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Abstract

Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as

Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly

localized to the proximal region of the flagellum, and is involved in the flagellum assembly,

cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated

(UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to ana-

lyze the role of these domains in the intracellular distribution and functions of this protein in

Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of

Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as

GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and sepa-

rately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP,

Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-

distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate

of only the two UBLDs was found to predominantly localize to the flagellum base. Addition-

ally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs

possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP

expressing cells. Further, the intracellular vesicle transport and cell growth were severely

impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in

contrast, virtually no effect was observed on the intracellular vesicle transport and growth in

the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed

slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to

delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their

cell division process. These results taken together clearly reveal that the presence of

UBLDs in Myo21 are essentially required for its predominant localization to the flagellum

base, and perhaps also in its involvement in the flagellum assembly and cell division. Possi-

ble role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell

cycle is discussed.
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Introduction

Myosins are a diverse group of actin-based motor proteins, which are involved in several cellular

activities, such as cell motility, intracellular trafficking, cytokinesis, muscle contraction, etc. [1].

These proteins are composed of a heavy chain, which consists of N-terminal head domain (motor

domain) that contain actin and ATP binding sites and also possesses ATPase activity, a light chain

(calmodulin)-binding neck domain, and a C-terminal tail domain that imparts functional speci-

ficity to different classes of myosins [2]. Based on the high degree of sequence conservation in the

head domain, myosins have been anticipated to power their movements along F-actin tracks,

whereas the variable tail domain facilitates the cargo binding and transportation. Most eukaryotic

organisms require myosins for a variety of their cellular functions, but a few taxonomic groups,

such as red algae and diplomonads appear to live without them [3]. Based on variations in their

amino acid sequence and domain composition, myosins have been classified into more than>30

classes in different organisms [4] some of which fall into the category of novel class of myosins.

For example, kinetoplastid parasites such as Trypanosoma brucei, Trypanosoma cruzi and Leish-
mania all contain one class I myosin and one myosin belonging to a novel class of myosins, class

XXI. In addition to these two myosins, T. cruzi contains additional six more myosins, five of

which fall into class XXI, whereas TcMyo8 still remains unclassified [5,6]. Interestingly, the tail

region of kinetoplastid myosins contains protein domains that were not known earlier to be asso-

ciated with myosins, e.g., FYVE, WW, or UBA (Ubiquitin associated)-like domains [5].

Leishmania are a group of eukaryotic parasites that cause several human diseases, including

cutaneous and visceral leishmaniasis, and have digenetic life cycle, requiring an insect vector

(sand fly) and animal host for their multiplication and propagation [7]. Within the sand fly vector,

Leishmania exist extracellularly in form of promastigotes, which have elongated cell body and

long motile flagellum, whereas in animals, these parasites reside and multiply within the macro-

phages adopting the amastigote morphology with a rounded cell body and barely visible flagellum.

The genome of these organisms encodes for only two homologues of myosins, one belonging to

class IB and the second belongs to class XXI [8]. Earlier studies have shown that L. donovani pro-

mastigotes express only class XXI myosin (Myo21), which predominantly localizes to the proxi-

mal region of the flagellum [9], and regulates the flagellum assembly, cell motility and intracellular

trafficking [9,10]. It has further been reported that the prominent localization of Myo21 to the

proximal region of the flagellum is not dependent on the myosin head region but it is almost

exclusively determined by the myosin tail region [9]. As Leishmania Myo21, unlike other myosins,

contains two putative UBA-like domains in its tail region, we considered it of interest to analyze

whether these domains have any role in the intracellular distribution and functions of Myo21 in

Leishmania promastigotes. Our results indicate that-(I) both the UBA-like domains are essentially

required for prominent localization of Myo21 to the proximal region of the flagellum and flagel-

lum assembly, and (II) only one of the two UBA-like domains may perhaps be sufficient to main-

tain the normal activity of Myo21 during intracellular vesicle transport and cell division.

Materials and methods

Mouse monoclonal antibody against α-Tubulin (B-5-1-2; Cat. No.23948) was procured from

Santacruz Biotechnology company, whereas mouse monoclonal antibodies against β-tubulin

(Cat. No. T7816) and GFP (GF28R; Cat. No.MA5-15256) were purchased from Sigma and

Invitrogen, respectively.

Leishmania culture and growth analysis

Leishmania donovani promastigotes were routinely cultured in high glucose Dulbecco’s modi-

fied Eagle’s medium (DMEM; Gibco, Life Technologies) supplemented with 10% of heat
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inactivated fetal bovine serum (FBS; MP Biomedicals) and 40 mg L-1 gentamycin at 25˚C. Cul-

tures were allowed to reach stationary phase (6–7 days post inoculation), prior to inoculation

into fresh medium. Myo21-GFP and other GFP chimera expressing cells were maintained in

the presence of 100 μg mL-1 of G418 sulfate. For growth analysis, cells were inoculated at 105

cells mL-1 density in the medium without antibiotic, and the cell number was counted every 24

h for up to 11 days with a hemocytometer.

Myo21 gene expression and protein purification

Recombinant Myo21 was expressed and purified as described earlier [9]. Identity of the puri-

fied recombinant Myo21 was determined by western blotting, using antibodies against the his-

tidine tag (His6).

Generation of polyclonal rabbit antiserum against recombinant Myo21 and

chicken antiserum against recombinant Leishmania actin

To raise polyclonal antiserum against Myo21, rabbits were injected with the purified protein

(Outsourced to Geniron Biolabs Pvt. Ltd. Bangalore, India, paid service). The monospecific

polyclonal antiserum against Myo21 from the immunized rabbit serum was prepared, as

reported earlier [11]. Specificity of the antibodies was confirmed by western blotting of Leish-
mania cell lysate, wherein it specifically recognized only a single band of expected molecular

weight of ~115 kDa.

Leishmania actin (LdAct) clone was obtained from Amogh Sahasrabuddhe (CDRI, Lucknow,

India). Recombinant LdAct was expressed in E. coli and the protein from the inclusion bodies was

purified, as reported earlier [12]. Antiserum against pure recombinant LdAct was raised in chick-

ens (Paid Service, Geniron Biolabs Pvt. Ltd., India), and monospecific polyclonal anti-LdAct anti-

sera was prepared by affinity chromatography, using the published procedure [12].

Generation and expression of full length and truncated Myo21-GFP fusion

constructs

Full length open reading frame of Myo21 (amino acid: 1–1050) was PCR amplified with

primer pair F1/R1 (S1 Table) from the genomic DNA, and cloned in frame to the C–terminus

GFP gene in pXG-GFP+ vector at BamH I site (Myo21-GFP). Truncated forms of Myo21,

lacking both the UBA- like domains (amino acid: 1–953) and only the UBA2 domain (amino

acids: 1–1011), were PCR amplified using primer pairs F1/ R2 and F1/R4 (S1 Table), respec-

tively, and then ligated in pXG-GFP+ vector at BamHI site (Myo21ΔUBAs-GFP; Myo21ΔU-

BA2-GFP). To clone the Myo21 lacking only the UBA1 domain, two steps PCR was done, first

two fragments were amplified using primer pairs F1/R3 (amino acids: 1–953) and F2/R1

(amino acids: 991–1050) (S1 Table). Both the fragments were gel eluted and used as a template

for second step of overlapping PCR with primer pairs F1/R1 and finally cloned as described

above. Cloning of Myo21 UBA like domains (both 1 and 2; GFP-Myo21UBAs) and Myo21 tail

lacking both the UBA like domains (GFP-Myo21TΔUBAs) was done at Bam H I site in

pXG-GFP2+ vector after their amplification using primer pairs F3/R5 (amino acids: 954–

