and metabolic syndrome (MetS) have historically thought to be largely driven 

by increased caloric intake and lack of exercise, this is insufficient to account for the observed 

changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic 

chemicals in our environment may also play a key role in the etiology and pathophysiology 

of metabolic diseases. Importantly, exposures occurring in early life (in utero and early child-

hood) may have a more profound effect on life-long risk of obesity and MetS. This narrative 

review explores the evidence linking early-life exposure to a suite of chemicals that are com-

mon contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and 

glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our 

household goods (brominated flame retardants) and drinking water (heavy metals) and changes 

in key pathways important for the development of MetS and obesity.

Keywords: obesity, pesticides, polybrominated diphenyl ethers, heavy metals, acrylamide, 

endocrine-disrupting chemicals

Introduction
The global prevalence of obesity has been increasing at a staggering pace, with few indi-

cations of any decline, and is now one of the major public health challenges worldwide. 

Most alarmingly, the list of adverse consequences related to overweight and obesity 

continues to grow.1–3 It is well accepted that obesity is a risk factor for other metabolic 

abnormalities, including an increased risk of metabolic syndrome (MetS).4 MetS is a 

cluster of interrelated metabolic risk factors. MetS as defined by a joint interim statement 

of the International Diabetes Federation Task Force on Epidemiology and Prevention, the 

National Heart, Lung, and Blood Institute, the American Heart Association, the World 

Heart Federation, the International Atherosclerosis Society, and the International Asso-

ciation for the Study of Obesity includes three of the following five clinical findings: 

elevated waist circumference, elevated triglycerides, reduced HDL cholesterol, elevated 

blood pressure, and elevated fasting glucose.4 Many of these components of MetS are 

interrelated, for example, obesity is strongly related to insulin resistance, which is a well-

established risk factor for type 2 diabetes.5 The worldwide prevalence estimates vary, but 

the International Diabetes Federation estimates that one-quarter of adults worldwide have 

MetS.6 Most alarmingly, people with MetS have a significantly increased risk of develop-

ing chronic metabolic diseases, including non-alcoholic fatty liver disease (NAFLD), 

type 2 diabetes, and cardiovascular disease.7 In addition, obesity has been associated 
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with cancer, rheumatoid arthritis, infertility, and depression, 

among others.8–10 The path to MetS is complex, but there is now 

compelling evidence from human epidemiological studies and 

animal experiments to support the hypothesis that exposure 

of the fetus to certain hormonal, nutritional, metabolic, and 

environmental conditions may permanently alter the physiol-

ogy of the resulting offspring and lead to an increased risk of 

chronic metabolic disease in later life. Clearly, understanding 

the environmental factors that contribute to the rise in obesity 

and MetS is critically important.

Endocrine-disrupting chemicals 
(EDCs) as metabolic disruptors
Although the obesity epidemic has historically thought to be 

largely driven by increased caloric intake and lack of exercise, 

this is insufficient to account for the observed changes in 

disease trends. There is now considerable evidence to sug-

gest that early-life exposure to synthetic chemicals in our 

environment plays an important role in the global epidemic 

of obesity and MetS. The number of new chemicals that are 

synthesized and marketed increases exponentially each year; 

