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Abstract

Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of
checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle
progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target
multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally
inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the
checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5
polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the
phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer
kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do
not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional
ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We
propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction
pathway and at an early step required to resect DSB ends.
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Introduction

Saccharomyces cerevisiae cells suffering a double stranded DNA

break (DSB) activate a robust Mec1-dependent checkpoint

response when DSB ends are processed to expose single-stranded

DNA (ssDNA), and progression through the cell cycle is arrested

prior to anaphase. Several well conserved factors are recruited at

the DSB lesion, and contribute to the activation of a signaling

pathway based on sequential phosphorylation events driven by the

upstream kinases Tel1/ATM and Mec1/ATR which, in turn,

activate the transducer kinases Rad53/Chk2 and Chk1 [1,2]. The

checkpoint response is influenced at several levels by kinases such

as CDK1, CKII and Polo-like Cdc5, all involved in promoting key

events throughout an unperturbed cell cycle, supporting the notion

that the cellular response to DNA damage is tightly linked to cell

cycle events [3]. The intensity of the DSB-induced checkpoint

response correlates to the amount of the ssDNA that is

accumulated at DSB lesions [4]. 59-to-39 nucleolytic processing

of DNA ends is dependent upon several factors, including CDK1

and the nucleases Mre11, Sae2, Dna2 and Exo1 [5]. Moreover,

the checkpoint is a reversible signaling pathway which is turned off

when DNA lesions are repaired, thus permitting the resumption of

cell cycle progression [6]. Different types of phosphatases (Pph3,

Ptc2 and Ptc3) dephosphorylate and inactivate Rad53 and other

checkpoint kinase targets [7]. Further, mutations in several DNA

repair genes, including SAE2, KU70/80, RAD51, RDH54, SRS2,

affect the inactivation of the DSB-induced checkpoint response

[7,8]. These observations suggest that the attenuation, as well the

activation, of the checkpoint pathway are related to the

metabolism of DSB ends, in a way that is not yet completely

understood. It is also known that the checkpoint response can be

attenuated when an irreparable DNA lesion is formed in the cell,

leading to adaptation to DNA damage. Checkpoint inactivation

during recovery and adaptation to DNA damage is a phenomenon

described also in higher eukaryotes [6]. The functional role of

adaptation is not completely understood; however, it was

suggested that it may be partly responsible for chromosomal

rearrangements, genome instability and tumorigenesis [6,9].

Interestingly, the well conserved family of Polo-like kinases (Plks)

has been involved in checkpoint adaptation and/or recovery both

in budding yeast and vertebrates [10]. Cdc5 is the only polo kinase

expressed in yeast, whereas higher eukaryotes usually express three

or four Plks [11]. However, only Plk1, which is the most

extensively studied, is a true mitotic kinase homolog to the

Drosophila Polo kinase [11]. In yeast, CDC5 is an essential gene and

the point mutation cdc5-ad (a Leucine-to-Tryptophan substitution
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at residue 251, within the kinase domain) causes the inability to

adapt to one irreparable DSB lesion and to turn off Rad53 kinase

[12,13]. However, cdc5-ad cells can recover from checkpoint when

the DSB is repaired, suggesting that adaptation and recovery are

two genetically separate processes [14]. A corresponding cdc5-ad

mutation in Plks has not yet been isolated in mammals; however, it

was found that Plk1 depletion severely blocks checkpoint recovery

and adaptation [10,15,16], and rapidly causes cell death in cancer

cells [17,18]. Based on the fact that the DNA damage checkpoint

pathway is well conserved in all the eukaryotes, it is reasonable to

expect that the functional role of Cdc5 in budding yeast and of

Plk1 during adaptation (and perhaps in recovery) may be

conserved. Polo-like kinases contain in the C-terminal region of

the protein a polo box which mediates the interaction of Plks with

substrates previously phosphorylated by CDK or MAPK kinases

[19]. Indeed, Cdc5 targets multiple substrates during an

unperturbed cell cycle [20] and could functionally interact with

several checkpoint proteins as well. In vertebrates, polo kinases

regulate the DNA damage checkpoint acting on multiple factors.

They phosphorylate Claspin [21–24], a Chk1 kinase regulator,

and the Fanconi-Anemia protein FANCM [25], promoting their

degradation and checkpoint inactivation. Further, Plk1, Plk3 and

Plk4 interact with and phosphorylate Chk2, the ortholog of Rad53

in human cells, likely influencing its activity [26–28]. Interestingly,

yeast Cdc5 is phosphorylated and inhibited in a Mec1- and

Rad53-dependent manner [29], and several studies indicate that

in mammals Plk1 activity is inhibited by ATM/ATR-signaling in

response to DNA damage [30–33]. Further, the DNA damage

checkpoint regulates Plk1 protein stability in response to DNA

damage in mitosis [34]. It was also shown that Aurora kinase A

phosphorylates and re-activates Plk1 to promote recovery from

DNA damage [35]. Altogether, these informations suggest that the

DNA damage checkpoint inhibits Plk1, thus contributing to block

cell cycle progression in response to DNA damage; however, the

re-activation of Plk1 is a crucial event of a feedback regulatory

loop in the inactivation of the DNA damage checkpoint during

recovery and adaptation.

Therefore, the activity of Plks must be finely regulated during

the DNA damage checkpoint response, and it is worth

mentioning that the expression of a constitutively active Plk1

protein variant overrides the G2/M arrest induced by DNA

damage [30]. Indeed, Plks are frequently overexpressed in tumor

cells with uncontrolled proliferation and genome instability [36–

39], and high level of Plk1 is predictive of a bad prognosis in

several cancers [40–44].

To further characterize the functional link between Plks and the

DNA damage checkpoint and, possibly, to understand why Plks

are frequently overexpressed in cancer cells, we used budding

yeast as a model system to study DNA damage related events in

the presence of high levels of Cdc5.