1050) and F4/R6 (amino acids: 751–953), respectively (S1 Table). The authenticity of each

clone was confirmed by DNA sequencing. The clone was transfected in mid-log phase Leish-
mania promastigotes by electroporation and selection was done under increasing concentra-

tion of G418 sulfate (20–100 μg mL-1). This was followed by clonal selection for each construct

in order to obtain homogeneous culture, but without much success, as they became heteroge-

neous after 2–3 generations.
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Western blotting

Mid-log phase Leishmania promastigotes (5–8 X 106 cells) were used for the analysis. Lysates

were prepared by washing the cells two times with phosphate buffer saline (PBS; pH 7.4) and

boiling the re-suspended cells in SDS (sodium dodecyl sulfate)- polyacrylamide gel sample

buffer in the presence of protease inhibitor (1mM PMSF, 1mM benzamidine hydrochloride

hydrate and protease inhibitor cocktail (Roche)). Equal amounts of lysates were loaded and

resolved on 10% SDS–polyacrylamide gels by electrophoresis. Gels were electro blotted on

nitrocellulose membrane, followed by incubation of the membrane in blocking buffer (5%

skimmed milk in TBS (Tris buffer saline; pH 7.4)). The membrane was first probed with pri-

mary antibodies (anti-GFP, 1:2500; anti-Myo21, 1:2500; anti-LdAct, 1:5000) diluted in block-

ing buffer. After removing the unbound antibodies by washing, the membrane was probed

with HRP-conjugated secondary antibodies (HRP-conjugated anti-mouse IgG, anti-rabbit IgG

or anti-chicken IgY; Invitrogen; 1:5000). Blots were developed by chemiluminescence ECL

substrate (Amersham, GE healthcare) and imaged in a BioRad Molecular Imager1 Chemi-

Doc™ XRS+ imaging system. Quantification of band intensity was done by Gel Quant.net

software.

Immunofluorescence microscopy

Cells were washed twice with PBS (pH 7.4) and allowed to adhere on poly–L–lysine coated

coverslips for 5–10 min. Adhered cells were fixed in paraformaldehyde (2%, w/v) solution for

30 min, followed by washing with PBS–glycine (0.5%, w/v) solution. For visualization of GFP–

tagged protein expression, coverslips were mounted in ProLong Diamond Anti-fade Moun-

tant with 4, 6-diamidino-2-phenylindole, DAPI (Invitrogen; P36966) and images were cap-

tured on Nikon laser scanning confocal microscope c2 using a 100 x 1.4 NA (oil) lens. For co-

labeling with antibodies, fixed cells were permeabilized by their treatment with PBS containing

0.5% (v/v) Triton X-100, and blocking was done with 3% bovine serum albumin (BSA) solu-

tion in PBS (w/v). The immunolabeling of cells was carried out, using anti-α/β tubulin

(1:1000) or anti-LdAct as primary antibodies and anti-mouse Alexa Fluor 568 or anti-chicken

Alexa Fluor 568 as secondary antibodies. Coverslips were mounted in ProLong Diamond

Anti-fade Mountant with DAPI and imaging was done on Nikon laser scanning confocal

microscope c2 using a 100 x 1.4 NA (oil) lens. Negative control slide was used to blank back-

ground signals and adjust the gain/offset and laser powers before the image data collection.

Wherever required images were adjusted for brightness/contrast and were cropped and

arranged for presentation in Adobe Photoshop.

For nuclear and kinetoplast configurations analyses, the cells from the mid–log phase were

stained with DAPI and categorized into 1N1K, 2N2K, 2N1K, depending on the number of

nuclei and kinetoplasts per cell and the percentage of each category was quantified in three

independent experiments (n�600) in each case.

Intracellular vesicle transport

Endocytic vesicles were traced microscopically by using the fluorophore FM™4-64FX (Invitro-

gen) as described earlier [13]. Briefly, Leishmania cells (5–10 X 106 cells mL-1) were incubated

in culture medium with 10% FCS and 2 μg mL-1 FM™4-64FX for 10 min at 25˚C in the dark,

harvested and re-suspended in fresh medium. Small aliquots were withdrawn at various time

intervals, washed twice with cold PBS before adhering onto poly-L-lysine coated coverslips.

Adhered cells were fixed with 2% paraformaldehyde, washed and mounted in ProLong Dia-

mond Anti-fade Mountant with DAPI and imaging was done on Nikon1 ECLIPSE Ni-E

microscope using a 100X (oil) lens.
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Motility assessment by time-lapse microscopy and video microscopy

Motility measurements were performed on a Nikon1 ECLIPSE Ni-E microscope after collect-

ing time-lapse movie for 30 seconds with a 40X objective. Paths of individual cells from the

time-lapse movie were traced using MTrack2 tracking tool from Fiji (ImageJ). To analyze the

motility rate, cells with complete path tracks were considered. Motility rate was determined by

dividing the total path travelled by the time taken and plotted in the graph. For cell swimming

analysis video at 100 frames per second were captured at 40 X magnification.

Cell cycle analysis

For cell cycle analysis, the mid-log phase promastigotes (�107 cells mL-1) were synchronized with

hydroxyurea (HU) as described earlier [14]. Cells were collected by centrifugation at 1400 X g for

10 min at 4˚C, resuspended in fresh DMEM containing 200 μg mL-1 HU (Sigma), and the mixture

was incubated overnight (12 h). After incubation, the cells were collected by centrifugation, washed

two times with PBS and then re-suspended in fresh DMEM media without HU. Approximately

107 cells were collected at every 2 h time interval for up to 12 h. The cell suspension was mixed

with 150 μl of fixative solution (1% Triton X-100, 40mM citric acid, 20 mM sodium phosphate,

200 mM sucrose) and incubated for 5 min at room temperature. To the fixed cells, 350 μL of dilu-

ent buffer (125 mM MgCl2 in PBS) was added and the samples were stored at 4˚C until further

use. To measure DNA, the cells were first incubated with 50 μg RNase (5 mg mL-1 in 0.2M sodium

phosphate buffer, pH 7.0) at 37˚C for 2 h and then stained with 50 μg PI (5 mg mL-1 in 1.12%

sodium citrate) at 25˚C for 1 h followed by overnight equilibration at 4˚C. The data was acquired

in Gallios flow cytometer (Beckman coulter), and the proportions of G1, S and G2/M populations

were determined using ModFit software. Around 20,000 events were collected for each sample.

Quantification and statistical analysis

The data were statistically analyzed by ANOVA test provided in the Microsoft excel software.

A p-value of>0.05 was considered significant.

Results

Myo21 was expressed in bacteria, purified, and then monospecific anti-Myo21 antibodies pre-

pared, as reported by us earlier [9]. These antibodies specifically recognized a single band of molec-

ular mass of about 115 kDa in whole cells lysate of L. donovani promastigotes (S1A, S2A and S2B

Figs). In Leishmania cells, Myo21 besides being distributed throughout the cell body, it also con-

centrated predominantly at the proximal region of the flagellum, which is determined solely by its

tail region [9]. Bioinformatic analysis (Conserved Domain Database; Pfam) of Myo21 amino acid

sequence identified the presence of two putative UBA-like domains at its C—terminus spanning

the tail region. UBA-like domains, in general, have been reported to be about 35–45 amino acid

residues long, and are present in proteins that are involved in cell cycle regulation, DNA repair and

ubiquitin/proteasome pathways [15]. In an effort to characterize the role of these domain/s in intra-

cellular localization and functions of Myo21, Myo21-GFP fusion proteins were constructed to con-

tain full length Myo21 (amino acids 1–1050, Myo21-GFP), the truncated Myo21 lacking both the

UBA-like domains (amino acids 1–953, Myo21ΔUBAs-GFP), only one UBA-like domain at a time

(amino acids 1-953/991-1050, Myo21ΔUBA1-GFP; amino acids 1–1011, Myo21ΔUBA2-GFP),

only the two Myo21 UBA-like domains (amino acids 954–1050, GFP-Myo21UBAs) and Myo21

tail lacking both the UBA-like domains (amino acids 751–953, GFP-Myo21TΔUBAs) (Fig 1).

