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Abstract
Purpose: Our purpose was to validate and compare the performance of 4 organ dose reconstruction approaches for historical radiation
treatment planning based on 2-dimensional radiographs.
Methods and Materials: We considered 10 patients with Wilms tumor with planning computed tomography images for whom we
developed typical historic Wilms tumor radiation treatment plans, using anteroposterior and posteroanterior parallel-opposed 6 MV
flank fields, normalized to 14.4 Gy. Two plans were created for each patient, with and without corner blocking. Regions of interest
(lungs, heart, nipples, liver, spleen, contralateral kidney, and spinal cord) were delineated, and dose-volume metrics including organ
mean and minimum dose (Dmean and Dmin) were computed as the reference baseline for comparison. Dosimetry for the 20 plans was
then independently reconstructed using 4 different approaches. Three approaches involved surrogate anatomy, among which 2 used
demographic-matching criteria for phantom selection/building, and 1 used machine learning. The fourth approach was also machine
learning-based, but used no surrogate anatomies. Absolute differences in organ dose-volume metrics between the reconstructed and
the reference values were calculated.
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Results: For Dmean and Dmin (average and minimum point dose) all 4 dose reconstruction approaches performed within 10% of the
prescribed dose (≤1.4 Gy). The machine learning-based approaches showed a slight advantage for several of the considered regions of
interest. For Dmax (maximum point dose), the absolute differences were much higher, that is, exceeding 14% (2 Gy), with the poorest
agreement observed for near-beam and out-of-beam organs for all approaches.
Conclusions: The studied approaches give comparable dose reconstruction results, and the choice of approach for cohort dosimetry
for late effects studies should still be largely driven by the available resources (data, time, expertise, and funding).
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Childhood cancer survivors often experience treat-
ment-related late adverse effects (LAEs), which have been
linked to an increased risk of chronic morbidity and mor-
tality.1-4 In particular, radiation treatment (RT) is a com-
ponent of approximately half of all cancer treatments5

and is associated with a number of LAEs, such as second
malignant neoplasms and cardiovascular disease.6-8 Dose-
response relationships can be translated into contempo-
rary RT planning by providing dose constraints to
organs-at-risk to help mitigate RT-related LAEs in future
childhood cancer survivors.6

To date, most large retrospective cohorts of childhood
cancer survivors include individuals treated in the precom-
puted tomography (CT) era of RT (before approximately
1999), for whom treatment was primarily based on conven-
tional 2-dimensional (2D) radiographs.9,10 For these
cohorts, doses to organs of interest are not directly available
so that methods must be applied to reconstruct the radia-
tion dose; these methods often involve the use of physical
or computational phantoms (3D models of human anat-
omy) or recent planning CTs of other patients as surrogate
anatomies to overcome the lack of 3D anatomic
imaging.9,11,12 The mean organ dose and prescribed dose to
individual body regions are the most commonly reported
dose metrics.13-15 As LAEs are found to be related to dose
in specific organs (eg, second malignant neoplasms13) or
Fig. 1 A, An example of a historical 2-dimensional radiograph
white corners, made by 4 thin lead wires placed on the patient’s
the field isocenter, and the ruler indicates the field size. B, An
from computed tomography) with field geometry (AP) is shown
The red point, which is the cross of the dashed yellow lines, indi
their subvolumes (eg, coronary artery16), there is a growing
interest in using more refined dose and dose-volume met-
rics for dose-response modeling of LAEs.13,17

To provide more refined dose information, dose recon-
struction is performed from the limited information avail-
able. Before dose reconstruction, patients’ historic RT
records must be abstracted for patient demographics (sex,
age at RT, height, and weight) and specific treatment
details, including beam energy, dose fractionation, field
geometry, blocking details, field weighting, field location,
and anatomic field borders. In some cases, field geometry
superimposed on 2D radiographs is available. Figure 1a is
an example of a historical 2D radiograph used for field
placement.15 The surrogate anatomy is chosen based on
the available patient demographics, and the historical RT
plan is then simulated on the surrogate anatomy using
the available treatment details.12,14,18 The resulting dose
distribution can then be used to derive 3D organ dose-
volume metrics for dose-response analysis.