Here, we show that overproduction of Cdc5 impairs the Mec1-

signaling pathway in response to an inducible DSB lesion, altering

phosphorylation of Ddc2, Rad9, Rad53 and other Mec1 targets.

We also found that elevated levels of Cdc5 slow down DSB ends

processing, although it does not prevent the formation of ssDNA,

which triggers the recruitment of checkpoint factors. Consistently,

we observed that overexpression of Cdc5 does not alter the loading

of the apical Mec1 kinase checkpoint complex and recruitment of

the checkpoint mediator Rad9, but surprisingly it physically

interact with the checkpoint inhibitor Sae2, inducing its hyper-

phosphorylation and an increased and persistent binding onto a

DSB lesion.

We propose that high levels of polo kinase Cdc5 override Mec1-

induced checkpoint response to DSB lesions, likely by regulating

multiple factors, previously phosphorylated by CDK1, involved in

both DSB processing and checkpoint signaling. Our work may

represent a simple model to further understand why polo kinases

are frequently overexpressed in cancer cells.

Results/Discussion

Elevated levels of Cdc5 override Mec1 signaling
DNA damage checkpoints represent a barrier to oncogenesis; in

fact, loss of these surveillance mechanism is a characteristic of early

tumor development [45]. Several evidences indicate that Plks are

targets of the DNA damage checkpoint in all the eukaryotes

[29–34], suggesting a functional model in which the DNA damage

checkpoint inhibits Plks to maintain a cell cycle block at the

metaphase to anaphase transition. Indeed, numerous cancer cells

have been reported to display overexpression of Plks, and this may

contribute to their transformed phenotype [36–39].

In budding yeast, overproduction of the polo kinase Cdc5 in

cdc13-1 mutant cells with uncapped telomeres has been reported to

override the checkpoint-dependent cell cycle block in the G2

phase of the cell cycle [46,47]. We found that overproduction of

Cdc5 impairs the replication checkpoint, which delays S phase in

the presence of the alkylating agent MMS (methylmetane

sulfonate, Figure 1A). Indeed, Figure 1A shows that MMS treated

wild type cells accumulate in S phase for a very long period

(1C,DNA,2C), while Cdc5 overproducing cells rapidly go

through the replication phase and reach a G2/M DNA content

(2C). Moreover, the DNA damage-induced phosphorylation of

Rad53 is essentially abolished in Cdc5 overproducing cells treated

with zeocin, an agent causing DSBs (Figure 1B).

We have to assume that, although the DNA damage checkpoint

inhibits Cdc5 [29,46], contribuiting to block cell cycle in the

presence of DNA damage, when CDC5 is placed under the control

Author Summary

Double strand DNA breaks (DSBs) are dangerous chromo-
somal lesions that can lead to genome rearrangements,
genetic instability, and cancer if not accurately repaired.
Eukaryotes activate a surveillance mechanism, called DNA
damage checkpoint, to arrest cell cycle progression and
facilitate DNA repair. Several factors are physically recruit-
ed to DSBs, and specific kinases phosphorylate multiple
targets leading to checkpoint activation. Budding yeast is a
good model system to study checkpoint, and most of the
factors involved in the DSBs response were originally
characterized in this organism. Using the yeast Saccharo-
myces cerevisiae, we explored the functional role of polo
kinase Cdc5 in regulating the DSB–induced checkpoint.
Polo kinases have been previously involved in checkpoint
inactivation in all the eukaryotes, and they are frequently
overexpressed in cancer cells. We found that elevated
levels of Cdc5 affect the cellular response to a DSB at
different steps, altering DNA processing and overriding the
signal triggered by checkpoint kinases. Our findings
suggest that Cdc5 likely regulates multiple factors in
response to a DSB and provide a rationale for a proteome-
wide screening to identify targets of polo kinases in yeast
and human cells. Such information may have a practical
application to design specific molecular tools for cancer
therapy. Two related papers published in PLoS Biology—by
Vidanes et al., doi:10.1371/journal.pbio.1000286, and van
Vugt et al., doi:10.1371/journal.pbio.1000287—similarly
investigate the phenomenon of checkpoint adaptation/
overriding.

Cdc5 Affects Double-Strand DNA Break Response
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of the GAL1 promoter, the DNA damage-induced inhibition on

overproduced Cdc5 is not complete. This is likely due to the

elevated Cdc5 levels, which are higher than the endogenous

amount (see also Figure S1), leading to the override of the

checkpoint response. Indeed, it was previously shown that the

overproduction of Cdc5, which is a finely regulated protein [29],

causes severe phenotypes during an unperturbed cell cycle

[48–51].