Each of these constructs was transfected separately in Leishmania promastigotes and the

expression of fusion proteins was confirmed by western blotting, using anti-GFP and anti-
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Myo21 antibodies (Fig 2A & 2B; S1B, S1C, S1D and S2C Figs). Densitometry analysis revealed

approximately two-fold expression of the Myo21-GFP and Myo21ΔUBAs-GFP, and about

1:0.7-fold expression of Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP proteins relative to the

endogenous Myo21 (Fig 2C). Despite increasing the antibiotic G418 sulfate, concentration

from 100 to 250 μg mL-1 in the culture medium, there was no further increase in expression

levels of single UBA deletion constructs.

Expression of Myo21ΔUBAs-GFP in Leishmania promastigotes severely

impaired their growth in culture

The Myo21ΔUBAs-GFP expressing cells grew considerably slower (Mean generation time:

16 ± 1.7 h) than the Myo21-GFP expressing or wild type cells (Mean generation time:

Myo21-GFP expressing cells—8.7 ± 0.7 h; wild type cells—9.3 ±1 h), never reaching the same

cell density as the control cells (Fig 2D). Notably, we frequently observed rounded and some

oversized cells in the late stationary phase cultures of Myo21ΔUBAs-GFP expressing cells. Fur-

ther, GFP-Myo21UBAs expressing cells grew at higher cell density, whereas GFP-Myo21TΔU-

BAs expressing cells grew at slightly lower densities, compared to the control cells (S2D Fig).

However, the expression of other truncated Myo21 proteins in the promastigotes had virtually

no effect on their growth (Fig 2D), suggesting that only one UBA- like domain in Myo21 may

perhaps be sufficient to maintain its activity in modulating the cell growth in culture, and that

Myo21 could be involved in regulation of Leishmania cell cycle.

The C-terminus region harboring UBA-like domains is essentially required

for flagellum base localization of Myo21

The intracellular distribution of the expressed proteins was monitored by immunofluores-

cence/fluorescence microscopy. The results revealed that similar to Myo21-GFP,

Fig 1. Design of constructs. Schematic diagram of the Myo21 protein sequence with domains indicated and various

GFP fusion chimeras used in this study. The distal tail region contains two UBA-like domains, named as UBA1 and

UBA2. The domains-deleted molecules used in the study have been named according to the region deleted, such as (i)

Myo21-GFP, (ii) Myo21ΔUBAs-GFP, (iii) Myo21ΔUBA1-GFP, (iv) Myo21ΔUBA2-GFP, (v) GFP-Myo21UBAs, and

(vi) GFP-Myo21TΔUBAs.

https://doi.org/10.1371/journal.pone.0232116.g001
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Myo21ΔUBAs-GFP was distributed throughout the cell body except that it failed to predomi-

nantly localize to the proximal region of the flagellum (Fig 3A & 3B; S3A & S3B Fig). Like

Myo21ΔUBAs-GFP protein, Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP proteins also failed

to concentrate at the base of the flagellum (Fig 3C & 3D; S3C & S3D Fig), suggesting that both

the UBA-like domains might have been required for prominent localization of Myo21 to the

proximal region of the flagellum. To examine the validity of this suggestion, we separately

transfected the Leishmania cells with GFP-Myo21UBAs and GFP-Myo21TΔUBAs constructs

(S1D & S2C Figs) and then analyzed their intracellular distribution by confocal microscopy.

Results given in Fig 3E and 3F clearly reveal that in most GFP-Myo21UBAs expressing cells

(>75%; n = 87), the construct appeared to prominently localize to the proximal region of the

flagellum, whereas no such intraflagellar distribution could be seen in GFP-Myo21TΔUBAs

expressing cells (n = 93). These results clearly demonstrate that the presence of both the UBA-

like domains in Myo21 is essential for its prominent localization to the flagellum base.

As Myo21 has been reported to partially co-localize with actin [10], we analyzed the

association of these mutant proteins with actin, using immunofluorescence microscopy. As

expected, in Myo21-GFP expressing cells, Myo21-GFP co-distributed with actin in the cell

Fig 2. Protein expression and growth analyses. (A and B) Western blot analysis of Leishmania cell lysates expressing

GFP fusion proteins (107 cells equivalent). Blots probed with anti–Myo21 antibodies were stripped and re-probed with

anti-GFP and anti-actin antibodies (Note—Additional bands visible on the blot are probably due to partial degradation

of GFP-fused proteins, despite lysing the cells in the presence of protease inhibitors). Mr, molecular weight markers.

(C) The GFP-tagged protein band (asterisk) signal intensity was quantified, normalized to endogenous Myo21 band

(arrowhead) in the respective lane (GelQuant.net software) and fold change in expression was calculated. Data shown

are means of three independent experiments ± S.D. ��, p�0.01; �, p�0.04. S. D., standard deviation. (D) Growth

analysis of wild type and mutant cells shows that the growth rate of Myo21ΔUBAs-GFP expressing promastigotes is

severely compromised and the cells grew at a significantly lower density, as compared to wild type or Myo21-GFP

expressing cells. The results are expressed as the means ±-S.D. of three independent experiments.

https://doi.org/10.1371/journal.pone.0232116.g002
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body and also at the proximal region of the flagellum (S4A Fig). However, no such intraflagel-

lar co-distribution of actin could be seen in cells expressing other mutant proteins (S4B, S4C &

S4D Fig).

Both the UBA-like domains in Myo21 are required for its role in regulation

of the cell morphology, flagellum length and motility

Our earlier studies have shown that Myo21 regulates the cell morphology, motility, flagellum

length and intracellular vesicle transport in Leishmania promastigotes [10]. To examine

whether UBA-like domains have any role in these Myo21 functions, we analyzed the cell body

length, width, flagellum length and motility of Leishmania cells expressing various truncated

Myo21-GFP constructs. Whereas expression of Myo21-GFP in wild type cells virtually had no

effect on their cell morphology and flagellum length (wild type cells–mean body length: 9.5 ±
1.2 μm, mean body width: 1.44 ± 0.36 μm, mean flagellum length: 10.7 ± 3 μm; Myo21-GFP

expressing cells–mean body length: 9.0 ± 2.0 μm, mean body width: 1.6 ± 0.27 μm, mean fla-

gellum length: 10.5 ± 2.5 μm; S5A & S5B Fig), a large number of stumpy cells possessing

shorter flagella were seen in cultures of cells that expressed Myo21ΔUBAs-GFP (Myo21ΔU-

BAs-GFP expressing cells- mean body length: 6 ± 1.5 μm, mean body width: 2.2 ± 0.4 μm,

mean flagellum length: 5.0 ± 2.2 μm; Fig 4A, 4B & 4C).