from 2005 to 2015, the number of chemicals registered by 

the Chemical Abstract Service increased from 25 to 100 

million substances.11,12 Introduction of chemicals into the 

environment (aquatic and terrestrial) occurs from industry 

and manufacturing practices, agricultural use, and human 

activity (eg, the use of medications, personal care products, 

and cleaning products). There is now compelling evidence 

in mammals that exposure to environmental pollutants can 

alter endogenous hormonal axes. These chemicals have been 

termed endocrine disruptors. Historically, research attention 

has focused largely on the ability of these xenobiotic com-

pounds to alter estrogenic and/or androgenic pathways by 

acting as agonists/antagonists at hormone receptors, altering 

the number of hormone receptors in a cell-specific manner 

or causing perturbations in circulating concentrations of the 

endogenous hormones.13–18 More recently, however, there has 

been an increased awareness that these same chemicals can 

also disrupt metabolic homeostasis. There are now substantial 

in vivo and in vitro data demonstrating that environmental 

chemical pollutants can alter energy homeostasis in mammals 

through a number of pathways, including central effects on 

appetite regulation, altered energy expenditure and disruption 

of glucose, and/or lipid homeostasis in metabolically active 

tissues (ie, pancreas, liver, and adipose tissue).19–24 Indeed, a 

recent report concluded that in the European Union, exposure 

to endocrine-disrupting compounds contributes substantially 

to obesity and diabetes and was associated with estimated 

health care costs in excess of €18 billion annually.25 Both 

human and animal studies have shown that exposures to 

chemical insults have profound effects on key pathways 

important for the development of MetS.

Environmental chemical exposures 
during pregnancy and the 
development of MetS
In recent years, there has been increasing concern that expo-

sures to environmental chemicals in early life (ie, in utero 

development and/or infancy) may be associated with chronic 

metabolic disease in adulthood, leading to increased research 

attention in this area. There are a number of pathways by 

which these chemicals may increase the risk of MetS later in 

life, including, but not limited to, effects on fetal and postnatal 

growth trajectories, altered organ development and function, 

and disruption of hormonal axes. For example, epidemio-

logical studies have reported an increased risk of reduced 

birth weight following exposure to a suite of environmental 

chemicals, including persistent organic pollutants, pesticides, 

and air pollution.26–28 Importantly, there is now substantial 

evidence to support the hypothesis that fetal growth retarda-

tion is associated with an increased incidence of adult-onset 

diseases, including obesity, type 2 diabetes, hypertension, 

coronary heart disease, dyslipidemia, and stroke.29,30

In addition to effects on birth weight, many of these 

environmental chemical pollutant exposures can result in 

altered tissue development and function independent of low 

birth weight. For example, Bisphenol A has been shown in 

epidemiological studies to be associated with increased risk 

of obesity, and it has also been shown to have direct effects 

on adipose tissue development (adipogenesis) along with 

pancreas development and function, leading to an obese, 

insulin-resistant phenotype.31–33 Similarly, phthalates have 

also been associated with an increased risk of obesity due to 

their direct effects on liver function (hepatic fat accumulation) 

and their ability to disrupt thyroid function (dysregulation of 

energy balance and metabolism).34–36

It is clear that the mechanisms leading to MetS follow-

ing early-life exposure to chemicals in our environment are 

diverse and multidimensional. The goal of this review is to 

highlight evidence linking early-life exposure to chemicals 

in our environment with MetS in the progeny into adult-

hood. There is considerable evidence linking exposure to 

polyaromatic hydrocarbons, bisphenol A, phthalates, per-

fluorinated chemicals, polychlorinated biphenyls (PCBs), 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

103

Early-life chemical exposures in MetS

organochlorine pesticides, and organotins to metabolic 

perturbations; these chemicals have been recently reviewed 

in detail elsewhere.37–41 In this review, we focus on a suite of 

chemicals that are common contaminants associated with 

food production (pesticides) and processing (acrylamides), 

in addition to chemicals ubiquitously found in our household 

goods (flame retardants) and drinking water (heavy metals). 

To complete this narrative review, we used PubMed for our 

overall basic search for articles published in English using 

keywords related to the exposures of interest (pesticides, 

imidacloprid, glyphosate, acrylamide, brominated flame 

retardants, and heavy metals), the timing of exposure (preg-

nancy, prenatal, and in utero), and the outcomes of interest 

(birth weight, fetal outcomes, adipose, insulin, glucose, 

blood pressure, diabetes, and obesity). We included studies 

conducted in both animals and humans.

Crop production: pesticides
The development of new agricultural-related practices has 

been vital in expanding our food supply and will continue to 

play a critical role as the world’s population grows. Insecti-

cides, herbicides, and fertilizers have enhanced the stability of 

the food supply chain, but they may also contribute to chronic 

metabolic diseases. In this section, we highlight emerging 

evidence to suggest that commonly used pesticides may also 

contribute to the increased incidence of MetS.