There exist several options for the surrogate anatomy,
each with its pros and cons. Stylized computational phan-
toms have a simplified geometric representation of
human anatomy but can be easily scaled to different sizes
and adapted to include additional organs or organ sub-
structures. Stylized computational phantoms are com-
monly used for dosimetry in large retrospective childhood
cancer survivor cohorts.9,11,18 Voxel computational phan-
toms, on the other hand, are created from 3D medical
images of real patients of specific ages and thus are more
with field geometry (anteroposterior; AP) is shown. The
body, depict the field boundaries. The white cross indicates
example of a digitally reconstructed radiograph (derived
. The solid yellow lines depict the effective field boundary.
cates the field isocenter.
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realistic but are rigid and cannot be flexibly scaled or
repositioned.19 Advanced boundary representation
modeling methods offer a hybrid approach, which enables
organ reshaping and repositioning while still allowing for
realistic anatomic representation.20 Such an approach has
been used to develop a number of computational phan-
toms to represent average anatomies of the adult and
pediatric populations20-22 based on CT images and to rep-
resent different weight percentiles,23 but these phantoms
are typically only available for discrete ages.11,14,20,22,23

Patient-specific CT images with organ delineations pro-
vide an alternative type of surrogate anatomy.12 Due to
the routine use of CT in RT planning, it is relatively easy
to prepare and import a surrogate CT scan into a treat-
ment planning system (TPS) for dose calculation com-
pared with the computational phantoms. However, the
planning CT scans typically only include anatomy near
the site of treatment, whereas LAEs such as second solid
tumors may occur throughout the entire body.24

There are different sources of uncertainty in RT dose
reconstruction. One source of uncertainty comes from the
difference between the surrogate anatomy and the historical
patient’s unknown anatomy during treatment.11,14 The most
commonly used patient-to-surrogate matching criteria are
age and sex.9,12 Different patient-to-surrogate matching cri-
teria have also been investigated based on available patient
demographics, such as height and weight percentiles10,23

and water equivalent diameter (defined as average of the
scanned range of the body).25 When a 2D radiograph of
the historical patient is available, more features can be used
for dose reconstruction (eg, use 2D radiographs to guide 3D
organ deformation26). Recently, machine learning (ML) has
been leveraged in dose reconstruction approaches based on
data sets of CT scans to predict 3D information (anatomy
or dose) from the available 2D features 38,42. Another source
of uncertainty comes from the characterization of radiation
beams used in the dose reconstruction calculations.14 Differ-
ent dose calculation algorithms, such as model-based algo-
rithms are encountered in TPSs, Monte Carlo radiation
transport simulation, and measurement-based algorithms
are then used to estimate dose distributions in the surrogate
anatomies9,10,14,27 However, studies have shown that the
dose calculation algorithms in commercial TPSs underesti-
mate out-of-field doses, while Monte Carlo simulations are
more accurate.28,29

Because reconstructed doses are used for dose-response
modeling,3,10,18 the uncertainty in the reconstructed dose
should be reported and incorporated into the models.14,30

This is crucial for developing robust dose-response models
that can be directly translated into contemporary RT plan-
ning, that is, used to define objectives for organs-at-risk.
However, only a few study groups have reported a valida-
tion of their dose reconstruction approaches.12,18,26,31

In this study, we carried out a collaborative effort among
several institutions to validate and compare 4 different dose
reconstruction approaches. To simulate ground truth organ
doses for the validation, we used CT scans of recently treated
patients with Wilms tumor and their clinical plans (with
small adaptations) as reference data. For each of the contem-
porary patients, we extracted data analogous to what would
be available in typical historic RT records15 and asked the
institutions to independently reconstruct the RT dose
according to their previously published approaches.
Methods and Materials
Patient cohort, plan design, and organ
delineations

We investigated Wilms tumor dose reconstructions
because this type of kidney cancer is one of the most com-
mon types of childhood cancer in the abdominal region
and the RT flank fields have not changed significantly
over several decades.32-34 We considered all pediatric
patients (18 patients in total) treated for Wilms tumor
between 2004 and 2016 in our hospital with a planning
CT and complete treatment record. By creating an over-
view of a set of characteristics associated with these
patients (ie, age, sex, height, weight, tumor laterality,
treatment field) and considering the representativeness of
these characteristics for the Wilms tumor patient popula-
tion, we selected 10 patients with Wilms tumor. For these
10 patients, the age at the time of RT planning CT ranged
from 2.5 to 5.5 years. A common longitudinal field-of-
view shared by these CTs was between the 10th thoracic
vertebra (T10) and the 1st sacral vertebra (S1). Detailed
patient information can be found in Table 1.