As Leishmania cell motility is directly influenced by the flagellum length [10, 16, 17], we

measured motility of cells expressing Myo21-GFP and Myo21ΔUBAs-GFP by video micros-

copy (Fig 5A, 5B, 5C & 5D; S1 and S2 Movies, respectively) in at least three independent exper-

iments. Results revealed that Myo21ΔUBAs-GFP expressing cells mostly swam at slower rate

and their average motility rate was significantly less than of Myo21-GFP expressing cells

(Myo21-GFP expressing cells–Mean motility: 12.7 ± 4 μm/sec, n = 40; Myo21ΔUBAs-GFP

expressing cells–Mean motility: 6.58 ± 1.9 μm/sec, n = 42; ��p�0.003).

The cells expressing individual UBA domain deleted constructs possessed slightly reduced

body length and increased body width, compared to control cells (Myo21ΔUBA1-GFP

expressing cells - body length: 7.8 ± 1.2 μm, body width: 1.6 ± 0.3 μm; Myo21ΔUBA2-GFP

expressing cells-body length: 7.5 ± 1.2 μm, body width: 1.8 ± 0.3 μm; S5C Fig). Although the

mean flagellum length of these cells was nearly comparable to the control cells (Myo21ΔU-

BA1-GFP expressing cells—9.62 ± 2.1 μm; Myo21ΔUBA2-GFP expressing cells—8.4 ±
1.6 μm); however, an appreciable number of these cells possessed a relatively shorter flagellum

(S5D Fig). Further, video microscopy analysis revealed that average motility rate of these cells

was slightly reduced, as compared to the control cells (Mean motility rate of Myo21ΔU-

BA1-GFP expressing cells: 10.8 ± 1.8 μm/sec, n = 33 and Myo21ΔUBA2-GFP expressing cells:

9.6 ± 0.5 μm/sec, n = 36; S6A, S6B, S6C, S6D & S6E Fig; S3 & S4 Movies). These results clearly

indicate that UBA-like domain(s) in Myo21 are required for its involvement in regulation of

Leishmania promastigote morphology, flagellum length and motility.

Fig 3. UBA-like domains of Myo21 are crucial for flagellar base localization of Myo21. Confocal microscopy

images of Leishmania promastigotes expressing (A) Myo21-GFP, (B) Myo21ΔUBAs-GFP, (C) Myo21ΔUBA1-GFP,

(D) Myo21ΔUBA2-GFP, (E) GFP-Myo21UBAs, and (F) GFP-Myo21TΔUBAs. Cells were labeled for α-tubulin (red)

and mounted in DAPI (blue) to visualize the DNA (nucleus and kinetoplast). In contrast to Myo21-GFP (n = 85),

Myo21ΔUBAs-GFP (n = 159), Myo21ΔUBA1-GFP (n = 123), Myo21ΔUBA2-GFP (n = 140) and GFP-Myo21TΔUBAs

(n = 93) distributed throughout the cell body but lacked predominant localization to the proximal region of the

flagellum. However, unlike these proteins, the construct containing GFP-conjugate of only the two UBA-like domains

of Myo21 appeared to prominently localize to the flagellum base in most cells (>75%; n = 87) that expressed this

protein. Arrowheads indicate localization of GFP-tagged protein to the proximal region of the flagellum in ‘A’ and ‘E’

and arrows indicate lack of such localization in ‘B, C, D & F’. Scale bar—2 μm.

https://doi.org/10.1371/journal.pone.0232116.g003
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Only one UBA-like domain in Myo21 may be sufficient to maintain its

normal activity in intracellular vesicle trafficking

To examine whether expression of GFP-conjugates of UBA-like domain deleted Myo21 con-

structs in Leishmania cells has any effect on the intracellular trafficking activity of Myo21, we

analyzed the uptake and intracellular transport of a fluorescent hydrophobic dye FM4-64 in

the cells, separately expressing various GFP conjugates of Myo21 deletion constructs, using

Myo21-GFP expressing cells as the control. In the control cells, the dye was efficiently endocy-

tosed and trafficked down from the flagellar pocket region to the posterior end at 25˚C in 60

min (Fig 6A), whereas in identical conditions, the dye in most cells expressing Myo21ΔUBAs-

GFP construct did not cross the nuclear region (Fig 6B). In 60 min, only 28% Myo21ΔUBAs-

GFP expressing cells trafficked the fluorophore beyond the nucleus (n = 53 from three inde-

pendent experiments) as opposed to 68% Myo21-GFP expressing cells (n = 67 from three inde-

pendent experiments; Fig 6C). However, expression of Myo21ΔUBA1-GFP or Myo21ΔUBA2-

GFP construct in Leishmania promastigotes exhibited no effect on the vesicular trafficking

activity of Myo21, as about 66% or 61% cells of respective cell type trafficked the fluorophore

beyond the nucleus (n = 43 and 36 for Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP, respec-

tively; from three independent experiments S7A, S7B & S7C Fig). From these results we infer

Fig 4. Expression of Myo21ΔUBAs-GFP alters the morphology of Leishmania cells. (A) Correlation of cell body

length and width of Myo21-GFPand Myo21ΔUBAs-GFP cells. (B) Histogram of flagellum lengths of Myo21-GFP and

Myo21ΔUBAs-GFP cells. More than 120 1N1K cells were measured from about 30 different fields in at least three

independent experiments for each cell type. ���p�0.0006 for body length, ���p�0.0003 for body width and
���p�0.0008 for flagellum length. The data were statistically analyzed by ANOVA test and a p-value of>0.05 was

considered significant. (C) Representative images of Myo21ΔUBAs-GFP expressing cells, showing altered morphology

and shortened flagellum length, compared to Myo21-GFP expressing cells. Scale bar—2 μm.

https://doi.org/10.1371/journal.pone.0232116.g004
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that only one UBA-like domain may be sufficient to maintain the normal activity of Myo21 in

intracellular vesicle trafficking.

Impaired cell division in Myo21ΔUBAs-GFP expressing cells is due to

delayed G2/M phase in cell cycle

Next, the possible link between the increased generation time and perturbation of one or more

stages during cell division cycle of Myo21ΔUBAs-GFP expressing cells was probed by assessing

the position in cell division cycle of an individual cell in culture. In L. major, tracking the dis-

tribution of DNA containing organelles (Nucleus, N; Kinetoplast, K) allows assessment of the

cell cycle position of individual cells within a population [18]. During the initiation of cell

cycle, a cell contains only one N and one K (1N1K). Subsequently, the kinetoplast divides first

(1N2K) followed by division of nucleus, resulting in 2N2K cells and finally cytokinesis pro-

duces two daughter 1N1K cells. Detailed examination revealed that the frequency of cells with

1N2K and 2N2K configuration increased significantly in Myo21ΔUBAs-GFP expressing cell

cultures, as compared to the control cell cultures (Fig 7), indicating aberrations in nuclear and

daughter cell segregation.

To validate the function of UBA -like domain in cell division, we probed the cell cycle pro-

gression after synchronizing the cells at G1/S transition by hydroxyurea (HU) treatment. After

releasing the HU block, measured aliquots of the cells were collected at 2 h interval up to 12 h,

and stained with propidium iodide (PI) to monitor the cell cycle progression from G1 through

S and G2/M, and back into G1 by flow cytometry. About 80% of Myo21-GFP expressing cells

and Myo21ΔUBAs-GFP expressing cells were arrested in the G1-S phase after HU treatment.