Chlorpyrifos
Chlorpyrifos is an organophosphate insecticide that inhibits 

acetylcholinesterase activity. Due to its broad spectrum activ-

ity against many foliar and soil insects, it is commonly used 

worldwide for a pest control in a wide range of field crops and 

fruit.42 Estimated usage in Canada is 100,000–500,000 kg/

year and in the US is 3.2–4.1 million kg/year.42,43 Chlorpyri-

fos has been detected in aquatic ecosystems and in a range 

of food types, including fruits, vegetables, grains, beans/

nuts/legumes, dairy, and meat/fish/eggs, leading to human 

exposure as documented by the widespread presence of 

urinary metabolites of chlorpyrifos in nonoccupationally 

exposed populations.44–46 Chronic occupational exposures to 

chlorpyrifos have been demonstrated in farmers from Iowa, 

Vietnam, and Thailand who were found to have significantly 

higher urinary metabolites of chlorpyrifos and significant 

transdermal exposure,47,48 both of which are likely to have 

significant adverse health effects.49

The postnatal metabolic effects of chlorpyrifos exposure 

during pregnancy are largely unknown due to the absence 

of human epidemiological studies. However, rodent studies 

suggest that this is an important concern. Prenatal exposure 

to chlorpyrifos in rats caused hyperlipidemia and hyperinsu-

linemia, leading to MetS into adulthood.50 Moreover, acute 

and chronic exposures to chlorpyrifos have been shown 

to be associated with increased body weight, altered lipid 

homeostasis, and increased blood pressure.51–53 Increased 

fatty acid synthesis and storage have been further substanti-

ated in vitro following chlorpyrifos exposure.54 As a result, it 

is biologically plausible that in humans, early-life exposures 

to chlorpyrifos may in fact increase the risk of metabolic 

disturbances. Given its widespread usage and detection in the 

environment and human samples, further study is warranted.

Imidacloprid
Imidacloprid is a neonicotinoid insecticide. These insec-

ticides act as agonists of insect nicotinic acetylcholine 

receptors (nAChRs). Neonicotinoids are widely used in agri-

cultural crop production; in 2008, neonicotinoids accounted 

for ~25% of the global insecticide market.55 As a result, 

imidacloprid has been found in terrestrial (soil) and aquatic 

(surface and groundwater) environments56 as well as being 

widely detected in fruits and vegetables.57

Despite the fact that in vitro studies have demonstrated 

the potential for significant absorption of imidacloprid in the 

human intestine58 and imidacloprid residues are prevalent in 

many fruits and vegetables,57 there has been limited popula-

tion-based biological monitoring for imidacloprid exposure. 

Recently, a small study in nonoccupationally exposed adults 

(N=52) demonstrated that imidacloprid was present in the 

urine of 96% of study participants at levels above the limit 

of detection.59 Historically, neonicotinoids were thought to 

have limited toxicity for humans due to their high specific-

ity toward insect nAChRs. However, it is now clear that 

these insecticides also have agonist activity at mammalian 

nAChRs60 raising the possibility of human health risks associ-

ated with chronic exposure to neonicotinoids. In fact, high 

dose of imidacloprid (50 mg/kg) induced hepatotoxicity as 

evidenced by elevated plasma aspartate aminotransferase and 

alanine aminotransferase levels in rats.61 In addition, 20 mg/

kg imidacloprid resulted in hepatic necrosis and infiltration 

of inflammatory markers.62 Moreover, given that adipose 

tissue expresses multiple nAChR genes, it is possible that 

imidacloprid may affect lipid homeostasis.63 Indeed, a recent 

study has shown that imidacloprid can promote adipocyte 

differentiation and lipid accumulation in adipocytes (3T3-

L1 cells).64 While the mechanism(s) have not been clearly 
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elucidated, it has been suggested that imidacloprid suppresses 