In order to expand the analysis on the crosstalk between polo

kinases and checkpoint pathways, and possibly to understand why

overexpression of Plks is often found in tumor cells characterized

by uncontrolled proliferation and genome instability, we analysed

the effects of elevated Cdc5 levels on the DSB-induced checkpoint

cascade in S. cerevisiae. We took advantage of a standard yeast

genetic system (JKM background) in which one irreparable DSB

can be induced at the MAT locus by expressing the site-specific

HO nuclease [8]. We overexpressed wild-type CDC5 and the two

cdc5-ad and cdc5-kd mutant alleles (adaptation-defective and

kinase-dead alleles, respectively [51]) from the galactose-inducible

promoter and examined Rad53 phosphorylation and in situ auto-

phosphorylation activity, which are routinely used as markers of

DNA damage checkpoint activation [52]. To prevent variations

due to cell cycle differences, we first arrested cells with nocodazole

in mitosis, a cell cycle stage in which the DSB-depended

checkpoint can be fully activated [12], and subsequently added

galactose to induce Cdc5 overproduction and HO-break forma-

tion, while maintaining the cell cycle block. Figure 2A shows the

FACS profiles of the cell cultures. We observed that overproduc-

tion of Cdc5 impairs the accumulation of hyper-phosphorylated

Rad53 forms and prevents Rad53 auto-phosphorylation activity in

Figure 1. Overproduction of Cdc5 overrides the DNA replication and DNA damage checkpoints. (A) Exponentially (L) growing culture of
the strain Y114 (GAL1::CDC5) was grown in YEP+3%raffinose and treated for 3 hours with 0.02% MMS (time 0). Then the culture is split in two and 2%
galactose was added to one half, while the other half was maintained in raffinose. Samples were taken at the indicated time and analysed by FACS.
(B) Cultures of the strains Y79 (wild type), Y114 (GAL1::CDC5), exponentially (L) growing in YEP+3%raffinose were blocked in G2/M by nocodazole
treatment (0). Zeocin (50 mg/ml) was then added to cause DSBs formation and after 30 minutes of treatment, 2% galactose was added. Samples were
taken at the indicated time and Rad53 protein was analyzed by western blotting with Mab.EL7 antibody.
doi:10.1371/journal.pgen.1000763.g001
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response to DSB formation (Figure 2B). Interestingly, overpro-

duction of the protein variants Cdc5-kd or Cdc5-ad did not

significantly interfere with Rad53 phosphorylation and activation,

suggesting that the kinase activity of Cdc5 and its capacity to

interact with specific target(s) are required to override the DSB-

induced Rad53 activation.

In vertebrates, polo kinases regulate the DNA damage

checkpoint response by affecting the signal transduction pathway

at different levels; interestingly, Chk2, the homologue of Rad53 in

human cells, interacts with and is phosphorylated by the polo

kinases Plk1, Plk3 and Plk4 [26–28].

Therefore, we tested whether the overproduction of Cdc5 might

override Rad53 activation by targeting directly the Rad53 protein

and/or by acting on other upstream checkpoint factors.

We failed to co-immunoprecipitate Rad53 and Cdc5, when

expressed at endogenous levels or by using the polo box of Cdc5 in

a standard GST pull down assay; however, we retrieved Rad53

with overproduced Cdc5 (Figure S2). Considering such physical

interaction, we analyzed how overproduction of Cdc5 might affect

the events leading to full activation of Rad53, which involves a two

steps-based mechanism: an in trans phosphorylation event

mediated by PIKKs, followed by auto-phosphorylation [53]. In

theory, Cdc5 might affect any of these events required to activate

Rad53. We analysed the effect of Cdc5 overexpression on the

PIKKs-dependent phosphorylation of Rad53 by taking advantage

of the catalytically inactive rad53-K227A mutant. Such protein can

be phosphorylated in trans by the upstream kinases, but does not

undergo auto-phosphorylation in the presence of DNA damage

[52], allowing us to separate and discriminate the two steps.

In nocodazole blocked cells, induction of a single irreparable

HO cut induced Mec1-dependent phosphorylation of the Rad53-

K227A protein variant (Figure 3A). As expected, the correspond-

ing phosphorylated bands of Rad53-K227A protein were not

visualized by western blot using the monoclonal antibody

(Mab.F9) which is specific for the auto-phosphorylated and active

Rad53 isoform [54]. Moreover, the same phospho-specific

antibody did not significantly detect Rad53 in wild type cells

responding to DSB when Cdc5 is overproduced, confirming the

results of the in situ kinase assay (Figure 2B). A residual shifted

band of Rad53, visualized in CDC5 overexpressing cells through

the highly sensitive Mab.EL7 antibody (both in Figure 2B and

Figure 3A, and in other figures below), could reflect low levels of

Rad53 activation not detected by the antibody against the active

form; this is consistent with the residual Rad53 activity in the in situ

analysis in Figure 2B. In any case, it is unlikely that this remaining

Rad53 activity is sufficient to maintain a full checkpoint response,

since overproduction of Cdc5 functionally overrides the cell cycle

block in the presence of DNA damage.

Significantly, Cdc5 overproduction abolished DSB-induced in trans

phosphorylation of the Rad53-K227A variant (Figure 3A). This result

rules out the hypothesis that Cdc5 may override the DSB-induced

checkpoint acting only on the auto-phosphorylation step of Rad53

activation, and suggests that CDC5 overexpression likely impairs the

Mec1-dependent in trans phosphorylation and activation of Rad53.

The residual Rad53 phosphorylation and activity in the

presence of high levels of Cdc5 might suggest that the upstream

Mec1 kinase, which is mainly responsible of the Rad53 activation

in the presence of a single DSB in wild type cells [55], is strongly

Figure 2. Overproduction of Cdc5 affects DSB–induced Rad53 phosphorylation and activity. (A,B) YEP+raffinose nocodazole-arrested cell
cultures of wild type JKM and isogenic GAL1::CDC5, GAL1::cdc5-kd (kinase dead, K110A mutation) and GAL1::cdc5-ad (adaptation defective, L251W
mutation) strains were transferred to nocodazole-containing YEP + raffinose + galactose (time zero). (A) Samples were taken at the indicated time
points and analyzed by FACS. (B) Overproduced Cdc5 proteins have an additional HA epitope and their accumulation in galactose was analyzed by
western blots using 12CA5 antibody. Rad53 was analyzed by western blots with Mab.EL7 antibodies. Rad53 in situ auto-phosphorylation activity was
analyzed by ISA assay.
doi:10.1371/journal.pgen.1000763.g002
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but not fully inhibited. Alternatively, Mec1 may still be functional

as a kinase, but impaired in fully trans-activating Rad53. To test

more directly the activity of the upstream kinase Mec1, we

analysed the phosphorylation state of its interacting subunit Ddc2,

the ortholog of human ATRIP, and that of the checkpoint

mediator Rad9, which are known to be directly phosphorylated by

Mec1 [1]. Cells were arrested with nocodazole and CDC5

overexpression and induction of a single unrepairable DSB were

induced by galactose addition (Figure 3B). Western blot analysis

indicate that phosphorylated isoforms of Ddc2 and hyper-

phosphorylated Rad9 (indicated by the arrow in Figure 3)