Fig 5. Expression of Myo21ΔUBAs-GFP alters the motility of Leishmania cells. Swimming tracks from time-lapse

movie of parasites expressing (A) Myo21-GFP and (B) Myo21ΔUBAs-GFP tracked using MTrack2 tracking tool in Fiji

(ImageJ). Scale bar—100 μm. Motility rate was determined by dividing the total path travelled by the time taken and

plotted in the graph for Myo21-GFP (C; n = 42) and Myo21ΔUBAs-GFP (D; n = 40) expressing cells from at least three

independent experiments; ��p�0.003. The data were statistically analyzed by ANOVA test and a p-value of<0.05 was

considered significant.

https://doi.org/10.1371/journal.pone.0232116.g005
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The Myo21-GFP expressing cells entered the S phase at 4 h, G2/M phase at 6 h and completed

it by 8 h to re-enter into the next G1 phase. Similarly, Myo21ΔUBAs-GFP expressing cells also

entered the G2/M phase at 6 h, but unlike the Myo21-GFP expressing cells, they took signifi-

cantly longer time (12 h) to navigate through the G2/M phase before entering G1 phase (Fig

8A & 8B; S8 Fig). The flow cytometry profiles of Myo21-GFP and other mutant protein (viz.

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP) expressing cells were similar to the wild type

Fig 6. Myo21ΔUBAs-GFP expressing cells have reduced rate of vesicular trafficking. Uptake and intracellular

transport of FM4-64FX fluorescent dye in (A) Myo21-GFP expressing cells, and (B) Myo21ΔUBAs-GFP expressing

cells. Cells were incubated with FM4-64FX (marker for endosome) for 10 min and then washed and suspended in fresh

medium. Measured aliquots of cells were taken out at 0 min, 30 min, 60 min and 120 min. Adhered and fixed cells

were stained with DAPI (blue) to visualize the nucleus (N) and the kinetoplast (K); FM4-64 dye is in red. Scale bar—

2 μm. (C) Quantitative analyses of Myo21-GFP and Myo21ΔUBAs-GFP expressing cells that trafficked FM4-64 dye

beyond the nucleus in 60 min (n = 67 and 53 for Myo21-GFP and Myo21ΔUBAs-GFP expressing cells, respectively,

from three independent experiments; ���p�0.0008). The data were statistically analyzed by ANOVA test and a p-value

of<0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0232116.g006
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cells (S9 & S10 Figs). These results suggest that the UBA-like domains of Myo21 may be

involved in steering out the cells through the G2/M phase of cell cycle.

Delayed G2/M phase progression results from mitotic and cytokinetic

arrest

To ascertain whether the observed G2/M arrest is due to delayed mitosis or post-mitotic,

Myo21ΔUBAs-GFP expressing cells were labeled with DAPI, 8 h after removal of HU block

and then analyzed for the nucleus and kinetoplast division (Fig 8C). Results revealed increased

accumulation of 1N2K and 2N2K Cell population (1N2K = 16.5%, 2N2K = 46.4%; n = 103

from at least three independent experiments) in Myo21ΔUBAs-GFP expressing cells, as com-

pared to Myo21-GFP expressing cells (1N2K = 7%, 2N2K = 23%; n = 84 from at least three

independent experiments). A large proportion (about 76%) of Myo21ΔUBAs-GFP expressing

Fig 7. Cell configurations according to the number of nuclei and kinetoplasts in Leishmania cells, Myo21-GFP and Myo21ΔUBAs expressing cells.

Quantification of DNA contents of DAPI stained mid-log phase wild type cells (purple bar), Myo21-GFP expressing cells (red bar), and Myo21ΔUBAs-GFP

expressing cells (green bar) by microscopy. Cells were categorized depending on the number of nucleus and kinetoplast present (1N1K, 1N2K, 2N1K, 2N2K &

others) and the results from an average of three independent experiments are plotted in the graph (n�600). There is significant reduction in 1N1K counts

(���p�0.001) and increase in 1N2K (��p�0.01) and 2N2K counts (��p�0.01) in Myo21ΔUBAs-GFP expressing cell population, compared to control cells. The

data were statistically analyzed by ANOVA test and a p-value of<0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0232116.g007
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cells having 1N2K configuration were gigantic in size, several fold larger than the normal size

cells. These cells contained either the connected nuclei or a bulky nuclear aggregate, indicating

mitotic inhibition (Fig 8D). Further, 11% of these gigantic cells displayed uninterrupted kinet-

oplast division and blocked cytokinesis. Besides, 45% of 2N2K mutant cell population did not

Fig 8. A prolonged G2/M phase slows down the cell cycle progression of Myo21ΔUBAs-GFP expressing cells.

Graphical representation of cell cycle of (A) Myo21-GFP expressing cells, and (B) Myo21ΔUBAs-GFP expressing cells,

after removal of hydroxyurea (HU) block. Mid-log phase cells were synchronized by the HU treatment. DNA content

was measured after staining the cells aliquots, taken out at 2 h interval up to 12 h, with propidium iodide (PI) and

analyzing the stained cells by flow cytometry. G1 phase—circle, S phase—square, and G2/M phase—triangle. The

results shown are means ± S.D. of three independent experiments. (C) Representative fluorescence microscopy fields

showing the presence of higher number of dividing Myo21ΔUBAs-GFP expressing cells. Cells were treated with HU

overnight and samples were collected at 8 h after removal of HU block. The washed cells were labeled with α-tubulin

antibodies (red) and DAPI (blue). Most Myo21ΔUBAs-GFP expressing cells were arrested at the 2N2K stage. (D)

Representative images of gigantic sized Myo21ΔUBAs-GFP expressing cells, showing either bulky nucleus or

connected nuclei (DAPI-blue). Myo21-GFP expressing cells, n = 84 and Myo21ΔUBAs-GFP expressing cells, n = 103

from three independent experiments. Scale bar—2 μm.

https://doi.org/10.1371/journal.pone.0232116.g008
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possess cleavage furrow, suggesting that the delayed G2/M phase in Myo21ΔUBAs-GFP

expressing cells is partly due to mitotic arrest and largely post-mitotic (cytokinesis).

Discussion

Myo21 is an actin—based motor [19], which regulates the flagellum assembly, cell motility,

and intracellular vesicular trafficking in Leishmania promastigotes [10]. As this protein con-

tains two UBA-like domains towards the end of its tail region [9, 20], and usually the tail

region determines functions of myosins within the cell [2], we considered it of interest to eluci-

date the role of these domains in Myo21 functions. For this, we expressed various truncated

Myo21 constructs fused with GFP in Leishmania promastigotes, and then observed the domi-

nant negative effects of their expression on Myo21 functions. Similar approach has been used

earlier by several other workers to analyze the specific roles of myosins in cells. For example,

myosin-1C from Dictyostelium discoideum is known to simultaneously interact with F-actin

and microtubules in the region close to the spindle poles and the cell cortex, and also to regu-

late the spindle stability for accurate chromosome separation. However, expression of full-

length myosin-1C with point mutation in its motor domain, which reduced its affinity for

actin, exhibits dominant negative effects on the spindle morphology and results in enlarged

nucleus and prolonged mitosis [21]. Further, expression of dominant negative tail construct

has been reported to identify a group of six myosins (XIC, XIE, XIK, XI-I, MYA1, and MYA2)

out of 17 myosins, that are more important for motility of the Golgi bodies and the mitochon-

dria in Nicotiana benthamiana and Nicotiana tabacum [22–24]. Furthermore, GFP-conjugate

of a truncated fragment of the non-muscle myosin II-A heavy chain (NMHC II-A) lacking

amino acids 1–591, DN592, has been used to examine the cellular functions of this protein in

HeLa cells [25]. Besides, a dominant negative approach using GFP-Myo5c construct has been

followed to ascertain the functions of Myo5c in HeLa cells [26]. In addition, the dominant neg-

ative effects of the GFP-Myo5b tail chimera revealed that this myosin homologue in HeLa or

MDCK cells is required for transit of plasma membrane recycling systems [27]. Finally, expres-

sion of brush border myosin I truncated in the motor domain impairs the distribution and

functions of endocytic compartments in hepatoma cell line [28], and affects membrane traffic

in polarized cells [29].

