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ABSTRACT
Themultiferroic materials BiFeO3 and RMnO3 exhibit coexisting magnetic order and ferroelectricity, and
provide exciting platforms for new physics and potentially novel devices, where intriguing interplay
between phonons and magnons exists. In this review, we paint a complete picture of bulk BiFeO3 together
with orthorhombic and hexagonal RMnO3 (R includes rare-earth elements and yttrium) by summarizing
the dynamics of spin and lattice and their magnetoelectric coupling, as well as the methods of controlling
these characteristics under non-equilibrium conditions, from experimental and simulation perspectives.
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INTRODUCTION
The advancement beyond complementary metal-
oxide-semiconductor devices demands materials
with strong logic state stability andhigh switching ef-
ficiency [1,2].Multiferroicmaterials are intrinsically
promising candidates in this regard because their
low energy dissipation in switching and high energy
efficiency form a barrier to stabilize the order pa-
rameter [2]. However, it is still challenging to over-
come the precession timescale limitation and switch
themultiferroic antiferromagnetic (AFM) statewith
a high stability of 100kBT locally on the nanoscale.
The recently demonstrated possibility of direct
pumping of spin excitations in AFM materials with
the help of a freely propagating terahertz (THz)
wave suggests that such waves are strongly coupled
to the excitations in themediumandprovide a useful
pathway for manipulating thematerial structure and
properties to overcome the abovementioned limita-
tion. In these processes, the coupling between the
lattice and spin excitations is essential; however, this
topic remains highly underrated and not sufficiently
understood.

The collective lattice and spin excitations are
addressed as quantized waves called phonons
and magnons. Both phonons and magnons obey
boson behavior and therefore follow Bose–Einstein

statistics [3].These quasiparticles can be completely
described by their dispersion relations between
energy (frequency) and wave vector, which is im-
portant for understanding atomic bonding, to deter-
mine the underlying interactions governing the spin
dynamics and obtain detailed information about
complex spin structures (Fig. 1) [4]. Strong anhar-
monicity exists in multiferroics and allows higher-
order zone-center magnons to become dipole
active, i.e. to become other quantized excitations
unique in multiferroics as electromagnons [5,6].

BiFeO3 (BFO) and RMnO3 (R includes rare-
earth elements and yttrium) are the two most
widely studied multiferroics. BFO and hexagonal
(h)-RMnO3 are type-I multiferroics whose fer-
roelectric (FE) transition temperatures are well
above their magnetic ones. Meanwhile, orthorhom-
bic (o)-RMnO3 (e.g. TbMnO3, DyMnO3 and
(Tb, Gd)MnO3) is a type-II multiferroic with
strong magnetoelectric (ME) coupling, and the
ordered phases occur at very low temperatures.
It is worth mentioning that not all o-RMnO3 are
multiferroics, e.g. manganites with R=Nd, Sm, Eu,
Ho are not multiferroics. The remainder of this re-
view is divided into two main parts: firstly, we focus
on experimental investigations as well as the ma-
nipulation of phonons, magnons, electromagnons,
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Figure 1. (a) Energy–momentum relation of phonons and
magnons in complex solids. (b) Schematic of the three sub-
systems with their characteristic relaxation times and cou-
pling parameters.

and the coupling between them in BFO and
RMnO3; then, we address the simulations and pre-
diction schemes used to demonstrate and manipu-
late the dynamics of phonons and magnons. Finally,
we summarize the conclusions.

EXPERIMENTS
At present, experimental measurements of phonons
and magnons are performed using two main types
of methods: inelastic neutron scattering (INS) and
optical techniques, where Raman, infrared (IR), and
THz spectroscopy are most commonly used; these
have different selection rules and spectral weights
[7]. INS could be used to measure the dispersion
relations in full momentum space, whereas optical
means are restricted to near the Brillouin zone (BZ)
center. However, the energy resolution of INS in the
low-energy region is rather poor, while THz spec-
troscopy exhibits superiority in this region. INSmea-
sures phonon and magnon spectra in the whole BZ
including electromagnons, but hybrid excitations
can only be determined by IR or THz spectra based
on full polarization analysis, observation of direc-

tional dichroism or transfer of oscillator strength of
some polar phonon to spin excitation [8,9].