accumulated after the formation of the HO cut in wild type cells,

as expected; however, overexpression of Cdc5 reduced the DSB-

induced hyper-phosphorylated form of both Ddc2 and Rad9,

suggesting that the activity of Mec1 kinase is strongly impaired in

the presence of high level of Cdc5. A careful analysis of the blot

shown in Figure 3B or in analogous experiments indicates that

reduced levels of phosphorylated Rad9 isoforms are present in

CDC5 overexpressing cells, suggesting that Mec1 could still retain

a flebile activity toward Rad9 and Rad53, as discussed above. In

addition, it is known that Rad9 is a target of multiple kinases [56]

and we cannot rule out the possibility that the residual

phosphorylation of Rad9 observed in cells with elevated levels of

Cdc5 may be due to other kinase(-s), including Cdc5 itself.

Taken together the results shown in Figure 1, Figure 2, and

Figure 3 indicate that Cdc5 activity overrides the DSB-induced

checkpoint by influencing an early step of the Mec1 signaling

pathway, likely reducing the functionality of Mec1 activity.

However, it is possible that Cdc5 may target multiple substrates,

including the Mec1 interactor Ddc2, the checkpoint mediator

Rad9, whose role in promoting Mec1-to-Rad53 signaling is well

established, and Rad53 itself, thus counteracting the checkpoint

signaling pathway at several levels.

High levels of Cdc5 affect DSB resection
Robust Mec1 and Rad53 activation is not triggered by the DSB

itself, but requires multiple interconnected events following the

formation of the lesion, including the generation of nucleolytic-

dependent 59-to-39processing of the DNA ends and recruitment of

various DNA repair and checkpoint factors onto the long stretches

of the generated ssDNA [4].

Therefore, we investigated whether Cdc5 may control Mec1

signaling by affecting DSB processing. We measured the kinetic of

Figure 3. Overproduction of Cdc5 overrides Mec1 checkpoint signaling. (A) YEP+raffinose nocodazole-arrested cell cultures of wild-type
JKM and isogenic rad53-kd (kinase dead, K227A mutation) derivative strains, with or without GAL1::CDC5, were transferred to nocodazole-containing
YEP + raffinose + galactose (time zero). Samples were taken at the indicated time points and Rad53 was analyzed by western blots using monoclonal
antibodies Mab.EL7 or Mab.F9, which recognized, respectively, all the forms of Rad53 or only the auto-phosphorylated and active forms. (B)
YEP+raffinose nocodazole-arrested cell cultures of wild type JKM and isogenic GAL1::CDC5 derivative strains, expressing DDC2-HA, were transferred to
nocodazole-containing YEP + raffinose + galactose (time zero). Ddc2 protein was analyzed by western blots using 12CA5 antibody; Rad9 protein was
analyzed by polyclonal antibodies. An arrow denotes the hyper-phosphorylation band of Rad9 accumulated specifically in response to DNA damage.
doi:10.1371/journal.pgen.1000763.g003
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ssDNA formation after a single unrepairable DSB in cells

overexpressing CDC5. Cells were arrested in mitosis, to prevent

cell cycle-dependent effects on resection [57], and samples were

collected at various time points after HO nuclease induction

(Figure 4). The kinetic of production of ssDNA regions in genomic

DNA was tested by the loss of restriction sites distal to the HO-cut

site which leads to the accumulation of undigested ssDNA

fragments detectable with a strand-specific probe after alkaline

electrophoresis (see the scheme of the unprocessed and processed

DNA locus in Figure 4A). CDC5 overexpressing cells reproducibly

Figure 4. Overproduction of Cdc5 affects DSB processing. (A–D) YEP+raffinose nocodazole-arrested cell cultures of wild-type JKM MATa and
isogenic GAL1::CDC5 strain were transferred to nocodazole-containing YEP + raffinose + galactose (time zero). (A) Schematic representation of the
system used to detect DSB resection. Gel blots of SspI-digested genomic DNA separated on alkaline agarose gel were hybridized with a single-strand
RNA probe specific for the un-resected strand at the MAT locus, which shows HO-cut and uncut fragments of 0.9 and 1.1 kb, respectively. 59-to-39
resection progressively eliminates SspI sites located 1.7, 3.5, 4.7, 5.9, 6.5, 8.9, and 15.8 kb centromere-distal from the HO-cut site, producing larger SspI
fragments (r1–r7) detected by the probe. (B) Analysis of ssDNA formation as described in (A). (C) The time of the first appearance over the
background of each undigested band in the blot shown in (B) was graphically represented for both the wild type and GAL1::CDC5 strains. (D) Western
blot analysis of protein extracts with anti-Rad53 Mab.EL7 antibody.
doi:10.1371/journal.pgen.1000763.g004
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exhibited a slower DSB resection, measured by the kinetic of

appearance of DNA fragments, which correlated with a reduced

phosphorylation of Rad53 (Figure 4B–4D). However, we found

that, although the kinetic of DSB ends resection was delayed, high

levels of Cdc5 do not prevent the generation of a long ssDNA track

(25 kb) which is required to repair the DSB in a specific yeast

genetic background [14] by the single-strand annealing process

(Figure S3).

We previously identified a role for the checkpoint mediator

Rad9 in inhibiting the kinetic of DSB ends resection, likely by

generating a non-permissive chromatin configuration around the

DSB and/or interfering with the action of nucleases [58].