The Ubiquitin-Associated (UBA) domains are approximately 35–40 amino acids long and

are known to be present in proteins associated with ubiquitylation and DNA nucleotide exci-

sion-repair [15]. These domains bind ubiquitin, multi-ubiquitin chains, ubiquitylated proteins

and other effectors, predicting a role for these domains in protein-protein interactions and

subcellular targeting [30]. It has been reported that UBA and UBA-like domain containing

proteins associate with the substrates that are destined for degradation and also with subunits

of proteasome, and thereby regulate the proper turnover of proteins in the cell [31]. Further,

the C-terminal UBA domains have been shown to protect ubiquitin receptors by preventing

initiation of protein degradation at the proteasome [32]. As Myo21 contains two UBA-like

domains towards the end of the tail region, we envisaged that these domains could play an

important role in Myo21 functions during the flagellum assembly and the cell cycle regulation.

The flagellum, in general, is a highly dynamic microtubule-based structure, which imparts

motility and sensory functions associated with a wide range of biological processes [33–36].

Unlike other flagellated organisms, such as Chlamydomonas, where the flagellum is comprised

of only one component, the axoneme [37], the flagellum of kinetoplastid parasites is composed

of two components, the axoneme and the paraflagellar rod (PFR). The canonical 9 + 2 axo-

neme structure powers beating in most eukaryotic flagella [38], whereas the PFR imparts fla-

gellar motility and waveform generation [39]. The dynamics of the flagellum involves a
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process of assembly and disassembly, which requires movements of protein cargoes from the

flagellum base to its tip (anterograde) and also from the tip to the base (retrograde), which is

termed as ‘intraflagellar transport’ (IFT) [40]. IFT is mainly powered by the microtubule-

based motor proteins, such as kinesin II and dynein complexes for anterograde and retrograde

transports, respectively [41]. However, besides the microtubules-based motor proteins, the

actin-based motor Myo21 has also been implicated in the assembly and dynamics of the Leish-
mania flagellum, especially the PFR [10]. Further, it has earlier been suggested that the proteins

that are released upon flagellum disassembly are presumably transported back to the cyto-

plasm, where they get rapidly degraded [42, 43]. Consistent to this suggestion, it has recently

been shown that during the disassembly of the Chlamydomonas flagellum at least 20 proteins

get polyubiquitylated prior to their transport to the cytoplasm for degradation [37]. Here, we

propose that during Leishmania flagellum disassembly, Myo21 by virtue of the presence of two

UBA-like domains at its C-terminus [32], may shuttle the released proteins after their pre-

sumed ubiquitylation, for degradation by the ubiquitin-proteasome pathway [44], without get-

ting itself degraded. This suitably accounts for the observed similar effects of single and double

UBA-like domain deleted Myo21-GFP constructs on the flagellum assembly and motility. Fur-

ther, since Myo21 tail region, including UBA-like domains, is known to nonspecifically bind

to anionic phospholipids [20], it is likely that this protein might have been serving as a lipid

transporter during assembly and disassembly of the flagellum membrane.

The cell division cycle is driven by a large number of enzymes, which coordinate DNA rep-

lication and chromosome segregation. The activity of the enzymes that perform and coordi-

nate these biological processes oscillates by regulated expression and/or posttranslational

modifications. ubiquitylation is a versatile modification that has been used to fine-tune these

cell cycle events, frequently through processes that do not involve proteasomal degradation

[45]. Aurora kinases are the key enzymes involved in regulation of normal chromosome segre-

gation during mitosis and cytokinesis in all eukaryotic cells. The ubiquitylation/deubiquityla-

tion of these enzymes is known to finely control their activation and deactivation during their

role in mitosis and cytokinesis [46]. Further, aurora kinase 1, AUK1, has been reported to play

a critical role in mitosis and progression of cytokinesis in both procyclic and bloodstream

forms of T. brucei [47–49] as well as in Leishmania cells [50]. As myosins are also known to be

involved in these processes in eukaryotic cells [21, 51, 52], we speculate that during Leishmania
cell division cycle, Myo21 through its UBA- like domain (s) perhaps associates with ubiquity-

lated form of aurora kinase to regulate the mitotic and cytokinetic processes in these cells. This

is consistent with our current observation that these processes are adversely affected in cell

division cycle of the Myo21ΔUBAs-GFP- expressing cells, however, no such problem is

encountered during cell division in the Myo21ΔUBA1/ UBA2-GFP expressing cells.

Finally, this study shows that the two UBA-like domains present towards the end of the tail

region in Myo21 mostly determine its prominent localization to the flagellum base. As this

region in Myo21 has been reported to contain six potential nonspecific lipid-binding sites, out

of which two sites fall within the aa 953 –aa 1050 region, which includes the region that con-

tains both the UBA-like domains [20], we envisage that the binding of these domains with fla-

gellar membrane lipids may perhaps be responsible for prominent localization of Myo21 at the

proximal region of the flagellum.

Supporting information

S1 Fig. The original, uncropped and unadjusted images underlying all blots and gels.

(TIFF)
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S2 Fig. Generation and specificity of antibodies against Leishmania Myo21 protein. (A)

Commassie stained SDS-polyacrylamide gel (10%) showing over-expressed Myo21 protein in

bacterial cell lysate after IPTG induction and purified recombinant Myo21 (rMyo21) protein

(~115KDa, arrowhead). Lane 1: Uninduced bacterial cell lysate, Lane 2: Induced bacterial cell

lysate, Lane 3: rMyo21; Mr: molecular weight markers. Purified Myo21 protein was used for

generation of antibodies. (B). Monospecific polyclonal Myo21 antibodies purified from rabbit

serum were validated by western blotting, which detects a specific band of expected molecular

weight ~115 KDa in Leishmania cell lysate (arrowhead). (i) Commassie stained SDS-polyacryl-

amide gel (10%). (ii) Western blot of using purified Myo21 antibodies. Lane 1: Leishmania cell

lysate, lane 2: rMyo21; Mr: molecular weight markers. (C) Expression of Myo21UBAs-GFPand

Myo21TΔUBAs-GFP in Leishmania Cells. (i) Coomassie stained SDS-polyacrylamide gel

(12%). (ii) Western blot of ‘i’ using anti-GFP antibodies. Lane 1: GFP-Myo21UBAs, lane 2:

GFP-Myo21TΔ UBAs; Mr: molecular weight markers. Asterisk indicates GFP-Myo21UBAs

band of size ~37kDa. Arrowhead indicates GFP-Myo21TΔUBAs band of size ~54.8kDa. (D)

Growth analysis of wild type, GFP-Myo21UBAs and GFP-Myo21TΔUBAs expressing cells.

The results are expressed as the means ± S. D. of three independent experiments.

(TIF)

S3 Fig. Epiflourescence micrographs showing intraflagellar distributions. (A) Myo21-GFP,

(B) Myo21ΔUBAs-GFP, (C) Myo21ΔUBA1-GFP and (D) Myo21ΔUBA2-GFP in Leishmania
promastigotes. Scale bar—100 μm.