Phonons
The vibrational spectra of BFO [8,10–17], o-
RMnO3 [18], and h-RMnO3 [7,19–23] have been
well characterized. All of them converge to a com-
mon phonon picture reflecting the symmetry of the
crystals.The symmetry of BFO is rhombohedral R3c
[11], and P63cm and P63/mmc for the FE and para-
electric states of h-YMnO3 [7]. Note that usually
fewer phonons are experimentally observed than
that are allowed by symmetry, because some of the
modes are overlapping or have low intensities. The
phonon symmetry needs to be correctly assigned
using polarized Raman techniques [12,14,24] and
infrared spectroscopy [8,17,18,22]. This symmetry
information of phonons is crucial for understanding
the nature of phase transitions and identifying con-
nections between physical properties and atomic
motions [25–27].

As the temperature increases, the energy of par-
ticular phonon modes decreases because of bond
softening [10,11], and some of them disappear due
to the crystal structure change above FE transition.
Moreover, the phonon density of states measured
by INS shows broadening of the entire phonon
spectrum, indicating strong anharmonicity due to
phonon–phonon interactions [28]. Hybridization
or coupling also occurs between different branches
[29].

Magnons
In type-I multiferroics, since the FE transition takes
place at higher temperatures than the magnetic or-
dering, unperturbed magnon (phonon) dispersion
can be measured below (above) TN. The non-spin-
flip data capture the phonon signal, while the spin-
flip signal is purely magnetic.

The zone-center frequencies ofmagnons are nor-
mally below those of phonons,with high-energy spin
dynamics for super-exchange interaction including
the nearest neighbor (NN) and next-nearest neigh-
bor (NNN) exchanges, and low-energy spin dynam-
ics for inter-layer coupling and single-ion anisotropy
(SIA) [6], where discrepancies still exist between
the simulation and dispersion curves obtained ex-
perimentally [30]. The ratio between the NN and
NNN exchanges determines the local AFM order,
and the Dzyaloshinskii–Moriya interaction (DMI)
stabilizes a long-period spin cycloid in BFO.

In BFO, spin cycloids excite two categories of
magnons corresponding to spin-wave excitations:
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Figure 2. (a) Theoretical result of the magnon spectrum for a cycloid without the anisotropy term. The perpendicular component to the cycloid plane
and parallel component along the polarization direction are depicted by the solid and dashed lines, respectively. The �n (cyclon) and �n (extra-cyclon)
are the in-plane and out-of-plane modes, respectively. (b) Magnon modes calculated by the full spin Hamiltonian. All possible excitations are showed
by dashed lines. (c) Calculated magnon dispersion along [h 0 0]hex near (1, 0, -1)hex for several models described in the text [4]. Copyright 2019, IOP
Publishing.

cyclons (denoted�, in the cycloid plane) and extra-
cyclons (or spin-flip, denoted � , out of the cycloid
plane), which can be demonstrated using Raman
spectroscopy [6], THz spectroscopy [5,8,31,32]
and millimeter-wave and IR spectroscopy [15]. The
peak locations of the � modes are equally spaced
starting at zero frequency, while those in the � se-
quence are not regularly spaced at low frequencies,
in agreement with the theoretical prediction [33].
Different DMIs and SIAs can only introduce signif-
icant changes at the zone center at lower energies
(shown in Fig. 2) [4]. In TbMnO3, three modes ex-
ist corresponding to the rotation of both the spin
plane and polarization direction about the z axis; ro-
tation of the spin plane about the x axis, which is not
coupled to the polarization; and the sliding mode,
i.e. phason, of the spiral [34], and have been ob-
served in INS [35] andTHz studies [36–41].More-
over,multiple excitationmodes such as two-magnon
modes have been observed in IR reflectivity spectra
of TbMnO3 [9].