Therefore, we analyzed the Rad9 contribution in delaying DSB

processing in CDC5 overexpressing cells. Wild-type or rad9D cells,

with or without GAL1::CDC5, were arrested in mitosis by

nocodazole treatment and the same experiment described in

Figure 4B was performed. We found that the kinetic of appearance

of ssDNA fragments was accelerated in rad9D strains, despite the

high levels of Cdc5 kinase (Figure 5A and 5B). Moreover, the

faster DSB resection in CDC5 overexpressing rad9D cells also

correlated with a modest increase in Ddc2 phosphorylation

(Figure 5C); however, the phosphorylated state of Ddc2 did not

reach the same level found in wild-type and rad9D cells, suggesting

that overproduction of Cdc5 impaired Mec1-dependent signaling

also in a rad9D background. These results suggest that elevated

levels of Cdc5 may slow down DSB processing through the action

of the Rad9-dependent barrier on resection [58], likely targeting

Rad9 itself or other factors involved in this mechanism.

Interestingly, many of the proteins involved in DSB ends

processing (i.e. Rad9, Dna2, Xrs2 and Sae2) are phosphorylated

Figure 5. Deletion of RAD9 gene accelerates DSB resection despites high Cdc5’s levels. YEP+raffinose nocodazole-arrested cell cultures of
wild type JKM MATa and isogenic rad9D strains, with or without GAL1::CDC5, were transferred to nocodazole-containing YEP + raffinose + galactose
(time zero). (A,B) Analysis of ssDNA formation as described in Figure 4. (C) Ddc2 protein was analyzed by western blots using 12CA5 antibody; Rad53
protein was analysed by monoclonal antibody Mab.EL7.
doi:10.1371/journal.pgen.1000763.g005
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by CDK1 [59,60] and inspection of their protein sequence reveals

that they may be potential targets of Cdc5.

Hence, Cdc5 may influence the DSB response acting on

multiple factors, affecting DSB processing and Mec1-signaling;

moreover, the possibility that Cdc5 might specifically regulate

Rad53 by influencing its interaction with the checkpoint mediator

Rad9 cannot be excluded.

Recruitment of checkpoint factors in CDC5-
overexpressing cells

Since high levels of Cdc5 did not prevent the generation of long

ssDNA regions but inhibit Mec1-signaling, we tested, by

chromatin immunoprecipitation (ChIP), whether overexpression

of CDC5 affected the recruitment of checkpoint factors onto the

HO-induced DSB lesion in nocodazole-arrested cells. Sheared

chromatin from formaldehyde crosslinked cells taken at different

time-points after galactose addition was immunoprecipitated to

recover checkpoint proteins (i.e. Ddc2, Ddc1, Dpb11, Rad9)

carrying the MYC or HA epitope tags at their carboxyl-terminal

end. Quantitative multiplex PCR was then used to monitor co-

immunoprecipitation of DNA fragments located either 66 kb

centromere-proximal to the MAT locus (CON) or 1 kb away from

the HO-cut site (DSB) (Figure 6A).

Ddc2 and Ddc1 association at the DSB was not significantly

affected in CDC5 overexpressing cells blocked by nocodazole

treatment (Figure 6B and 6C). The Mec1 interacting factor Ddc2

and Ddc1, one of three subunits of the stable PCNA-like 9-1-1

checkpoint complex, are recruited early onto a DSB lesion [61–

63]. We, therefore, assume that Cdc5 overproduction does not

prevent the recruitment of upstream checkpoint protein complexes

onto damaged DNA. This observation also confirms that elevated

levels of Cdc5, while delaying resection, do not prevent the

generation of ssDNA (see Figure 4, Figure 5, and Figure S3) which

is required for the recruitment of checkpoint factors [4].

Similarly, we found that overproduction of Cdc5 did not

prevent the localization near the DSB of Dpb11 (Figure 6D), the

yeast ortholog of TopBP1, which, together with the 9-1-1

complex, stimulates the Mec1 kinase activity [64].

Moreover, when we tested by ChIP analysis the binding of the

checkpoint mediator Rad9, we found that also its localization onto

the DSB was not altered in CDC5 overexpressing cells (Figure 6E).

Taken together, the ChIP analyses of checkpoint factors at a

DSB site indicate that high levels of Cdc5 kinase do not

significantly interfere with the binding of checkpoint proteins to

a processed DSB.

We then tested the DSB binding of Sae2, which is a protein

regulated by CDK1 [60] and PIKKs [65] after DNA damage and

is involved in DSB processing [5] and checkpoint inactivation

[66,67]. Surprisingly, while in wild-type cells Sae2 loading was not

significantly enriched at the HO-cut site (Figure 7A), likely because

of its dynamic and transient binding to DSBs [67], Sae2

localization near the break greatly increased in CDC5 overex-

pressing cells (Figure 7A). To test whether Cdc5 may specifically

target Sae2 influencing its binding onto DSBs, we analysed the

level and modification of Sae2 by western blotting following DSB

formation. In nocodazole-blocked cells, induction of the HO cut

caused PIKKs-dependent phosphorylation of Sae2 at the same

time-points at which Rad53 phosphorylation was observed

(Figure 7B). Interestingly, although high levels of Cdc5 impair

Rad53 phosphorylation, they seem to cause hyperphosphorylation

of Sae2. Infact, in CDC5 overexpressing cells we observed the

appearance of a ladder of slower migrating forms of Sae2

(Figure 7B), which are abolished by in vitro treatment with l
phosphatase (Figure 7C), indicating that they are due to

phosphorylation events of Sae2. We then found that overproduc-

tion of Cdc5 induces Sae2 hyper-phosphorylation in untreated

cells and in nocodazole-blocked cells without the HO-cut

formation (Figures 7D), supporting the idea that Sae2 might be

a direct target of Cdc5. Indeed, as mentioned above, Sae2 protein

sequence reveals several sites that could be bound and/or

phosphorylated by Cdc5 (Figure 8A). The C-terminus of Cdc5,

like other Polo-like kinases, contains a phospho-serine/phospho-

threonine binding domain called the Polo-box Domain (PBD)

[19]. The PBD is known to bind Plk substrates after they have

been ‘‘primed’’ by a preliminary phosphorylation by another

protein kinase [19]. Interestingly, the putative PBD binding motif

of Sae2 has been previously shown to be phosphorylated by

CDK1 [60], making it a perfect candidate for mediating the

interaction between Sae2 and Cdc5. Indeed, by a 2-hybrid assay

we found that the PBD of Cdc5 interacts with Sae2 (Figure 8B),

and a recombinant GST-PBD fusion protein, purified from E. coli,

precipitated Sae2-3HA from yeast extracts (Figure 8C).