(TIF)

S4 Fig. Co-localization of GFP fused proteins with actin. Immunofluorescence images of

cells expressing (A) Myo21-GFP, (B) Myo21ΔUBAs-GFP, (C) Myo21ΔUBA1-GFP, and (D)

Myo21ΔUBA2-GFP, labeled for actin (red). Myo21-GFP protein co-localizes with actin in the

cell body, flagellum and also in the proximal region of the flagellum. However, Myo21ΔUBAs-

GFP co-localized with actin in the cell body but virtually no co-distribution of these proteins

could be seen in the flagellum, including its proximal region. Like Myo21ΔUBAs-GFP protein,

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP also failed to co-distribute with actin in the fla-

gellum. Number of cells imaged for co-localization of GFP tagged protein with actin for

Myo21-GFP- ~20, Myo21ΔUBAs-GFP—~18, Myo21ΔUBA1-GFP- ~19 and Myo21ΔU-

BA2-GFP- ~14 in at least three independent experiments. Arrowheads indicate co-distribution

of Myo21-GFP with actin in the flagellum. Scale bar—2 μm.

(TIF)

S5 Fig. Analysis of morphology of Leishmania cells expressing Myo21-GFP, Myo21ΔU-

BA1-GFP and Myo21ΔUBA2-GFP. (A) Analysis of the cell body length and width of wild

type and Myo21-GFP expressing cells. (B) Histogram of flagellum lengths of wild type and

Myo21-GFP expressing cells. (C) Analysis of the cell body length and width of Myo21-GFP,

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP expressing cells. (D) Histogram of flagellum

lengths of Myo21-GFP, Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP expressing cells.�120

1N1K cells were measured for each cell type in three independent experiments.

(TIF)

S6 Fig. Analysis of motility of Leishmania cells expressing Myo21ΔUBA1-GFP and

Myo21ΔUBA2-GFP. Swimming tracks of (A) Myo21ΔUBA1-GFP and (B) Myo21ΔU-

BA2-GFP expressing cells from time-lapse video tracked using MTrack2 tracking tool in Fiji

(ImageJ). Scale bar—100 μm. (C, D & E) Graphical representation of motility rate of

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP expressing cells relative to control cells.�30

cells were measured from at least three independent experiments for each cell type. The data
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were statistically analyzed by ANOVA test and a p-value of>0.05 was considered non-signifi-

cant.

(TIF)

S7 Fig. Analysis of intracellular trafficking activity of Leishmania cells expressing

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP. Endocytic internalization of FM4-64 in (A)

Myo21ΔUBA1-GFP expressing cells and (B) Myo21ΔUBA2-GFP expressing cells. Cells were

incubated with FM4-64FX for 10 min before washing and suspending in fresh medium. There-

after, aliquots of cells were taken at 0 min, 30 min, 60 min and 120 min time point. Adhered

and fixed cells were stained with DAPI (blue) to visualize nucleus (N) and kinetoplast (K);

FM4-64 dye is in red. Scale bar—2 μm. (C). Quantitative analyses of Myo21ΔUBA1-GFP and

Myo21ΔUBA2-GFP expressing cells showing percent of total cells which trafficked FM4-64

dye beyond the nucleus in 60 min (n = 43 and 36 for Myo21ΔUBA1-GFP and Myo21ΔU-

BA2-GFP expressing cells, respectively, from three independent experiments), compared to

Myo21-GFP expressing cells.

(TIF)

S8 Fig. Comparative flow cytometry analysis of hydroxy urea-synchronized Myo21-GFP

and Myo21ΔUBAs-GFP expressing cells. After release of hydroxyurea pressure, at which

time sampling was done is indicated on the right- hand side of the panel of histogram columns.

20,000 events were analyzed at every time-point. Three independent experiments were per-

formed and one data-set is shown here. Arrows indicate G1, S and G2/M phases in histogram

and arrowhead indicates sub-G1 phase (probably dead cell population).

(TIF)

S9 Fig. Representative flow cytometry data of hydroxyurea-synchronized wild type cells,

Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP expressing cells. 20,000 events were analyzed

at every time-point. Myo21ΔUBA1-GFP and Myo21ΔUBA2-GFP expressing cells, similar to

wild type cells, at 4 h have S phase maxima, at 6 h G2/M phase and at 8 h enter into the next

G1 phase.

(TIF)

S10 Fig. Graphical representation of cell cycle distribution. (A) Wild-type, (B) Myo21ΔU-

BA1-GFP and (C) Myo21ΔUBA2-GFP expressing cells, after removal of hydroxyurea (HU)

block. Mid-log phase cells were synchronized by the HU treatment. DNA content was mea-

sured after staining with propidium iodide (PI) and flow cytometry analysis of cell cycle phases

were done at every 2 h interval for up to 12 h. The percent of cells in each of the phase (G1 –

circle, S–square and G2/M–triangles) at corresponding time point were calculated from the

actual data using ModFit software. The results shown are means ± s. d. from three independent

experiments.

(TIF)

S11 Fig. Confocal microscopy images of Leishmania promastigotes expressing. (A) endoge-

nous Myo21 only (control), (B) Myo21-GFP, (C) Myo21ΔUBAs-GFP, (D) Myo21ΔU-

BA1-GFP, (E) Myo21ΔUBA2-GFP, (F) GFP-Myo21UBAs, and (G) GFP-Myo21TΔUBAs,

labeled for anti-Myo21 (green) and anti- α-tubulin (red) antibodies, and mounted in DAPI

(blue) to visualize the DNA (nucleus and kinetoplast). Myosin localization at the base of the

flagellum is visible in each of the construct expressing cells, as marked by the arrow. Scale bar

—2 μm.

(TIF)
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S12 Fig. Immunofluorescence images of cells expressing. (A) Myo21-GFP, (B) Myo21ΔU-

BAs-GFP, (C) Myo21ΔUBA1-GFP, and (D) Myo21ΔUBA2-GFP, labeled for Myo21 (green)

and actin (red), using ant-Myo21 and anti-LdAct antibodies. Myo21 protein co-localized with

actin at the base of the flagellum in each of the construct expressing cells. Arrowheads indicate

co-distribution of Myo21-GFP with actin in the flagellum. Scale bar—2 μm.

(TIF)

S1 Table. List of primers used in the study.
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32. Heinen C, Ács K, Hoogstraten D, Dantuma NP. C-terminal UBA domains protect ubiquitin receptors by

preventing initiation of protein degradation. Nature Communications. 2011; 2:191. https://doi.org/10.

1038/ncomms1179 PMID: 21304520

33. Landfear SM, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem

Parasitol. 2001; 115: 1–17. https://doi.org/10.1016/s0166-6851(01)00262-6 PMID: 11377735

34. Gull K. Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies.

Curr Opin Microbiol. 2003; 6: 365–370. https://doi.org/10.1016/s1369-5274(03)00092-4 PMID:

12941406

35. Hill KL. Biology and mechanism of trypanosome cell motility. Eukaryot Cell. 2003; 2: 200–208. https://

doi.org/10.1128/EC.2.2.200-208.2003 PMID: 12684369

36. Kohl L, Robinson D, Bastin P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of try-

panosomes. EMBO J. 2003; 22: 5336–5346. https://doi.org/10.1093/emboj/cdg518 PMID: 14532107

37. Wang Q, Peng Z, Long H, Deng X, Huang K. Polyubiquitylation of α-tubulin at K304 is required for fla-

gellar disassembly in Chlamydomonas. J Cell Sci. 2019; 132: jcs229047. https://doi.org/10.1242/jcs.