the expression of antioxidant enzymes implicating oxidative 

stress as a significant contributor to the observed metabolic 

perturbations.65

Glyphosate
Glyphosate is one of the most commonly used herbicides 

worldwide. It inhibits 5-enolpyruvylshikimate-3-phosphate 

(EPSP) in the shikimate pathway; a pathway plants and 

microorganisms require for the synthesis of the aromatic 

amino acids phenylalanine, tyrosine, and tryptophan.66 

Glyphosate has been identified in surface and groundwa-

ter;67,68 however, most nonoccupational exposures occur from 

consuming foods containing glyphosate residues.69

While there are detection methods available to measure 

serum concentrations of glyphosate and its metabolite 

aminomethylphosphonic acid (AMPA), few studies have 

investigated the transfer of maternal-to-fetal exposure during 

pregnancy.70–72 A recent systematic review of observational 

studies investigating prenatal exposure to glyphosate deter-

mined that there is insufficient evidence to conclude that 

glyphosate does or does not affect pregnancy outcomes, 

including birth weight.73

While the effects of glyphosate on metabolic health in 

humans have largely not been explored, there are animal 

and cell culture studies that have investigated the effects of 

glyphosate on key metabolic pathways. Although glyphosate 

is thought to have low toxicity to mammals,74 it has recently 

been shown to cause liver and kidney toxicities at low doses.75 

Results suggest that glyphosate exposure caused liver fibrosis 

and mitochondrial membrane dysfunction. Furthermore, 

glyphosate has been shown to increase apoptosis and induce 

oxidative stress in preadipocytes.76,77 Oxidative stress ensues 

due to mitochondria dysfunction78 and decreased oxidative 

capacity, which has been shown to impair glucose uptake into 

adipocytes, promoting hyperglycemia.79 Oxidative stress also 

disturbs the adipokine production by fat cells, which has been 

suggested to be an early initiation event in the development 

of MetS.80 Taken together, these studies suggest that further 

study of the effects of glyphosate on MetS risk requires 

further attention.

Food processing
It is widely accepted that in recent decades, there has been a 

significant increase in the consumption of processed foods. 

Food processing intentionally introduces food additives  

(eg, food dyes, emulsifiers, preservatives, and artificial 

sweeteners) but also introduces unwanted contaminants as 

a result of the packaging process (eg, bisphenol A). There is 

another group of chemicals that are introduced by the nature 

of the food processing itself; one of these is acrylamide.

Acrylamide
Acrylamide is produced by the reaction between asparagine 

and sugar molecules and is formed during food processing. 

Acrylamide is known to cross the placenta81 with nonsignifi-

cant amounts transferring to the infant through breast milk.82 

Rodent models have demonstrated that prenatal and perinatal 

acrylamide exposures result in low birth weight offspring 

that develop signs of liver toxicity and lipid accumulation in 

postnatal life.83,84 Meanwhile, administration of acrylamide 

to adult rodents has been shown to increase glycogen content 

and increase hepatocyte size in addition to causing dysgly-

cemia and elevated serum lipid levels.85 To date, only three 

studies have investigated the relationship between prenatal 

acrylamide exposure and fetal growth outcomes in human 

populations but have, for the most part, shown consistent 

associations between acrylamide exposure and reduced fetal 

growth. The MoBa study found that an increased consump-

tion of acrylamide was associated with lower birth weight 

infants.86 Similarly, the NewGeneris study found that mater-

nal and cord blood levels of acrylamide and its metabolite 

glycidamide correlated with a reduced birth weight and 

head circumference.87 Finally, the most recent study found 

that maternal dietary acrylamide and birth weight showed 

a significant negative correlation and that dietary intake of 

acrylamide was significantly higher in small for gestational 

age (SGA; <10th percentile) newborns.88 Taken together, 

these results suggest that an increased maternal acrylamide 

consumption during pregnancy may have the potential to 

impair fetal growth; however, it still remains to be determined 

whether SGA as a result of acrylamide exposure in humans 

is associated with metabolic abnormalities in postnatal life.