In h-RMnO3, such as YMnO3, the spins on
Mn3+ ions are ordered antiferromagnetically and
frustrated strongly on triangles in the ab plane with
a 120◦ angle. Magnons were investigated using IR,
THz and Raman spectroscopies [7,42]. Excitation
at the zone boundary in the ab plane and linear

field-induced magnon dispersion splitting close to
the zone center [43] suggest a possible 3Dmagnetic
ground state of the system. However, discrepancies
still exist between INS dispersion curves and theo-
retical calculations of the exchange parameter ratio
JNN/JNNN, which implies that the standard interpre-
tation of magnon spectra needs to be revised and
that magnon–phonon and magnon–magnon inter-
actions need to be included.

When increasing the temperature or magnetic
field, softening and broadening occur in the spin-
wave spectrum [28], which reflects the frustrat-
ing NNN interactions, weakened NN interactions,
and strong anharmonicity of the magnon–magnon
and magnon–phonon interactions. Moreover, non-
monotonic behavior of the INS scattering intensity
has beenobservedwith increasing temperature [44].
Broadening of the magnon spectrum and excitation
splitting have been found [8,45], although they re-
quire further study [35].

Phonon–magnon coupling and
electromagnons
Generally, lattice and spin coupling manifest
themselves as anomalous temperature dependence
of the peak position deviating from standard
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anharmonicity-related phonon decay and anoma-
lous hardening below TN [10,23,46]. When the
phonon–magnon coupling becomes sufficiently
strong, a complex magnetic phase can be intro-
duced; e.g. a longitudinal spin-density wave and
spiral phase can exist at different temperatures
in TbMnO3 [9]. Magnon–phonon coupling is
so strong that it governs the polarization depen-
dence of magnon absorption in BFO [47]. Most
importantly, the transverse acoustic phonons
measured at the zone boundary clearly broaden
in energy when TN is approached from below,
indicating that the acoustic phonon modes and
magnetic order are coupled in this multiferroic
material [29].

A quasiparticle called an electromagnon (EM)
[48–51] can be excited and is a hybrid of magnon-
and phonon-likemodes, which can be excited by the
electric andmagnetic fields of a photon, respectively.
The activation of these excitations can stem from ei-
ther DM interaction [33,52–55], or exchange stric-
tion [37,56,57]. In addition to mixing the modes,
the ME coupling shifts the frequencies with respect
to the bare magnon or phonon frequencies. How-
ever, these energy shifts are small [33,52] in BFO,
so the magnetic resonances and electromagnons are
coincident within the experimental resolution. De-
pending on the magnetic modulation and anhar-
monicity of the material, EM with higher quan-
tum number can appear, which can be attributed to
Umklapp coupling between magnons and phonons
[33,52] as well as non-zero SIA, where the latter can
also split �n and �n to �±n and �±n [6,45], as
shown by THz spectroscopy [5] of BFO, o-RMnO3
[9,38–40]. However, it is still under debate why op-
tical phonons andelectromagnons that are separated
by such a large energy scale can experience direct
coupling.

In h-RMnO3, the FE and magnetic orderings
are no longer concomitant since the electric polar-
ization appears far above room temperature, while
strong magnon–phonon coupling still exists. One
of the consequences is that extra hardening devia-
tion occurs below TN for several phonon branches
[20,22,23,46]. At the same time, strong deviations
from linear spin-wave theory excluding magnon–
phononcouplinghavebeenobserved inmagnondis-
persion curves [41]. Consequently, the lower mode
at theBZboundarymoves downwards in energy and
an additional mode at high energy appears in the
phonon spectrum of h-RMnO3. Moreover, avoided
crossing (anti-crossing) at the zone boundary in
polarized INS was revealed and exhibited mixed
magnon–phonon characteristics [7,19,43,58]. Fur-
thermore, spontaneous magnon decay, i.e. finite
magnon lifetime, occurs because of the anharmonic

higher-order terms caused by non-collinear spin
structures [41].