For each patient (P1-10) we created 2 typical Wilms
tumor RT plans with 6 MV anteroposterior and posteroan-
terior parallel opposed flank fields.33,35 The first plan
involved open fields (P1-10R or L, where R or L refers to a
right-sided or left-sided field) and the second (P1-10RB or

LB) included small corner blocks (see block information in
Table 1). The plans were developed by a pediatric radiation
oncologist using the Oncentra TPS (version 4.3; Elekta AB,
Stockholm, Sweden). We delineated regions of interest on
the CT including lungs, heart, nipples, liver, spleen, contra-
lateral kidney (ipsilateral kidneys surgically removed before
RT), and a subvolume of the spinal cord from T10 to S1
using Velocity (version 3.2.0; Varian Medical Systems, Inc,
Palo Alto, Calif, USA). For the lungs and heart, we delin-
eated the portions of these organs that were imaged in the
CT scans (for 8 and 5 out of 10 patients, the CT scans did
not include complete lungs or heart, respectively).
Reference dose calculation

For validation purposes, reference dose values were
extracted from the 3D dose distributions of the designed



Table 1 Characteristics of the 10 patients and the associated RT plans (2 plans per patient)

Patient Age (y) Sex Height (cm) Weight (kg) Tumor laterality Field cranial/ caudal borders Plan ID Shielding (yes/no) Shielded region border

P1* 3.0 M 92 13.0 Right T9/S1 P1R No

P1RB Yes Right body contour

P2 3.1 F 99 16.0 Right T8/L4 P2R No

P2RB Yes T8

P3 3.9 F 108 17.5 Right T8/L4 P3R No

P3RB Yes T8, T9, part of liver

P4 4.7 M 123 27.0 Right T11/L4 P4R No

P3RB Yes Right rib 9-10

P5 4.8 F 110 15.0 Right T10/S1 P5R No

P5RB Yes Right rib 9-10

P6* 5.1 F 122 22.0 Right T10/S2 P6R No

P6RB Yes Right rib 10

P7 2.5 F 93 14.0 Left T9/S2 P7L No

P7LB Yes S2

P8 4.2 M 106 15.5 Left T11/L4 P8L No

P8LB Yes Left rib 10

P9 4.2 F 115 20.0 Left T10/L4 P9L No

P9LB Yes Left rib 9-10

P10 5.5 M 116 18.0 Left T10/S1 P10L No

P10LB Yes Left rib 10

Abbreviations: F = female; L = left-sided plan; LB = left-sided plan with a block; M = male; R = right-sided plan; RB = right-sided plan with a block; R = radiation treatment.
*The prescribed dose of P1 and P6 was rescaled to 14.4 Gy in the dose reconstruction analysis.
T1 through T12 represent the 12 thoracic vertebrae; L1 through L5 represent the 5 lumbar vertebrae; S1 through S5 represent the 5 sacral vertebrae.
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RT plans calculated on the CTs by the Oncentra TPS. All
plans were designed assuming an Elekta LINAC treat-
ment machine using 6 MV photons. A collapsed cone
algorithm was used to calculate the dose, which was
reported to achieve good in-field and near-field dose cal-
culation accuracy.36 The organ dose-volume metrics that
were considered included mean dose (Dmean), minimum
dose (Dmin), maximum dose (Dmax), and the percentage
of organ volume receiving at least 5 Gy and 10 Gy dose
(V5 and V10, respectively). Here, minimum dose and
maximum dose refer to the minimum and maximum
point dose to a region of interest in the reconstructed
dose matrix. For the nipples, only Dmean was considered
(as the nipple volume was small). For those patients where
the volume of the heart or lungs was truncated (8/10 and
5/10 respectively), only Dmax values representing the
highest dose were used in the analysis.
Preparation of input data for dose
reconstruction

The following sections summarize the instructions
shared among the participating institutes performing
independent dose reconstructions according to their par-
ticular approach.
Digitally reconstructed radiographs with plotted
field

Digitally reconstructed radiographs were generated
from the CTs using the built-in module in the TPS for
each beam’s eye view (ie, anteroposterior and posteroan-
terior) with the field geometry plotted on top of it to sim-
ulate historical radiographs (Fig 1b). We selected an
enhancement setting (min/max CT data threshold -300/
3095, center 1500, width 3000, bone threshold 100, and
bone enhancement factor 2.5) in Oncentra TPS that gave
similar contrast (based on a visual check) as historical
radiographs.
Data coding forms to describe patient and plan
information