Household exposures
There is an increasing awareness that there are a wide variety 

of chemical exposures, which occur in the home including 

exposure to cleaning and personal care products, to chemicals 

used in consumer products to make them stain resistant or to 

meet legislated flammability standards and to chemicals in 

household dust and drinking water. Of these chemicals, we 

will focus on the evidence linking exposure to polybromi-

nated diphenyl ethers (PBDEs) (flame retardants) and heavy 

metals to metabolic disease risk.
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PBDEs
PBDEs have been widely used since the 1970s and are fre-

quently found in mixtures of similar chemicals otherwise called 

congeners. PBDEs are applied to products, such as fabrics, 

plastics, household appliances, and electronics, to decrease their 

flammability. As a result, adults and children are chronically 

exposed to these chemicals through inhalation of contaminated 

household dust.89–91 Exposure also occurs through hand-to-

mouth behaviors in adults (ie, biting nails and licking fingers) 

and toddlers.92,93 Serum concentrations of PBDEs have been 

broadly related to electronic use. More specifically, individu-

als who used personal computers, audio/video devices, small 

household appliances, or own flat screen TVs have been shown 

to have the highest concentration of PBDEs.94

In the US, PBDE levels in adults range from 30 to 

100 ng/g lipid and these values are typically higher in chil-

dren.95 PBDEs measured in pregnant women have ranged 

between 2.44 and 258 ng/g lipid, while the median concen-

trations remain between 7.7 and 9.97 ng/g lipid.96,97 PBDEs 

have been shown to cross the placenta98 and the blood–brain 

barrier,99 thus having the potential to impact fetal health 

and development. In fact, comparing the maternal and cord 

serum, there is evidence to suggest that fetal exposure is 

greater compared to the maternal exposure.100 More aston-

ishing is that measurable levels of PBCDs are present in the 

developing fetus as early at 6.5 weeks.101

Prenatal exposure to high levels of PBDEs has been 

associated with preterm birth (odds ratio =5.6, 95% CI: 2.2, 

15.2; P<0.001)102 while its effects on birth weight have been 

inconclusive. In regions where the exposure to PBDEs is higher 

than the US Environmental Protection Agency Reference dose, 

exposures have reported a positive correlation between PBDE 

exposure and birth weight and length,103 while other regions 

have shown the opposite relationship104–107 or no relation-

ship at all.96,108 Furthermore, postnatal exposures to maternal 

PBDEs through breast milk continue to be a significant source 

of PBDE congeners. Müller et al103 have comprehensively 

described the reported levels of PBDE congeners in breast milk 

from countries around the world. Although levels appear to be 

decreasing over time, levels remain at a level that is concern-

ing for the long-term health outcomes of exposed infants.109

There is evidence to suggest that prenatal PBDE exposure 

may in fact cause metabolic perturbations in the offspring. 

The lipophilic PBDE has been shown to accumulate in 

adipose tissue and liver and to alter lipolysis and insulin 

signaling favoring an obese phenotype.110,111 In addition, 

animals exposed prenatally to PBDEs had an impaired fetal 

growth112 and the subsequent development of obesity and 

insulin resistance in adulthood.113 Similarly, the CHAMA-

COS study, a longitudinal birth cohort study in California, 

found that maternal PBDE levels were significantly and 

differentially associated with weight changes in children at 

the age of 7 years based on sex.114 Another study, the Boston 

Birth Cohort, examined paired maternal cord blood samples 

and established that PBDE exposure may result in epigenetic 

modifications at the promoter region of inflammatory mark-

ers, thereby increasing the susceptibility to MetS.95 Therefore, 

while it remains to be determined whether PBDE exposure 

during pregnancy has a significant impact on subsequent 

metabolic perturbations, long-term data suggest that further 

studies are warranted.