Manipulation of phonons and magnons
Magnetic states canbemanipulated either by switch-
ing the helicity of AFM-order spin cycloids in
TbMnO3 using a continuous-wave laser beam with
an energy of 2.3 eV [59] or by tuning the motion
of the magnetization vector to follow an arbitrar-
ily designed direction and amplitude of polarization
in NiO [60]. The latter method is performed by
applying two linearly polarized laser pulses with a
properly tuned azimuthal angle ψ and time delay τ

[60]. A similar idea was later implemented in AFM
three-sublattice ordering of themagneticMn3+ mo-
ments in hexagonal YMnO3, where full 3Dmagneti-
zation control was realized by a pair of time-delayed
polarization-twisted femtosecond laser pulses [61];
thereby, it is possible to store multiple pieces of
information.

SIMULATIONS
The following section will concentrate on theo-
ries and simulation techniques used to identify
the magnetic interactions in multiferroic materials;
to demonstrate the dispersion curves of phonons,
magnons, and electromagnons; and lastly to manip-
ulate the magnetic states based on the strong non-
linear phonon–magnon coupling.

Hamiltonian for multiferroic systems
The total Hamiltonian for multiferroic systems has
been thoroughly reviewed in the previous litera-
ture [62] and can be expressed in several terms as
Hexch + HDM + HSIA, with the NN exchange J i j ,
NNN exchange J ′

i j , DMI Dij, and SIA KSIA. The ex-
change interactionHexch can be expressed as

Hexch =
∑
r,i, j

J ∗
i j Si · S j =

∑
r,NN

J i j Si · SNN

+
∑
r,NNN

J
′
i j Si · SNNN. (1)

If Jij > 0, the exchange interaction favors the AFM
state, while, if Jij < 0, it favors the ferromagnetic
state. The DMI term HDM contributes to the cy-
cloid structure of spins and arises from the interplay
between broken inversion symmetry and spin–orbit
coupling [63,64], where

HDM = −
∑
r,i, j

Di j · (Si × S j ). (2)
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The DMI favors perpendicular spin alignment,
and the strength is proportional to the rotation an-
gle of the oxygen octahedral. The SIA Hamiltonian
is

HSIA = −K
∑
r

(Sr · ĉ )2 (3)

For the uniaxial case, K > 0 corresponds to the
easy axis and K < 0 to the easy plane. SIA comes
mainly from anisotropic deformation of the struc-
ture as well as the competing FE and antiferrodis-
tortive (AFD) distortions.

The above terms of the Hamiltonian dominate
the magnetic behavior of BFO and h-RMnO3, al-
though the DMI can be more specified in differ-
ent directions. However, for o-RMnO3, the above
Hamiltonians cannot precisely describe the complex
phase diagram of magnetic states, such as the exis-
tence of E-AFM states. The Ising mode [65], two-
orbital double-exchange model [66,67], and bond
alternation model of FM exchange [68] were pro-
posed, before higher-order coupling terms such as
a biquadratic term Hbiq [69] and four-spin ring
exchange term H4sp [70] were included to pre-
dict magnetic structures and important features of
spin-wave spectra that cannot be obtained from the
Heisenberg Hamiltonian [71–73]:

Hbiq = −
∑
i, j

Bi j (Si · S j )2 (4)

H4sp =
∑
i, j,k,l

g i j kl
[
(Si · S j )(Sk · S j ) + (Si · Sl )

× (S j · Sk) − (Si · Sk)(S j · Sl )
]
. (5)

Higher-order exchange couplings can be ob-
tained from the consecutive hopping of electrons
between a series of four NN spins and have been
invoked to describe the detailed energetics of or-
thorhombic TbMnO3, as in [69,74].

The four-spin ring Hamiltonian fits the energy
of o-RMnO3 from DFT [69] and certain features
in neutron diffraction patterns [75,76]. Moreover, it
not only explains the unexpected polarization direc-
tion [76], but also solves the discrepancy between
the predicted and observed orders of the electric po-
larization magnitude of E-AFM-ordered TbMnO3
[74,77–79].