Taken together, the results shown in Figure 7 and Figure 8

indicate that Cdc5, through its PBD, interacts with Sae2, causing

its hyper-phosphorylation and accumulation at the DSB (see also a

model in Figure 8D). It is interesting to point out that CtIP, the

functional ortholog of Sae2 in human cells, was found to be

associated to chromatin following DNA damage and its chromatin

binding is promoted by phosphorylation and ubiquitination [68].

Indeed, recent evidences indicate that CtIP and Ctp1 (the CtIP

counterpart in S. pombe [69]), are recruited to DSB sites through

their interaction with Nbs1 [70–72], a subunit of Mre11 complex,

and BRCA1 [73,74]. Moreover, CtIP is phosphorylated and

regulated by CDK1 [74,75]. In yeast, Sae2 is involved both in

promoting an early step of DSB ends resection [5] and in

inactivating checkpoint signaling during recovery and adaptation

[66,67], although the exact role of Sae2 in these processes is not

yet fully understood. Interestingly, the overproduction of Sae2 also

causes the overriding of the Mec1-signaling [66], while deletion of

SAE2 gene prevents switching off of the checkpoint [65,66].

One possible working model (Figure 8D), which needs to be

verified, predicts that the increased and persistent binding of Sae2

to a DSB, induced by overproduction of Cdc5, may affect both

DSB resection and Mec1-signaling. It is tempting to speculate that

even physiological levels of Cdc5 may regulate Sae2 during

recovery and adaptation, contributing to switch off the checkpoint

signal. It is also possible that Sae2 is regulated by Cdc5 only when

this kinase is expressed at elevated levels, leading to the checkpoint

overriding. Indeed, such situation is frequently observed in cancer

cells, when Plks are overexpressed [36–39], suggesting that what

we found in yeast may represent a model for a pathological

condition in human cells. Future works, requiring the analysis of

sae2 mutations in the sites regulated by Cdc5, may help to

discriminate between the two possibilities.

In conclusion, in the present study we further explored the role

of the polo kinase Cdc5 in attenuating the DNA damage

checkpoint in budding yeast. We found that overproduction of

Cdc5 affects different parameters of the cellular response to an

inducible DSB: i) it overrides Mec1 signaling and prevents the

phosphorylation of various Mec1 targets (Rad53, Rad9, Ddc2); ii)

it causes a slower resection of DSB ends in a RAD9-dependent

manner; iii) it binds Sae2 protein, causing its hyper-phosphory-

lation and leading to its increased and persistent binding onto

DSB.

The emerging scenario suggests that Cdc5 may target multiple

factors involved in various aspects of the cellular response to DSB

lesions and DNA damage checkpoint signaling. Indeed, Cdc5 is a

fundamental regulator of cell cycle progression and targets many
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Figure 6. Recruitment to DSB of checkpoint factors in CDC5-overexpressing cells. (A) Schematic representation of the HO cleavage site
with the positions of the primers used to amplify regions 1 kb (DSB) and 66 kb (CON) from the HO cut site. PCR analysis at the CON site is used as a
control of background signal. (B–E) YEP+raffinose nocodazole-arrested cell cultures of wild-type JKM and isogenic GAL1::CDC5-MYC or GAL1-CDC5-HA
strains, expressing DDC2-HA, DDC1-MYC, DPB11-MYC, and RAD9-MYC alleles, were transferred to nocodazole-containing YEP + raffinose + galactose
(time zero). Cells were collected at the indicated times and then subjected to chromatin immunoprecipitation. Representative ChIP time-course
analysis of protein-DSB association is shown for each protein tested before (Inputs) and after protein immunoprecipitation (IP).
doi:10.1371/journal.pgen.1000763.g006
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proteins throughout a normal cell cycle [20]. Most of the Cdc5

substrates are proteins previously phosphorylated by CDK1,

which is the principal regulator of the DSB-induced response,

regulating DSB processing, recombination and checkpoint signal-

ing [57]. Here we found that high levels of Cdc5 separately

affected Mec1 signaling and DSB processing, leading us to

speculate that Cdc5 may regulate multiple targets in response to

DNA damage, including factors phosphorylated by CDK1. In

support of such hypothesis, Plks phosphorylate, in vertebrates,

several proteins involved in various aspects of the DNA damage

response, such as FANCM [25], Claspin [21–24], Chk2 [26–28],

MCM5 [76], MCM7 [77] and others. Moreover, our findings on

the functional role of Cdc5 in responding to a DSB in yeast rise the

possibility that Plks may also regulate CtIP.