The RT record abstraction was prepared according to
the data coding forms proposed by Stovall et al.9 Patient
information such as name and date of birth were anony-
mized. The RT details were abstracted and then checked
by an experienced dosimetrist. Abstraction followed the
methods described in Howell et al18 and is briefly summa-
rized here. In total, the data coding forms consisted of 3
pages. The first page was used to collect basic information
such as the maximum target dose to each body region,
which is defined as the sum of the prescribed dose from
all overlapping fields, that is, the anteroposterior and
posteroanterior fields. The second page included details
on prescription(s) and treatment field parameters,
including dose, orientation, energy, field size, weighting,
shielding, and anatomic borders. The third page was used
to collect information about the proximity of organs of
interest to the treatment fields, solely based on visually
checking the prepared 2D radiographs. Proximity to the
treatment field was specified as in-beam, at beam edge,
near-beam, out-of-beam, or shielded.
Dose reconstruction approaches

The 4 dose reconstruction approaches included in this
study are listed, and the processes are summarized in
Figure 2 and described in detail in the following para-
graphs. The examples of the surrogate anatomies are illus-
trated for methods 1 to 3 in Figure 3.

1. Approach 1: An age-scaled stylized computational
phantom-based approach9,18.

2. Approach 2: A multiple-feature matched computa-
tional phantom-based approach10,31.

3. Approach 3: A surrogate anatomy ML-based
approach38.

4. Approach 4: A surrogate-free ML-based
approach42,44.

Approach 1
The details of the age-scalable stylized computational

phantom-based approach and its use in dose reconstruc-
tions for late effects studies are described in the
literature9,18. The computational phantom consists of
rectangular cuboids for the head, neck, trunk, arms, and
legs; organs are specified by 3D grids of evenly spaced
points.

For each of the 10 patients, the phantom was scaled
to their age at RT by applying 3D scaling functions
that account for nonuniform growth of different body
regions45. Organs for each phantom were also scaled
to age at RT according to the scaling functions that
were applied to each of the respective body regions.
RT plans were then reconstructed on the age-scaled
phantoms based on the field parameters in the coding
forms and a visual check of field placements compared
with the radiographs9. Dose to all points in each organ
were calculated using analytical dose models9, from
which Dmax, Dmean, and Dmin, were reported. For the
right and left nipple, doses were reported for a single
point on each side. For the spinal cord, doses were the
average of the central point in each vertebra (T10,
T11, L1 to L5, and S1). For the spleen, no dose was
reported as a dose grid that represents the spleen is
not available in the computational phantom. For this
study, only the RT plans with rectangular open-beam
fields (n = 10) were reconstructed using approach 1;
however, in principle, blocking is also possible18.



Fig. 2 An illustration of steps taken by the 4 different dose reconstruction approaches given the same input data, that is,
data coding forms and historical-like radiographs of the 2 beams.
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Approach 2
The multiple-feature matched computational phan-

tom-based approach, based on a library (n = 351) of
whole-body computational phantoms covering a large
portion of the population in the United States in terms of
age, sex, height, and weight, was previously developed20,22.
The approach considers multiple features (eg, age, sex,
height, and weight) when selecting the surrogate phantom
as available for a particular study. In this study, patient
height, weight, and sex were provided in the data coding
forms and were used to select the closest matched phan-
tom from the phantom library as the surrogate anatomy.
Next, the phantom (in the format of Digital Imaging and
Communications in Medicine files43 was imported into a
commercial TPS, Eclipse (Varian Medical Systems, Palo
Alto, Calif, USA). RT plans were reconstructed based on
the data coding forms and radiographs. Once the RT
plans were created, the plan data were exported from the
TPS for organ dose calculation using an RT-dedicated
Monte Carlo transport code.10 Additional details on this
approach are available in the literature10,31. Right and left
nipple dose were not reported as these structures were not
explicitly defined in the phantom. Point doses in T10-S1
vertebrae were reported as a surrogate for the dose to the
spinal cord.
Approach 3
Approach 3 is the latest extension of the work38. The

approach incorporates ML to automatically construct
patient-specific phantoms. Among the several ML models
we tested, we selected the model resulting from the gene-
pool optimal mixing evolutionary algorithm for genetic
programming (GP-GOMEA) for this study. GP-GOMEA
is a state-of-the-art algorithm for learning interpretable
ML models in the form of mathematical expressions,37

and, in particular, GP-GOMEA was recently shown to
have better prediction performance among several other
models (eg, Least absolute shrinkage and selection opera-
tor and random forest) in the task of constructing individ-
ualized phantoms.38 The training data set was similar to
that used in38, with some enhancements. Specifically, the
training data set included a larger database of 136 CTs of
pediatric patients with cancer, in the age range of 1 to
8 years with more organs delineated. For each of the 136
CT scans, various features analogous to those available in
historical radiographs were extracted from digitally recon-
structed radiographs. Multiple ML models (1 per ROI)
were trained to separately predict the most similar organs
and body contours, and the most likely location of each
organ’s center of mass, based on the extracted fea-
tures12,38. Next, the predicted best-matching organs