Determination of exchange parameters
For precise evaluation of the above Hamiltonian,
it is important to identify the coupling constants
accurately [80], which can be done by using first-
principles methods to calculate the total energy of

four carefully designed collinear spin configurations.
Jij, Dij, KSIA, and their derivatives can then be ob-
tained by extracting the linear combination of the
energies H1, H2, H3, H4 of these four differ-
ent configurations (Eq. (7)), where the forces can
be obtained directly from many standardized DFT
schemes asHellmann–Feynman forces [81].The to-
tal energy of the system with collinear spin align-
ment is calculated when spin states at two sites i and
j within the given unit cell are modified, with the
magnetism of the system fully described by the
Heisenberg Hamiltonian

Hspin = J i j Si · S j + Si · Qi + S j · P j + Hother,

(6)

where Qi = ∑
m �=i,j

J im Sm , P j = ∑
m �=i,j

J jm Sm , and

Hother = ∑
m �=i,j

J mn Sm · Sn ,

J i j = H1 + H4 − H2 − H3

4S2
. (7)

The derivative of J i j with respect to the displace-
ment ξkα can be found to be

∂ J i j
∂ξkα

= 1
4S2

(
∂H1

∂ξkα
+ ∂H4

∂ξkα
− ∂H2

∂ξkα
− ∂H3

∂ξkα

)
.

(8)

Regarding the system with its spin configuration
in the non-collinear state, the calculationmethod re-
mains the same in terms of still using four magnetic
ions within a unit cell, while the total energy with re-
spect to the rotation angle α away from the initial
collinear state is fitted to the form of the Heisenberg
model, where the exchange coupling constants Jab
and Jc can be extracted [82]. The problem of iden-
tifying coupling constants is essentially one of pa-
rameter fitting with certain numbers of equations
and unknown constants. Based on this understand-
ing, four spin ring coupling constants were evaluated
for o-RMnO3 in an overdetermined system, where
the energies of non-equivalent collinearmagneticor-
ders were calculated for a number of states much
greater than the number of constants [69]. An ar-
ray of equations was solved by using the least mean
squaresmethod, and all of the abovementioned cou-
plings were found.

Quasiparticle spectrum
The quantized excitations of the lattice or magnetic
subsystem, namely, phonons andmagnons, are com-
pletely described by their dispersion relation, which
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is strongly dependent on the atomic bonding and
magnetic coupling. Most multiferroic materials ex-
hibit severe modification of the magnetic configura-
tion alongside structural changes, indicating the pos-
sibility of strong phonon–magnon coupling.

Phonons
The starting point of phonon dispersion is cor-
rect evaluation of the strength of a particular
distortion mode or force constant [83,84]. The
former can be readily obtained using shell mod-
els [85,86], while the latter needs to be deter-
mined from the dynamical matrix of the system
[87,88]. In these methods, the total energy is ob-
tained by performing first-principles calculations,
using different functionals such as the local den-
sity approximation (LDA), generalized gradient ap-
proximation (GGA), LDA+U, GGA-Wu–Cohen
(WC), and Heyd–Scuseria–Ernzerhof functionals
[26,89]. Note that although LDA can provide quan-
titively satisfying agreement with experimental re-
sults, some functionals can achieve much better
agreement for particular branches, such as the B1-
WC functional for the E modes in BFO [90].

Zone-center phonon frequencies of BFO ob-
tained via the above methods fit well most of the
peaks in absorption spectra obtained by either Ra-
man or IR measurements [8,16,17,25,26,91,92].
Moreover, through e.g. detailed mode analysis, the
transverse optic modes A1(TO1) and A1(TO2)
were found to involve FE distortion and AFD ro-
tation, respectively, in BFO, which was verified by
Ginzburg–Landau calculations [33]. Furthermore,
the effects of macroscopic electronic polarization
can also be considered by including long-range
Coulomb forces in DFT calculations [25,87]. Re-
garding RMnO3, discrepancies still exist between
the phonon spectra calculated using shell models
and experimental measurements, which may be due
to over-simplification in the shell model calculations
[86]. Indeed, first-principles electronic structure cal-
culations for YMnO3 tend to yield higher phonon
energies for the low-energy E1 modes, compared
with those obtained using the shell model [93].