Recently, a proteome-wide screening led to the identification of

novel Cdc5 targets in a normal cell cycle [20]; we believe that a

similar approach is promising to identify Cdc5 targets regulated in

response to DSBs. Good experimental evidence indicates that the

Figure 7. Analysis of Sae2 protein in CDC5 overexpressing cells. (A,B) YEP+raffinose nocodazole-arrested cell cultures of wild type JKM and
isogenic GAL1::CDC5-MYC strain, expressing SAE2-3HA allele, were transferred to nocodazole-containing YEP + raffinose + galactose (time zero). Cells
were collected at the indicated times and then subjected to chromatin immunoprecipitation (ChIP) as described in Figure 6. Representative ChIP
time-course analysis of protein-DSB association is shown before (Inputs) and after protein immunoprecipitation (IP). (B) Western blot analysis of
protein extracts. (C) Western blot analysis of protein extracts prepared 3 hrs after HO induction and treated with or without l phosphatase before gel
electrophoresis. (D) YEP-raffinose growing cells of wild type and of wild-type JKM MATa-inc and isogenic GAL1::CDC5-MYC strains, expressing SAE2-
3HA allele, were split in two. One half was treated with nocodazole to block cells in G2. Galactose was then added to the cultures to induce
overproduction of Cdc5. Cells were collected at the indicated times after galactose addition. (B–D) Sae2-HA protein was analyzed by western blots
using 12CA5 antibody; Rad53 protein was analysed by monoclonal antibody Mab.EL7.
doi:10.1371/journal.pgen.1000763.g007
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Figure 8. Sae2 protein interacts with PBD of Cdc5. (A) Sae2 protein sequence. The putative Cdc5 phosphorylation sites and PBD binding sites
are indicated. (B) Plasmid pEG202-PBD340–705, carrying the polo box domain of Cdc5 (PBD, aa 340 to 705), and pJG4-5-SAE2, carrying the full length
SAE2 gene under the GAL1 promoter, were co-transformed with pSH18-34, a b-galactosidase reporter plasmid in the wild type yeast strain EGY48. To
assess two-hybrid interaction, these strains were patched on to 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X Gal) plates containing either
raffinose (RAF, prey repressed) or galactose (GAL, prey expressed). Accordingly to [50], the strain Y692 (PBD versus Swe1173–400 protein fragment) was
used as positive control. (C) Cells of the strain Y202, expressing SAE2-3HA gene, were blocked in G2/M by nocodazole treatment. Whole cell protein
extract was prepared and incubated with glutathione-Sepharose beads carrying GST or GST-PBD357–705. Input and pull-down samples were analyzed
by western blotting with monoclonal antibody 12CA5 (aHA) or polyclonal antisera raised against GST (aGST). Asterisk denotes bands of GST-PBD
degradation or expression of truncated proteins. (D) Schematic model to summarize the results presented in this work. (i) Sae2 transiently binds DSB,
regulating ends resection and influencing Mec1-signaling. The checkpoint signal is amplified downstream, regulating several targets, including Cdc5.
(ii) After a prolonged checkpoint response, adaptation to damage takes over and Cdc5 is re-activated, likely by an activating kinase (in human cells, it
is aurora A [35]); Cdc5 then inhibits checkpoint signaling in a feedback regulatory loop, by likely targeting several factors, including Sae2 whose
loading on the irreparable DSB increases, slowing down resection and contributing to counteract the checkpoint signaling (red circles denote
phosphorylation). Alternatively, or in addition, Cdc5 function on several targets, including Sae2, is enhanced in the presence of elevated levels of
Cdc5, a situation frequently found for Plks in tumor cells.
doi:10.1371/journal.pgen.1000763.g008
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functional role of Cdc5 in the DNA damage response is

evolutionary conserved and the outputs of such a screening may

provide important information for new cancer therapy strategies,

targeting Plks and their substrates with specific tools.

Materials and Methods

Yeast strains and plasmids
Strains are listed in Table S1. All the strains were constructed

during this study, and all were derivatives of JKM (MATa,

hmldelta::ADE1, hmrdelta::ADE1 ade1-100, trp1delta::hisG, leu2-3, leu2-

112, lys5, ura3-52, ade3::GAL::HO), with the exception of strain

Y38, which was generated from strain Y5 (YMV80, matD::hisG1,

hmlD::ADE, hmrD::ADE1, lys5, ura3-52, leu2::HOcs, ade3::GAL::HO,

his-URA3-59Dleu2-is4). To construct strains, standard genetic

procedures for transformation and tetrad analysis were followed.

Y38 and Y210 were obtained by integration of ApaI-digested

plasmid pJC57 (pGAL1::CDC5-3HA) at the URA3 locus. Y215 was

derived by integration of ApaI-digested pJC59 (pGAL1::CDC5-

3myc) at URA3 locus. Y220 was obtained by integration of ApaI-

digested plasmid pJC62 (pGAL1::cdc5-K110A-3HA) at URA3

locus. Y222 was obtained by integration of ApaI-digested plasmid

pJC69 (pGAL1::cdc5-L251W-3HA) at URA3 locus. Deletions and

tag fusions were generated by the one-step PCR system [78]. The

yeast two-hybrid assay was performed using the B42/lexA system

with strain EGY48 (Mata his3 ura3 trp1 6lexAOP-LEU2; lexAOP-lacZ

reporter on plasmid pSH18-34) as the host strain [79]. Bait

plasmid pEG202-PBD340–705 for the two-hybrid assay, expressing

lexA fusion with polo box domain of Cdc5, was obtained by

amplifying the corresponding coding sequence of CDC5 gene (aa

340 to 705) from genomic DNA and ligating the resulting

fragment into pEG202 (kind gift from R. Brent). Prey plasmids

pJG4-5-Swe1173–400 and pJG4-5-SAE2, expressing B42 activating

domain fusions, were obtained by amplifying the corresponding

coding sequence of SWE1 (aa 173 to 400) and SAE2 (full length)

from genomic DNA and ligating the resulting fragments into

pJG4-5.

Western blot analysis
The TCA protein extraction and the western blot procedures

have been previously described [29]. Rad53, Rad9, Sae2-HA,

Ddc2-HA, Ddc1-myc, Dpb11-myc, Cdc5-HA, Cdc5-myc were

analysed using specific monoclonal or polyclonal antibodies: anti-

Rad53 Mab.EL7 and Mab.F9 monoclonal [54], anti-HA 12CA5

monoclonal, anti-myc 9E10 monoclonal, anti-Rad9 polyclonal (a

kind gift from N Lowndes’s lab).

In situ auto-phosphorylation assay
It was performed as previously described [52].