Fig. 3 A, An illustration of the stylized computational phantom showing the organs (represented by 3-dimensional grids
of points) used by approach 1. Note that since the time of this study, the heart model in this phantom has been updated18.
B, A coronal view of an example of a computational phantom used by approach 2. The colored regions are representations
of the segmented organs. C, A front sectional view of a patient-specific surrogate anatomy constructed by approach 3. The
colored regions are representations of the “implanted” organs.
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(which may belong to different surrogate CTs) were auto-
matically “virtually implanted” at the predicted locations
within the predicted body contour, forming a composite
patient-specific phantom.38

Based on the input data, a list of the features of the 10
patients extracted from the coding forms and 2D radio-
graphs was used as input for this approach. The result
was 10 patient-specific phantoms, which were then
imported into the Oncentra TPS for manual reconstruc-
tion of the RT plans on the phantom as described in12.
Doses were calculated by the TPS based on the surrogate
anatomy using the same collapsed cone algorithm as was
used for the reference dose calculation.

Approach 4
Approach 4 is a dose prediction approach based on

ML, which does not require any surrogate anatomy42. For
this approach, we also used the ML algorithm GP-
GOMEA to build the models. In the implementation of
the approach for this study, ML models were generated to
directly predict organ dose-volume metrics given a list of
available 2D patient and plan features. The training data
included 136 abdominal CTs of patients between 1 to
8 years old and 300 artificial Wilms tumor RT plans. The
artificial RT plans were automatically generated by sam-
pling within plan border ranges defined by an experienced
clinical oncologist. Each plan was simulated on each CT,
resulting in a total of 40,800 dose distributions44. The cal-
culated organ dose-volume metrics were then used to
train the ML models as response variables, whereas
patients’ features available in historical records and
detectable on digitally reconstructed radiographs, as well
as features of the RT plan, were used as explanatory varia-
bles. Separate ML models were then generated for each
organ dose-volume metric. Based on the input data, the
features of the 10 patients and 20 plans were put into the
trained ML models from which organ dose-volume met-
rics were obtained.
Dose evaluation

To assess the level of agreement between the reference
doses and the reconstructed doses obtained by the 4
approaches, we computed the absolute difference (sub-
tracting the reconstructed value from the reference value
and taking the absolute value) for organ mean, minimum,
maximum dose, V5, and V10 (denoted by DEmean, DEmin,

DEmax, DEV5, and DEV10, respectively). To make results
comparable, all the plans were normalized to a prescribed
dose of 14.4 Gy.

In addition to providing the average and range of the
differences for each of the organ dose-volume metrics,
Wilcoxon rank-sum testing was performed to check
whether differences between deviation distributions
obtained by the various approaches were statistically sig-
nificant (P < .05).
Results
The average and range of the magnitude of the organ
dose-volume metric differences obtained by the 4
approaches compared with the reference doses are
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summarized in Table 2 (for DEmean, DEV5, and DEV10)
and Table 3 (for DEmin and DEmax). The values of Dmean

calculated by the 4 approaches along with the reference
values for the 20 cases are presented in the Supplementary
Materials. Most of the organs considered in this study are
in-field or near-field organs (the contralateral kidney,
spleen, liver, and spinal cord) for which the reference
dose metrics calculated from the TPS can be considered
to be ground truth for comparison purposes.

For DEmean, an average deviation �1.4 Gy (10% of the
prescribed dose) was found for most of the organs.
Among the 7 organs in Table 2, approach 3 was found to
have the smallest average DEmean for 4 organs. However,
for none of the organs considered were these differences
found to be significantly smaller than the other 3
approaches (P > .05).

The largest DEmean values among organs for the 4
approaches were 5.1 Gy (right nipple) for approach 1, 3.3
Gy (liver) for approach 2, 4.7 Gy (spleen) for approach 3,
and 3.6 Gy (right nipple and liver) for approach 4. For
DEV5 and DEV10, on average a deviation �15% of the vol-
ume was found for all the organs.