Magnons
Magnon behavior has been reviewed for BFO [4]
and h-RMnO3 [94]. Generally speaking, the high-
and low-energy parts of the magnon spectrum are
dominatedby super-exchange interactions such as Jij
andDMI/SIA, respectively, becauseDMI/SIA orig-
inates from spin–orbit coupling and is much weaker
than the exchange interaction. Moreover, SIA will

introduce anharmonic effects into a long cycloid or
even destroy it if sufficiently strong.

Several methods of calculating magnon spectra
to fit the peak positions in IR and Raman spec-
troscopy or the dispersion curves in full momen-
tum space in INS have been proposed. In the first
case, the stochastic Landau–Lifshitz–Gilbert (LLG)
equationwith fluctuation termswas considered, and
peaks in magnetic susceptibility curves were shown
to indicate magnons [27]. A similar method was im-
plemented to obtain themagnondispersion forBFO
in the full BZ, starting from the Ginzburg–Landau
free-energy expression [33] that includes the con-
tributions of the AFM and FE order parameters L
andP, respectively, aswell as the interactionbetween
them, as shown in the following equation:

F = GL4

4
+ AL2

2
+ c

∑
i (∇Li )2

2
−αP · [L(∇ · L) + L × (∇ × L)]

− P · E + r M 2

2
+ a P 2

z

2
+ u P 4

z

4

+ a⊥
(
P 2
x + P 2

y
)

2
(9)

where L = |M1 − M2| is a Néel vector describing
the staggered sublattice magnetization;M = |M1 +
M2| is the total magnetization of the materials; and
PX,PY, andPZ are themagnitudes of the FE polariza-
tionalong thex, y, and z axes, respectively.Therefore,
L can be determined from the linearized equations
of motion for the FE and AFM order parameters
obtained by the variational theorem. Basically, the
simple spin waves can be determined from the fluc-
tuations δL, with the cyclon order parameter �

and out-of-plane order parameter� referring to the
phase fluctuation of the cycloid ground state and
spin fluctuation out of the cycloid plane (the xz
plane), respectively:

δL = [φ(r) , ψ(r) , δp(r)]

=
∑
n

[φ(r) , ψ(r) , pn] e
i nq x e i k·r .

(10)

Series of parabola-like dispersion curves of
magnons were found, with anti-crossing between
theoptical phonondispersion andmagnonbranches
at finite k, and the frequency was dependent on
q = αP0/c , whereα and c are from the free-energy
expression in Eq. (9), and P0 is the polarization of
an easy-axis FE with uniform polarization [33].

The other method of obtaining the full mo-
mentum space spectrum starts from the spin
Hamiltonian mentioned in the previous section.
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Figure 3. (a)–(d) Experimental magnon and phonon dispersions of h-YMnO3. (e)–(h) Theoretical dispersions with intensity at the same q paths, temper-
atures, and applied magnetic fields [43]. Copyright 2019, American Physical Society.

A second quantization was implemented by using
the Holstein–Primakoff boson operators [95],
Bogoliubov transformation, and diagonalization.
TheHamiltonian can consequently be expressed as

Hexch = E cl + S
∑
k

ωk +
∑
k

2Sωkγ
+
k γk,

(11)
where Ecl is the classical ground-state energy, and
the magnon energy can be found from 2Sωk
[4,30,32,44,52,54,96]. To avoid needing a large unit
cell to include the cycloid, local rotating coordinate
systems were introduced both for BFO [4,52] and
o-RMnO3 [34,35].

In BFO, the magnon modes were separated into
two groups, according to two effective components
of DMI: cyclon (�) and extra-cyclon (�) modes,
as shown in Fig. 2 [33]. � modes are gapless, while
� modes are gapped due to the pinning of the cy-
cloid plane. Once the excitation spectrum has been
obtained precisely, the Hamiltonian as well as the
corresponding coupling constants can be evaluated
precisely by fitting the excitation frequencies ob-
tained by THz spectroscopy [5,8,47], Raman spec-
troscopy [5,6,14,45], IR spectroscopy [31] and INS
[4,30,44]. Thereby, the best fitting results for J and
J′ were found to be 4.38 meV and 0.15 meV, respec-
tively [30,96]. A non-zero constantKwill introduce
cycloid deviation and splitting of the higher harmon-
ics of the cycloid at every crossing of �±n and �±n
in BFO [52].