229047 PMID: 30765466

38. Ralston KS, Hill KL. The flagellum of Trypanosoma brucei: new tricks from an old dog. Int J Parasitol.

2008; 38: 869–884. https://doi.org/10.1016/j.ijpara.2008.03.003 PMID: 18472102

39. Maga JA, LeBowitz JH. Unravelling the kinetoplastid paraflagellar rod. Trends Cell Biol. 1999; 9: 409–

413. https://doi.org/10.1016/s0962-8924(99)01635-9 PMID: 10481179

40. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. 2002; 3: 813–825. https://

doi.org/10.1038/nrm952 PMID: 12415299

41. Cole DG, Snell WJ. SnapShot: Intraflagellar transport. Cell. 2009; 137: 784.e1.

42. Maga JA, Sherwin T, Francis S, Gull K, LeBowitz JH. Genetic dissection of the Leishmania paraflagellar

rod, a unique flagellar cytoskeleton structure. J Cell Sci. 1999; 112: 2753–2763. PMID: 10413682

PLOS ONE Role of UBA-like domains in myosin XXI functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0232116 April 28, 2020 21 / 22

https://doi.org/10.1242/jcs.084335
https://doi.org/10.1242/jcs.084335
http://www.ncbi.nlm.nih.gov/pubmed/21712373
https://doi.org/10.1104/pp.109.136853
http://www.ncbi.nlm.nih.gov/pubmed/19369591
https://doi.org/10.1104/pp.107.113647
http://www.ncbi.nlm.nih.gov/pubmed/18178670
https://doi.org/10.1091/mbc.11.10.3617
https://doi.org/10.1091/mbc.11.10.3617
http://www.ncbi.nlm.nih.gov/pubmed/11029059
http://www.ncbi.nlm.nih.gov/pubmed/11870218
https://doi.org/10.1091/mbc.12.6.1843
https://doi.org/10.1091/mbc.12.6.1843
http://www.ncbi.nlm.nih.gov/pubmed/11408590
https://doi.org/10.1034/j.1600-0854.2000.010506.x
https://doi.org/10.1034/j.1600-0854.2000.010506.x
http://www.ncbi.nlm.nih.gov/pubmed/11208127
https://doi.org/10.1073/pnas.93.14.7053
http://www.ncbi.nlm.nih.gov/pubmed/8692943
https://doi.org/10.1007/s00018-009-0048-9
http://www.ncbi.nlm.nih.gov/pubmed/19468686
https://doi.org/10.1038/ncomms1179
https://doi.org/10.1038/ncomms1179
http://www.ncbi.nlm.nih.gov/pubmed/21304520
https://doi.org/10.1016/s0166-6851(01)00262-6
http://www.ncbi.nlm.nih.gov/pubmed/11377735
https://doi.org/10.1016/s1369-5274(03)00092-4
http://www.ncbi.nlm.nih.gov/pubmed/12941406
https://doi.org/10.1128/EC.2.2.200-208.2003
https://doi.org/10.1128/EC.2.2.200-208.2003
http://www.ncbi.nlm.nih.gov/pubmed/12684369
https://doi.org/10.1093/emboj/cdg518
http://www.ncbi.nlm.nih.gov/pubmed/14532107
https://doi.org/10.1242/jcs.229047
https://doi.org/10.1242/jcs.229047
http://www.ncbi.nlm.nih.gov/pubmed/30765466
https://doi.org/10.1016/j.ijpara.2008.03.003
http://www.ncbi.nlm.nih.gov/pubmed/18472102
https://doi.org/10.1016/s0962-8924(99)01635-9
http://www.ncbi.nlm.nih.gov/pubmed/10481179
https://doi.org/10.1038/nrm952
https://doi.org/10.1038/nrm952
http://www.ncbi.nlm.nih.gov/pubmed/12415299
http://www.ncbi.nlm.nih.gov/pubmed/10413682
https://doi.org/10.1371/journal.pone.0232116


43. Adhiambo C, Forney JD, Asai DJ, LeBowitz JH. The two cytoplasmic dynein-2 isoforms in Leishmania

mexicana perform separate functions. Mol Biochem Parasitol. 2005; 143: 216–225. https://doi.org/10.

1016/j.molbiopara.2005.04.017 PMID: 16054709

44. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, et al. Proteasome inhibition for treatment of

leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016; 537: 229–233. https://doi.org/10.

1038/nature19339 PMID: 27501246

45. Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol. 2017; 216: 2259–

2271. https://doi.org/10.1083/jcb.201703170 PMID: 28684425

46. Li Z, Wang CC. Changing roles of aurora-B kinase in two life cycle stages of Trypanosoma brucei.

Eukaryot Cell. 2006; 5: 1026–1035. https://doi.org/10.1128/EC.00129-06 PMID: 16835447

47. Tu X, Kumar P, Li Z, Wang CC. An aurora kinase homologue is involved in regulating both mitosis and

cytokinesis in Trypanosoma brucei. J Biol Chem. 2006; 281: 9677–9687. https://doi.org/10.1074/jbc.

M511504200 PMID: 16436376

48. Li Z, Gourguechon S, Wang CC. Tousled-like kinase in a microbial eukaryote regulates spindle assem-

bly and S-phase progression by interacting with aurora kinase and chromatin assembly factors. J Cell

Sci. 2007; 120: 3883–3894. https://doi.org/10.1242/jcs.007955 PMID: 17940067

49. Li Z, Umeyama T, Wang CC. The aurora kinase in Trypanosoma brucei plays distinctive roles in meta-

phase-anaphase transition and cytokinetic initiation. PLoS Pathog. 2009; 5: e1000575. https://doi.org/

10.1371/journal.ppat.1000575 PMID: 19750216

50. Chhajer R, Bhattacharyya A, Didwania N, Shadab M, Das N, Palit P, et al. Leishmania donovani Aurora

kinase: A promising therapeutic target against visceral leishmaniasis. Biochim Biophys Acta. 2016;

1860: 1973–1988. https://doi.org/10.1016/j.bbagen.2016.06.005 PMID: 27288586

51. Burgess DR. Cytokinesis: New roles of myosin. Curr Biol. 2005; 15: R10–R11.

52. Arden SD, Puri C, Au J S-Y, Kendrick-Jones J, Buss F. Myosin VI is required for targeted membrane

transport during cytokinesis. Mol Biol Cell. 2007; 18: 4750–4761. https://doi.org/10.1091/mbc.E07-02-

0127 PMID: 17881731

PLOS ONE Role of UBA-like domains in myosin XXI functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0232116 April 28, 2020 22 / 22

https://doi.org/10.1016/j.molbiopara.2005.04.017
https://doi.org/10.1016/j.molbiopara.2005.04.017
http://www.ncbi.nlm.nih.gov/pubmed/16054709
https://doi.org/10.1038/nature19339
https://doi.org/10.1038/nature19339
http://www.ncbi.nlm.nih.gov/pubmed/27501246
https://doi.org/10.1083/jcb.201703170
http://www.ncbi.nlm.nih.gov/pubmed/28684425
https://doi.org/10.1128/EC.00129-06
http://www.ncbi.nlm.nih.gov/pubmed/16835447
https://doi.org/10.1074/jbc.M511504200
https://doi.org/10.1074/jbc.M511504200
http://www.ncbi.nlm.nih.gov/pubmed/16436376
https://doi.org/10.1242/jcs.007955
http://www.ncbi.nlm.nih.gov/pubmed/17940067
https://doi.org/10.1371/journal.ppat.1000575
https://doi.org/10.1371/journal.ppat.1000575
http://www.ncbi.nlm.nih.gov/pubmed/19750216
https://doi.org/10.1016/j.bbagen.2016.06.005
http://www.ncbi.nlm.nih.gov/pubmed/27288586
https://doi.org/10.1091/mbc.E07-02-0127
https://doi.org/10.1091/mbc.E07-02-0127
http://www.ncbi.nlm.nih.gov/pubmed/17881731
https://doi.org/10.1371/journal.pone.0232116