Metals
Lead, mercury, and cadmium are three metals that have 

been widely used in a number of applications leading to 

widespread contamination of food, water, soil, and air and 

frequent detection in biomonitoring studies.115 For the general 

population, the most common sources of exposure for these 

heavy metals are via contaminated air and food, although 

exposure to tobacco smoke is also a significant source of 

exposure for cadmium and lead.116,117 Although lead levels 

have been continuously decreasing in North America,118 

a recent study found that >99% of women had detectable 

blood lead levels during pregnancy.119 Similarly, the majority 

of pregnant women had detectable blood levels of cadmium 

(>95%) and mercury (>85%).119 Given the widespread 

exposure to cadmium, mercury, and lead, there have been 

a number of studies investigating the relationship between 

maternal body burden of these metals and adverse pregnancy 

outcomes (eg, spontaneous abortion, stillbirth, preterm labor, 

and low birth weight). As a result, there are now a number of 

epidemiological studies, which have reported that exposure to 

these heavy metals is associated with low birth weight.120,121 

However, these results are not entirely consistent as a number 

of other studies have failed to find a similar association.121

There have been a limited number of epidemiological 

studies looking at early-life exposure to heavy metals and 

metabolic perturbations in the children. The few studies that 

do exist do not suggest that exposure to heavy metals is asso-

ciated with an increased risk of obesity but may be associated 

with other components of the MetS, most notably changes 

in blood pressure. There are two studies that have examined 

early-life exposure to metals and the development of obesity 

in the children. In a Spanish prospective birth cohort, there 

was no association between early-life exposure to cadmium, 

mercury, or lead and weight (body mass index Z-score) at the 
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age of 7 years.122 Similarly, Afeiche et al123 did not report a 

significant association between prenatal lead exposure and 

body weight at the age of 5 years. Interestingly, data from 

NHANES found that in adolescents (aged 6–18 years), both 

lead and cadmium levels were negatively associated with 

waist circumference,124 although the NHANES measure-

ments do not reflect early-life exposures. There is a paucity 

of information available regarding the effects of prenatal 

exposure to metals and glucose homeostasis in the offspring. 

Faulk et al125 have reported that in mice, exposure to lead 

during pregnancy and lactation resulted in insulin resistance, 

but this effect was only observed at one dose and only in the 

male offspring. There have been several studies that have 

examined prenatal exposure to cadmium, lead, and mercury 

and blood pressure in children. To date, these studies have 

not shown any effect of exposure to cadmium or lead on 

blood pressure, although they have reported adverse effects 

on kidney function that may impact blood pressure in later 

life.126–128 In contrast, there is some indication that prenatal 

exposure to mercury at high levels but not those seen in the 

general population may result in increased blood pressure 

in childhood.129,130 Although there is widespread exposure to 

cadmium, lead, and mercury, at this time, there is no enough 

information from epidemiological studies or animal experi-

ments to determine whether or not these exposures pose a 

risk for metabolic disease in the offspring.

Conclusion
There is increasing evidence that early-life exposure to envi-

ronmental chemicals may play a significant role in the global 

obesity epidemic.37–41 It is important to note that currently, 

efforts are being made to reduce the exposure to some of these 

chemicals. For example, the US Pharmacopeia Convention 

(USP) has announced plans to establish new monitoring for 

elemental impurities in pharmaceuticals and nutraceuticals 

by 2018 to reduce human exposure to these harmful metals.131 

In addition, China has issued the “Soil Ten Plan” to monitor 

key pollutants (heavy metals and organic pollutants) and 

improve the soil quality and agriculture practices to improve 

the long-term health and well-being of their country into 

2050.132 These initiatives are in line with the 2015 Parma 

Consensus Statement, which highlighted the importance 

of modifying exposures to mitigate the potential impact of 

these chemicals on metabolic diseases.133 Although we have 

focused on a select few chemicals with widespread exposure 

that have not received substantial attention, there are many 

other chemicals that have been examined in more detail and 

been shown to cause metabolic perturbations37–41 and many 

more that have not been evaluated for their ability to disrupt 

metabolic homeostasis. Therefore, there is clearly an urgent 

need for a comprehensive research strategy to evaluate the 

role of environmental chemicals in metabolic diseases.
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