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Tranexamic Acid–Associated Seizures:
Causes and Treatment
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Antifibrinolytic drugs are routinely used worldwide to reduce the bleeding that results from a wide range of hemor-
rhagic conditions. The most commonly used antifibrinolytic drug, tranexamic acid, is associated with an increased
incidence of postoperative seizures. The reported increase in the frequency of seizures is alarming, as these events
are associated with adverse neurological outcomes, longer hospital stays, and increased in-hospital mortality. How-
ever, many clinicians are unaware that tranexamic acid causes seizures. The goal of this review is to summarize the
incidence, risk factors, and clinical features of these seizures. This review also highlights several clinical and preclinical
studies that offer mechanistic insights into the potential causes of and treatments for tranexamic acid–associated
seizures. This review will aid the medical community by increasing awareness about tranexamic acid–associated seiz-
ures and by translating scientific findings into therapeutic interventions for patients.
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Antifibrinolytic drugs are used worldwide to decrease

the requirement for blood transfusions, reduce the

risk of reoperation for bleeding, and lower mortality asso-

ciated with hemorrhage following major trauma.1–3 The

most commonly used antifibrinolytic drugs include tra-

nexamic acid (TXA), E-aminocaproic acid (EACA), and

aprotinin.1 TXA and EACA are synthetic derivatives of

the amino acid lysine that exert their hemostatic effects by

binding to plasminogen.4–6 This binding prevents the

conversion of plasminogen to plasmin and reduces the

degradation of fibrin-containing blood clots.4–6 Aprotinin,

conversely, is a serine protease inhibitor that binds directly

to plasmin and inhibits its function.7

Antifibrinolytic agents are considered to be safe and

affordable drugs with few serious adverse effects.1 How-

ever, observational clinical trials and case reports have

shown that TXA, and to a lesser extent EACA, but not

aprotinin, are associated with seizures.8–34 Most TXA-

associated seizures occur in patients who have undergone

cardiac procedures.16–18,20,21,24–26,30–32,34 However, sev-

eral case reports indicate that TXA-associated seizures

also occur in nonsurgical patients.10,22,27 Seizures in post-

operative cardiac surgery patients have been reported to

be associated with a 2-fold increase in hospital length of

stay and a 2.5-fold higher mortality rate.26 An increase

in the incidence of delirium and stroke, and a reduced

quality of life have also been reported.35

The goal of this review is to increase awareness

about seizures associated with antifibrinolytic drugs and

provide mechanistic-based prevention and treatment rec-

ommendations. The review focuses on TXA, the most

commonly used and widely studied antifibrinolytic drug.

First, the incidence, risk factors, and clinical features of

TXA-associated seizures are summarized. Next, preclini-

cal and clinical studies that offer insights into the under-

lying causes of seizures are reviewed. In particular, a

study that measured the concentration of TXA in the

cerebral spinal fluid (CSF) of patients undergoing major

cardiovascular surgery is considered. The study then

compared TXA concentrations in the CSF to TXA
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concentrations that modulate the activity of neurotrans-

mitter receptors in the brain in vitro. Based on these

findings, treatment strategies to mitigate TXA-associated

seizures in patients are proposed.