Except for the obtained values reported by approach 1
for the liver, an average of DEmin �1.0 Gy was found for
all organs by all approaches. Approach 4 was found to
achieve the smallest DEmin in both average and largest
values for 4 out of 5 organs. For 4 out of 8 organs (both
lungs, heart, and spleen), DEmax was found to be on aver-
age ≥2.0 Gy for all approaches. Among the 8 organs,
approach 2 and approach 3 each had the smallest average
DEmax for 3 organs, while approach 4 obtained the small-
est average DEmax for 2 organs. The largest deviation (ie,
worst case) reported for each organ’s DEmin and DEmax

over all approaches was 7.2 Gy and 14.3, respectively.
Approach 3 was found to have significantly smaller

DEmin than the other 3 approaches for the spinal cord
(P = .01). No other distributions of DEmin or DEmax were
found to be statistically different (P > .05).

We observed that the reconstructed Dmean of the liver
by all approaches had similar variations among the plans
with the same laterality (see Supplementary Materials).
The differences between Dmean for left-sided plans were
smaller than for the right-sided plans. On average, the
reconstructed Dmean values of the kidneys by all
approaches had in general small differences (≤1.3 Gy).
The reconstructed Dmean of the spinal cord had similar
values across all plans for any of the approaches. When
the Dmean of an organ for plans with a corner block had a
different value than for plans with a rectangular open
field, approaches 2, 3, and 4 were found to be able to cap-
ture the trend (ie, decrease) of the differences but not
always accurately (ie, the magnitude of decrease; eg, see
P9L vs P9LB in the Supplementary Materials). Further-
more, no significant differences in DEmean between plans
with corner blocks applied and plans with open fields
were found for these 3 approaches.
Discussion
In this study, the performance of 4 organ dose recon-
struction approaches were validated and compared for
the same RT plans. Multiple institutes participated and
independently performed the dose reconstruction using
their own approach based on the same input data. A com-
prehensive analysis was performed to assess and compare
the dosimetry results.

The results indicate that on average, the approaches
achieved agreement within 10% of the prescribed dose for
Dmean and Dmin and within 15% of the organ volume for
V5 and V10. Lower agreement was observed for recon-
structed Dmax doses for all approaches for near-field and
out-of-field organs (eg, kidneys and spleen for right-sided
plans). For near-field organs, this is mainly attributed to
the high dose gradient at the edge of the field. For out-of-
field organs, additionally, the reference dose values were
calculated by the collapsed cone algorithm in the Oncen-
tra TPS. This algorithm is known to be subject to underes-
timation compared with Monte Carlo simulations,31 as
used in approach 2, and when compared with analytical
models based on physical measurements, as applied in
approach 1. Across all surrogate-based dose reconstruc-
tion approaches considered here, for in-beam/near-beam
organs, the mismatch between anatomy of the surrogate
phantom and the patient represents the main cause of
reconstructed dose inaccuracies.11,14

For approach 1, the largest DEmin values for all organs
were obtained, except for the spinal cord (largest for
approach 4). This can potentially be due to the rough geo-
metric modeling of the human anatomy in the approach 1
phantom (Fig 3).

Limitations of our study include the small number of
patients and plans included, as well as the sole focus on
Wilms tumor plans in the abdominal region, which pro-
vided a limited spread of anatomic patient and geometric
plan variations. Second, in this study we did not consider
the uncertainty introduced by using a different dose cal-
culation algorithm in the reference case compared with
the dose calculation algorithms used by approach 1 and
approach 2.10,18 Approach 3 and approach 4 (training
stage) used the same dose calculation (collapsed cone
algorithm) as was used for the reference dose calculation.
Thus, a bias toward smaller dose differences for out-of-
the-field organs may exist for the 2 ML-based approaches
versus approach 1 and approach 2. Furthermore, some
organ dose metrics were not reported for all approaches,
such as the spleen dose of approach 1 and the right and
left nipple dose of approach 2. Doses for these organs
could be added in the future. Furthermore, for approach
1, dose reconstruction was not performed for plans
involving corner blocks.