However, avoidance of crossing and linear split-
ting in both the ab plane and c direction exist
in the magnon spectrum at the zone boundary
and were observed in single-crystal YMnO3 INS

measurements, shown in Fig. 3. Therefore, the fol-
lowing lattice term HL and spin–lattice coupling
term HSL [43,73] need to be considered in the
Hamiltonian [97,98]:

HL =
∑
k,s

ωk,s a+
k,s ak,s (12)

HSL =
∑
i

∑
αβγ δ

Gαβγ δSα
i S

β

i ε iγ δ, (13)

where the bosonic operators ak,s with eigenenergies
ωk,s are for acoustic phonons in a hexagonal lattice
in the absence of magnetic order in h-YMnO3, and
the spin–lattice coupling termHSL is a hybridization
term between the Holstein–Primakoff magnon op-
erators S and G [43]. This term denote the elastic
energy introduced by the configuration Sα and Sβ ,
whereG is the magnetoelastic coupling tensor and S
is the spin–phonon coupling tensor, the summation
index i extends over the spins of the whole crystal.

The phonon–magnon interaction was further
studied by using a quasiharmonic free-energy ap-
proach implemented using first-principles methods,
where the coupling was regarded as the dependence
of the exchange constant on the atomic displace-
ments [87], although the anharmonic effect was
not fully considered. Using this method, researchers
found that the cycloid in BFO has a third harmonic,
which was supported by THz spectroscopy mea-
surements [5,8,31].

Manipulation of quasiparticles
The strong interaction among the spin, polarization,
and lattice in multiferroic materials provides plenty
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Figure 4. (a) Schematics of a polarization induced by a spatially varying magnetization
and a magnetization induced by temporally varying polarization. (b) Magnetic moments
from ionic loops. Perpendicular optical phonons drive ionic motion in a diatomic A+B−

material. Local magnetic moments, mA and mB, are created by the circular motions
[100]. Copyright 2019, American Physical Society.

of space to manipulate the magnetization and polar-
ization dynamically [99,100]. Previous researchers
have put considerable effort intomanipulating these
features using strain [101–103]. In this article, an al-
ternative method called ‘dynamic multiferroics’ will
be reviewed. Magnetization M is symmetric under
space inversion and antisymmetric under time re-
versal, whereas polarization P is symmetric under
time reversal and antisymmetric under space inver-
sion. Therefore, M ∼ P × ∂P/∂t can be developed
in the presence of an appropriate dynamic polariza-
tion (Fig. 4).

This method supposes that M · (P × ∂ P /∂t)
couples M and P at the same order as
P · (M × (∇r × M)). The time variation of P
can be realized by considering two adjacent P
evolving with different frequencies ω1 and ω2. In
this case, two intrinsic lattice vibrations with these
frequencies contribute to different Born effective
charges. Four possible coupling mechanisms have
been proposed: (1) phonon Zeeman splitting in
a magnetic field, with perpendicular polarized
phonons with frequencies ω1 = ω2 = ω0; (2)
resonant magnon excitation by optically driven
phonons with ω1 �= ω2 with perpendicular po-
larity; (3) DM-type electromagnons, with an
applied electric field and P = (P1(0), 0, P2(t)),
where P1(0) = PFE(ω1 = 0, ϕ = π/2) and
P2(t) = E (t)(ω2 = ω0), and (4) an inverse
Faraday effect with perpendicular time-dependent
polarizations induced by circularly polarized light
both oscillating with the frequency of the light
(ω1 = ω2 = ω0) and phase-shifted by φ = π/2.
In multiferroic materials, each optical phonon is
polarized with a certain polarization. Therefore,
the above four schemes can be applied by carefully
selecting activated phonons in a crystal.