Clinical Indications, Incidence, and Risk
Factors

TXA was originally approved by the US Food and Drug

Administration for the treatment of patients with hemo-

philia undergoing dental surgery and for women suffer-

ing from heavy menstrual bleeding.36,37 The clinical

indications of TXA have rapidly expanded and now

include multiple “off-label” uses, including cardiac, gas-

trointestinal, and orthopedic surgery as well as treatment

of postpartum hemorrhage.38–41 The World Health

Organization (WHO) recently included TXA in its

“Model List of Essential Medicines.”42 The WHO rec-

ommended that TXA be used to reduce blood loss in

patients undergoing cardiopulmonary bypass procedures,

in trauma patients with significant hemorrhage, and in

patients with postpartum hemorrhage.42

The broad introduction of TXA into surgical care

has resulted in an increased reported incidence of seiz-

ures, particularly during the early postoperative period

after cardiac surgery.21 Retrospective analyses have shown

that the incidence of seizures in postoperative cardiac

patients has increased from 0.5–1.0% to 6.4–7.3% with

the use of higher doses of TXA.8,17 Additionally, several

multicenter retrospective studies confirm increased seiz-

ures in postoperative patients who received TXA, with an

incidence ranging from 0.9% to 2.5%.16,18,20,26 A single

prospective trial found that seizures occurred in 3% (3 of

100 patients) of post–cardiac surgical patients treated

with TXA.34 Although the incidence of TXA-associated

seizures after cardiac surgery varies between studies, treat-

ment with TXA was a strong independent predictor of

seizure.16,20,26

Retrospective studies have identified several risk fac-

tors for TXA-associated seizures. These include higher

doses of TXA, such as those recommended in the BART

study (Blood conservation using Antifibrinolytics in a

Randomized Trial; �80–100mg/kg total dose).16,20,26,43

Female gender, increased age, and poor overall health

also predispose patients to seizures.16,17,20,26 Seizures are

observed more frequently in patients older than 70 years,

and those with a high disease severity score, as measured

by an APACHE II index (Acute Physiology and Chronic

Health Evaluation II)> 20.16,20 Patients with renal dys-

function or prior neurological and cardiovascular disor-

ders are also at increased risk.16,17,20,26 Other important

risk factors for TXA-associated seizures include the type

and duration of surgery. Most seizures are reported in

patients undergoing “open chamber surgery” (eg, aortic

valve replacement).16–18,20 The risk is also increased in

patients with deep hypothermic circulatory arrest, long

cardiopulmonary bypass time, or prolonged aortic cross-

clamp time.16,18,20,26

Several case reports indicate that seizures are not

restricted to cardiac surgery patients. For example, a

patient with chronic kidney failure who was treated with

TXA experienced a convulsive seizure.10 Another patient

who underwent a craniotomy for meningioma had

tonic–clonic convulsions after the administration of

TXA.22 A third patient who was admitted for hemoptysis

had a focal seizure after TXA treatment, which pro-

gressed to a generalized seizure.27 None of these patients

had a history of seizure disorders and no abnormalities

were detected on subsequent electroencephalography

(EEG) or computed tomographic scans.10,22,27 Collec-

tively, these case studies indicate that a wide range of

patients may be vulnerable to TXA-associated seizures.

Increasing global “off-label” use of TXA may further

increase the incidence of TXA-associated seizures.

Clinical Features and Diagnosis

A clear understanding of the clinical features of TXA-

associated seizures will aid in their diagnosis. Reports of

patients who received an accidental intrathecal injection

of TXA have offered rare insights into the clinical mani-

festation of TXA-associated seizures.11,13,15,19,23,29 These

patients experienced severe back pain that radiated below

the waist, with burning pain in the lower limbs and glu-

teal region.11,13,15,19,23,29 Involuntary motor activity, such

as a “jerking” of the lower extremities (referred to as

myoclonic movements) and twitching of facial muscles,

was also observed.11–13,15,19,23 These abnormal move-

ments rapidly progressed to generalized tonic–clonic seiz-

ures.11–13,15,19,23 Myoclonic movements may serve as a

warning sign of impending seizures.

In postoperative cardiac surgery patients, TXA-

associated seizures are typically generalized tonic–clonic

events, although focal and mixed seizures also

occur.20,24,26 Approximately 20% of these seizure patients

experience myoclonic activity.24 Seizures usually occur

within the first 5 to 8 hours after surgery, during the

period of weaning from intravenous sedation in the

intensive care unit.17,20,24,26 Seizure events typically per-

sist for a few minutes17,20 and do not progress into status

epilepticus.34 About 30 to 60% of patients have recur-

rent episodes during the first 24 to 48 hours after

surgery.16,17,20

The diagnosis of TXA-associated seizures may be

facilitated by EEG monitoring in the early postoperative

period. EEG monitoring could help distinguish between
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shivering, myoclonic movements, and seizures, and

thereby prevent a misdiagnosis.17,18,26 EEG monitoring

may also detect subclinical seizures that are not apparent

by observing sedated patients. Continuous EEG monitor-

ing following cardiac surgery identified 1 patient with

EEG evidence of seizure who exhibited no convulsive

behaviour.34 Finally, EEG monitoring may be particularly

useful for the diagnosis of TXA-associated seizures in

patients cotreated with a neuromuscular blocker agent

such as rocuronium. These drugs inhibit motor activity

and mask the behavioral correlates of network hyperexcit-

ability. In the absence of EEG monitoring, the incidence

of TXA-associated seizures may be underestimated.

TXA Concentrations in the Central Nervous
System of Patients

The proconvulsant properties of TXA likely result from

direct effects on the central nervous system (CNS), as

application of TXA to the cortex or injection into the

cisterna magna in experimental animals causes general-

ized seizures.44–46 In an effort to identify the mechanism

underlying TXA-associated seizures, the concentration of

TXA in the CNS of patients was measured. One study

took advantage of a unique clinical scenario where CSF

was intermittently sampled during surgery.47 Specifically,

an indwelling catheter was inserted into the lumbar intra-

thecal space of patients undergoing repair of thoracoab-

dominal aneurysms to allow the CSF to be intermittently

drained. The purpose of this procedure is to prevent spi-

nal cord ischemia by decreasing the volume of CSF and

reducing intrathecal pressure.48

Measurements of TXA levels in the CSF from these

patients produced unexpected results. After infusion of

the drug was discontinued, the concentration of TXA in

the CSF failed to decline and in some cases continued to

increase, reaching peak concentration of about 200 mM

(Fig 1A).47 In contrast, TXA levels in the serum peaked

following cardiopulmonary bypass, then rapidly declined

after the drug infusion was terminated.47 The peak

serum concentration of TXA (2 mM) was about 10 times

higher than the concentration of TXA in the CSF

(200 mM). Notably, 1 patient with a high TXA concen-

tration in the CSF experienced postoperative seizures.