Immunoprecipitation analysis
Yeast whole cell extracts were prepared by FastPrep (MP

Biomedicals) in NP-40 lysis buffer (1% NP-40, 150 mM NaCl,

50 mm Tris (pH 7.5), 1 mM dithiothreitol (DTT), 60 mM b-

glycerophosphate, 1 mM NaVO3, cocktail proteases inhibitors

(Roche)). HA-tagged proteins were immunoprecipitated using anti

HA monoclonal antibody (12CA5) conjugated to protein G

Agarose.

GST pulldown assay
GST and GST-PBD were induced in BL21 E. coli cells as

previously described [80] and conjugated to glutathione-Sephar-

ose 4B beads (GSH beads, Amersham). Yeast whole cell extracts,

prepared as indicated above, were incubated with GST or GST-

PBD GSH beads and rotated for 1 hour at 4uC. Samples were

washed three times with NP-40 buffer, boiled in SDS-based

sample buffer, and analyzed by Western blotting analysis.

In vitro dephosphorylation assay
Crude extracts were prepared as described [52], and resus-

pended in l phosphatase buffer with or without 4000 U of l
phosphatase (Biolabs). Samples were incubated 30 min at 30uC
and resuspended in Laemmli buffer.

Measurements of DNA resection and SSA at DSBs
Cells grown in YEP-raffinose 3% medium at 28uC to a

concentration of 56106 cells/ml were arrested with nocodazole

(20mg/ml). A DSB was produced by adding 2% galactose and

inducing the production of the HO endonuclease. The mainte-

nance of the arrest was confirmed by FACS analysis and

monitoring of nuclear division. Genomic DNA was isolated at

intervals, and the loss of the 59 ends of the HO-cleaved MAT locus

was determined by Southern blotting [14,81,82]. To visualize the

kinetics of resection, the graphs shown in Figure 4C and Figure 5B

display, for each strain and for each ssDNA fragment (r1–r7), the

time of the first appearance in the blot. In particular, since the

appearance of a ssDNA fragment signal in the gel was due to the

loss of the internal SspI sites, we represented the length of the

minimal resection for each time point in the graph (see scheme in

Figure 4A). All the experiments have repeated al least 3 times. In

the corresponding figures, one representative example is shown

with its graphic representation.

Chromatin immunoprecipitation analysis (ChIP)
ChIP analysis was performed as described previously [83,84].

Multiplex PCRs were carried out by using primer pairs

complementary to DNA sequences located 1 kb from the HO-

cut site at MAT (DSB) and to DNA sequences located 66 kb from

MAT (CON). Gel quantitation was determined by using the NIH

Image program. The relative fold enrichments of DSB-bound

protein were calculated as follow: [DSB_IP/CON_IP]/[DSB_

input/CON_input], where IP and Input represent the amount of

PCR product in the immunoprecipitates and in input samples

before immunoprecipitation, respectively.

Supporting Information

Figure S1 Cellular levels of endogenous and overproduced

Cdc5 protein. (A) Exponentially (L) growing culture of the strain

Y79 (wild type) and Y114 (GAL1::CDC5) were grown in

YEP+3%raffinose. The cell cultures were treated with nocodazole

to block and maintained the cells in G2/M. Galactose was then

added to induce the overproduction of Cdc5 and sample have

been taken at the indicated times. (A) The cell cycle block in G2/

M was analyzed by FACS. (B) Cdc5 protein was analysed by

western blotting with polyclonal antibody, which recognized both

the endogenous Cdc5 and the overproduced Cdc5-myc tagged

protein.

Found at: doi:10.1371/journal.pgen.1000763.s001 (0.96 MB TIF)

Figure S2 Overproduced Cdc5 co-immunoprecipitates with

Rad53. (A) Cultures of the strains Y79 (wild type), Y114

(GAL1::CDC5-MYC), exponentially (L) growing in YEP+3%raffi-

nose were blocked in G2/M by nocodazole treatment (N) and

zeocin (50 mg/ml) was then added to cause DSBs formation. After

30 min. of treatment with zeocin, 2% galactose was added and

samples were taken after 1 hour. Overproduced Cdc5 protein has

been immunoprecipitated with anti MYC antibody. Cdc5-MYC
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and Rad53 proteins were analysed by western blotting with

monoclonal antibodies 9E10 (aMYC) and Ma.EL7 (aRad53).

Found at: doi:10.1371/journal.pgen.1000763.s002 (0.32 MB TIF)

Figure S3 Overproduction of Cdc5 does not prevent DSB repair

by Single Strand Annealing (SSA). (A) Schematic representation of

the YMV80 system used to detect DSB repair by SSA. Vertical

bars show the relevant KpnI sites. After the HO cleavage, DNA is

resected. When the left and right leu2 sequences have been

converted to ssDNA, repair by SSA can take place and can be

monitored by the appearance of a SSA product in a Southern blot.

(B,C) YEP+raffinose nocodazole-arrested cell cultures of wild type

YMV80 and isogenic GAL1::CDC5 strain were transferred to

nocodazole-containing YEP+raffinose+galactose (time zero). (B)

KpnI-digested genomic DNA, prepared from cells collected at the

indicated times, was analysed by Southern blotting with a LEU2

probe. Two fragments, 8 and 6 kb long (his4::leu2, leu2::HOcs) are

evident in the absence of HO cut, whereas the HO-induced DSB

causes the disappearance of the 6-kb species and the formation of a

2.5-kb fragment (HO-cut fragment). Repair by SSA converts such

fragment to a repair product of 3.5-kb (SSA-product). (C) Western

blot analysis of protein extracts with anti-Rad53 antibodies

(Mab.EL7).

Found at: doi:10.1371/journal.pgen.1000763.s003 (0.81 MB TIF)

Table S1 Yeast strains used in this study.

Found at: doi:10.1371/journal.pgen.1000763.s004 (0.05 MB

DOC)
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