Due to the recent development of THz tech-
nology, it is possible to activate phonons with fre-
quencies in a certain range and certain polarizations.

By combination with the strong coupling between
the lattice and magnetic dynamics in multiferroic
materials, it is thus possible to tune the magnetic
states in these materials dynamically. The capabil-
ities of this method were demonstrated by Fech-
ner, as shown in Fig. 5 [104]. Fechner combined
the well-established theory of non-linear phononics
with spin dynamics, where the spin–lattice coupling
was described through magnetic exchange interac-
tion variations induced by structural changes and
was demonstrated in three steps.

In the first step, the actual structural modifica-
tion or atomic displacement induced via non-linear
phononic coupling was evaluated by solving a set of
dynamic equations, where an IR mode was excited
by a driving sinusoidal force F(t) with a certain am-
plitude and frequency:

ξ̈IR + ω2
IRξIR + γIR ξ 3

IR = 2g ξIRξR + F(t)
(14)

ξ̈R + ω2
RξR + γR ξ 3

R = g ξ 2
IR, (15)

F (t) = E drive sin(ωt) , (16)

where ξR and ξIR are the distortions of the Ra-
man and IR modes, respectively; γ IR and γ R are
the fourth-order anharmonic constants of the Ra-
man and IR modes, respectively; and g is the cou-
pling between two phonon modes. Depending on
the non-linear coupling between different modes,
several phonon components can be excited by the
driving modes.

In the second step, after obtaining certain varia-
tions of the phonon modes, the lattice–spin interac-
tion was included to consider the position deviation
of themagnetic exchange interactions between spins

Figure 5. (a) Unit cell of Cr2O3. Red arrows represent the
spin order. (b) Magnetic ground state changed by the excita-
tion of a polar phonon mode [104]. Copyright 2019, American
Physical Society.
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i and j to first and second order as

H sp =
∑
〈i, j 〉

∂ J i, j
∂ξ

(S i · S j )ξ

+
∑
i, j

∂2 J i, j
∂ξ 2 (S i · S j )ξ 2, (17)

where the exchange interaction can be expressed as
a function of the mode amplitude as

J i, j (ξR) = J i, j + ∂ J i, j
∂ξ

ξR + ∂2 J i, j
∂ξ 2 ξ 2

R + · · · .
(18)

The last step was to consider the spin configura-
tion evolution with respect to the time-dependent
magnetic exchangemodulations J i,j (ξR) and the us-
age of classical magnetization dynamics by applying
the LLG equation, with an atomic approach:

d Si
d t

= − γ

1 + α2

[
Si × H eff

i (t)
]

− αγ

1 + α2

[
Si × [

Si × H eff
i (t)

]]
,

(19)

where α is the damping parameter for spins. The
magnetic energy H eff

i (t) was evolved by using a
Heisenberg Hamiltonian only considering J i,j and
Di,j .

In thisway, themagnetic statewas tuned from the
equilibrium AFM of Cr2O3 to AFM ordering with
ferromagnetically coupled NN spins.This transition
is driven by the change in NN magnetic exchange
interaction when the Cr–Cr separation is modified
through non-linear coupling of the optical phonons
to a symmetry-conserving A1g Raman-active mode.

CONCLUSION
To achieve dynamic manipulation of magnetism as
well as polarization, more detailed understanding of
phonon–phonon and phonon–magnon interactions
is required. Discrepancies still exist between the ex-
perimentally obtained dispersion curves and those
theoretically predicted from first-principles or mag-
netic dynamics calculations. Moreover, demonstra-
tions of the strong anharmonicity and illustrations
of the ultrafast realistic evolution of these quasipar-
ticles remain limited, either in terms of the resolu-
tion of the current characterization techniques or
the capabilities of recent simulation methods. De-
spite these limitations, the strong coupling between
phonons and magnons as well as electromagnons in
AFMmultiferroic materials makes it possible to ap-
ply the existing optical recording techniques for FMs

toAFMs and to explore potential spintronic applica-
tions with ultrahigh speed and efficiency.
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