In general, compared with approach 1 and 2, approach
3 achieved slightly better average values for Dmean (up to
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0.3 Gy) and Dmax (up to 1.1 Gy) for in-field and near-field
organs, indicating promising applications of leveraging
ML for individualized phantom construction. However,
this slight advantage does not apply for all organs and
was not found to be statistically significant. Taking into
account the relatively small amount of patient anatomies
(136 CTs) used in the training stage, it is likely that the
ML approach can perform better as more data become
available to train the ML models; however, this remains
to be seen.39,40 A disadvantage of approach 3 is the possi-
ble unrealistic 3D anatomy (eg, overlapping organs), as
organ shape and locations were predicted indepen-
dently38. In this study, all 10 automatically assembled
patient-specific phantoms had overlapping organ con-
tours to some extent. In contrast, approach 2 uses more
anatomically consistent phantoms containing a complete
set of organs (we refer to 31 for available organs). Overall
better results were obtained by approach 2 compared with
approach 1 for Dmin and Dmax. This may indicate that
more realistic phantoms (approach 2) are a better surro-
gate anatomy than stylized phantoms or that height and
weight (used to select the representative phantom in
approach 2) are important features to consider for
patient-phantom matching (approach 1 only considers
age). However, for a subset of the organs, approach 2 and
approach 3 still had larger dose differences than approach
1, for example, DEmean for the right kidney was found to
be 0.7 Gy smaller for approach 1 compared with
approaches 2 and 3. So, even if approach 1 is arguably
simpler than the others in that it uses stylized phantoms
and relies on age alone, it remains competitive on some
organs. This suggests that the position and shape of some
organs (like the right kidney) remain very hard to predict
well even with more complex matching criteria (approach
2) or ML (approach 3).

The predicted dose metric values of approach 4 were
found to be comparable to the investigated surrogate-
based approaches or even better (eg, for DEmin). Further-
more, in general a smaller range (or largest value) of dif-
ferences between the reconstructed organ dose-volume
metrics and the reference metrics was observed for
approach 4 compared with the other 3 approaches. This
indicates that approach 4 has fewer outliers (ie, large devi-
ations in dose reconstruction) and could be considered
more robust. The downside of approach 4 is the absence
of the entire 3D dose distribution as it can only predict
dose metrics for which the ML models are trained. Never-
theless, the promising results of the 2 ML-based
approaches indicate that leveraging ML on a data set
where variability of patient anatomy is captured can bene-
fit the accuracy, efficiency, and robustness of an ML-based
dose reconstruction approach.

In epidemiologic studies of late effects, the level of
detail of dosimetry that is required remains largely
unknown.2,14 The required dose accuracy for a study
greatly depends on the type of tumor, organs of interest,



Table 3 Average (range) of DEmin and DEmax values (in Gy) of dose reconstructions obtained for the 20 reconstruction
cases.

DEmin (Gy) DEmax (Gy)

Organ Approach 1* Approach 2 Approach 3 Approach 4 Approach 1* Approach 2 Approach 3 Approach 4

R Lung 3.0 (0.2-13.2) 3.5 (0.1-12.3) 2.9 (0.0-13.0) 3.5 (0.5-8.6)

L Lung 3.4 (0.2-10.9) 3.3 (0.0-11.0) 4.4 (0.1-11.9) 3.7 (0.9-14.3)

Heart 2.0 (0.2-7.4) 3.6 (0.0-10.3) 2.4 (0.0-12.8) 3.2 (0.0-5.8)

Liver 3.4 (0.2-14.2) 0.3 (0.0-1.0) 0.3 (0.0-0.5) 0.1 (0.0-0.3) 0.6 (0.0-1.8) 0.3 (0.0-0.9) 0.5 (0.0-1.6) 0.4 (0.0-1.2)

Spleen 0.8 (0.0-10.4) 0.8 (0.0-12.2) 0.7 (0.0-6.5) 6.1 (0.0-14.0) 3.1 (0.0-12.3) 3.0 (0.1-10.1)

R Kidney 0.9 (0.7-1.1) 0.2 (0.0-0.4) 0.1 (0.0-0.2) 0.1 (0.0-0.1) 9.9 (9.3-10.6) 1.6 (0.2-6.5) 0.5 (0.1-1.4) 5.0 (2.7-6.1)

L Kidney 1.0 (0.4-1.5) 0.2 (0.0-0.4) 0.1 (0.0-0.2) 0.1 (0.0-0.2) 10.2 (8.7-12.2) 1.1 (0.0-2.9) 3.0 (0.2-7.5) 1.5 (0.2-3.6)

Spinal cord 0.7 (0.0-2.5) 0.4 (0.0-1.7) 0.1 (0.0-1.3) 0.9 (0.0-7.2) 0.5 (0.0-2.7) 0.6 (0.0-2.9) 0.4 (0.0-1.8) 0.5 (0.0-2.6)

The bolded numbers indicate the results with the smallest average deviation or smallest deviation range in brackets.
Abbreviations: DEmax = maximum dose; DEmin = minimum dose; L = left; R = right.
DEmin is available for a subset of organs.
* For approach 1, the reconstruction for plans with a corner block applied was not performed. The statistics of the results are based on reconstruc-
tion outcomes of plans with open fields only.
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available outcome data, and study design, such as cohort
or case-control.26 Some existing modeling studies use
dose bins of 2 Gy, which indicates that the granularity of
dose-effect relationships is limited to effects that can be
distinguished at the level of 1 Gy dose difference.26 One
Gy dose bins are almost never used because there would
be too few people in each category. However, in future
studies, if enough data are available and better dose recon-
struction accuracy is desirable, smaller dose bins should
be used to obtain finer dose-effect relationship models, or
the dose might be modeled as a continuous variable
instead of a categorical variable. The question of what
level of accuracy is needed can be more solidly answered
after the models using finer dose bins or continuous varia-
bles are evaluated.

We chose several dose metrics for this study. The mean
organ dose represents the average of the dose distributed
in an organ and is commonly used to model organ-spe-
cific effects in published dose-effect studies.13,16 The mini-
mum organ dose is considered as an indication of whether
the organ is located near the irradiated region. The maxi-
mum organ dose is considered as some organs (eg, the
spinal cord) have a serial functionality, and thus an
understanding of the maximum dose to the organ and the
LAEs is required. We further considered DEV5 and
DEV10, as dose-volume histogram metrics are more com-
monly used as dose toxicity predictors and are used in
current clinical practice of treatment planning for dose
optimization and evaluation.17,41

Due to scarcity of data and relevant studies, it is cur-
rently difficult to provide clear clinical relevance of differ-
ent dose metrics and to determine what level of
inaccuracy in reconstruction is acceptable to still obtain a
good dose-response modeling. In return, this is exactly
why more research on the validation of dose
reconstruction approaches is needed, as well as studies on
their use in dose-response modeling and the associated
robustness of the dose-response modeling to deviations in
the input (ie, the dose reconstruction values).

From a practical point of view, considering our results,
we conclude that the selection of a dose reconstruction
approach should be primarily based on the available his-
torical data and the amount of time/effort and funding
available for dose reconstruction. Approaches that require
height and weight or 2D radiographs may not be appro-
priate when these data are not available, which is often
the case. For the 4 approaches we compared, 2D radio-
graphs are necessary for approach 3 and approach 4, but
not for approach 1 and approach 2 (although 2D radio-
graphs were used in this study by approach 1 and
approach 2 to accurately position a plan on the phantom,
which almost certainly benefitted the performance of
these approaches). When height and weight information
of the patient is not available, approach 2 will only use the
age information and impute height and weight from stan-
dard growth tables (eg, using growth charts of the USA:
https://www.cdc.gov/growthcharts/index.htm). When
limited patient information is available, approaches 1 and
2 are more applicable compared with the ML-based,
because age is the only patient feature needed to scale the
phantoms. In terms of efficiency, approach 4 is a fully
automatic pipeline to generate organ dose-volume met-
rics. Once the models are trained, the pipeline will auto-
matically generate the required organ dose-volume
metrics given the historical features of a patient and 2D
radiographs in seconds. Approach 3 takes longer to run
(minutes) as it handles 3D imaging to assemble a phan-
tom according to ML predictions, but it is handy in that
this is done automatically. The subsequent plan emulation
and dose calculation step can also be carried out by an

https://www.cdc.gov/growthcharts/index.htm
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automatic plan emulation pipeline44. In terms of time, if a
cohort includes a large number of patients treated with
similar types of RT plans and 2D radiographs are avail-
able, approach 4 is recommended as an efficient solution
with competitive performance. However, if a study cohort
includes a smaller amount of patient data associated with
RT plans of large variability, the 3 surrogate-based
approaches that provide individualized manual plan emu-
lations are better choices.
Conclusions
We compared the performance of 4 different dose
reconstruction approaches for 2D radiograph-based
organ dose reconstruction by using the same patient data
set. On average all dose reconstruction approaches
obtained Dmean with similar accuracy (deviation ≤1.4 Gy)
for the investigated organs, which can provide reliable
input for dose modeling using 2 Gy dose bins. Conversely,
predictions for Dmax were found to have much larger
deviations, irrespective of the approach, suggesting that
their use should be discouraged. A voxel phantom
approach using multifeature matching (approach 2) pro-
vided the most realistic anatomy. An age-scaled phantom
approach (approach 1) used the least amount of patient
information while providing comparable dose reconstruc-
tion outcome for most of the investigated organs. Finally,
ML-based individualized approaches (approach 3/4)
achieved competitive results with the other 2 approaches,
which are likely to further improve with more data, while
employing automatic dose reconstruction procedures,
which increases efficiency especially for larger cohorts.
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