The time course of TXA concentrations in the CSF and

serum from this patient is illustrated in the top half of

Figure 1A. The average concentrations from the CSF and

serum of 4 patients are shown in the bottom half of Fig-

ure 1A. These results suggest that seizures could arise

due to persistently high concentrations of TXA in the

brain during the early postoperative period.

Molecular Mechanism of TXA-Associated
Seizures

Studies of animal models have offered insights into the

molecular mechanisms underlying TXA-associated seiz-

ures. Application of a clinically relevant concentration of

TXA (200 lM) to slices of neocortex markedly increased

field responses to excitatory stimuli.47 TXA also increased

the frequency of spontaneous epileptiform field potentials

or “seizurelike events” (see Fig 1B).47 Another study

showed that application of TXA (1mM) to mouse amyg-

dala slices caused widespread neuronal depolarization.49

Collectively, these studies show that TXA directly

increases the excitability of neuronal networks. Increasing

evidence suggests that this hyperexcitability produced by

TXA results from reduced inhibitory neurotransmission

FIGURE 1: Tranexamic acid (TXA) concentrations measured
in the cerebral spinal fluid (CSF) and serum of patients
cause hyperexcitability in vitro. (A) The time course of TXA
levels in the CSF and serum of 1 patient who experienced a
seizure is shown on the left. The decline of TXA levels in
the brain lags behind that in the blood. The timeline at the
bottom of each figure indicates key surgical events during
cardiopulmonary bypass (CPB). The red arrow highlights the
concentrations when TXA administration was terminated.
On the right are the summarized data of TXA concentra-
tions in the CSF and serum during key surgical events
(n 5 4). TXA levels in the serum (2mM) are 10-fold higher
than those in the CSF (200mM). (B) Clinically relevant con-
centration of TXA (200mM) causes hyperexcitability by
increasing the frequency of seizure-like events in neocortical
slices. *P < 0.05.
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or “disinhibition.” c-Aminobutyric acid type A (GABAA)

receptors and glycine receptors are major mediators of

inhibition in the CNS.50,51 These transmitter-gated

anion channels, which are well-known targets for a vari-

ety of proconvulsant and anticonvulsant agents, are plau-

sible targets for TXA.52–56

The effects of TXA on GABAA receptors were

examined first by Furtmuller and colleagues.57 They

showed that TXA is a competitive antagonist of GABAA

receptors and that it inhibits recombinant GABAA recep-

tors (a1b2c2) with a half-maximal inhibitory concentra-

tion (IC50) of 7mM.57 Other investigators showed that

TXA inhibits native GABAA receptors in cortical and spi-

nal cord neurons (IC50 5 1.5 and 1mM, respectively).47

Collectively, these results demonstrated that TXA inhibits

GABAA receptors, but only at concentrations that are

higher than the concentration detected in the CSF of

patients (200 lM). GABAA receptors generate 2 distinct

forms of inhibition, synaptic and tonic, which could

exhibit different sensitivities to TXA.58–61 Synaptic cur-

rents are fast, transient events that are activated by near-

saturating concentrations of agonist.62 In contrast, tonic

currents are generated by low, ambient concentrations of

transmitter.62 Synaptic and tonic currents are mediated

by different receptor subtypes that often exhibit different

pharmacological properties.60 Surprisingly, the potency of

TXA for synaptic currents (IC50 5 0.8mM) and tonic

inhibitory currents (IC50 5 1mM) was similar.47,49 Thus,

although inhibition of GABAA receptors may contribute

to TXA-associated seizures, higher affinity target recep-

tors are likely to exist in the CNS.

Our research group searched for novel receptors that

are sensitive to clinically relevant concentrations of TXA.

Because TXA is a structural analogue of glycine, we

hypothesized that TXA competitively inhibits glycine

receptors (Fig 2A), and this action contributes to seizures.

In support of this hypothesis, glycine receptor antagonists,

such as strychnine, cause myoclonic movements and

twitching, particularly in the lower limbs, as well as mus-

cle spasms and convulsions.55,56,63,64 Interestingly, the pat-

tern of twitching, myoclonus, and seizures observed in

patients treated with TXA is similar to the pattern of the

proconvulsant effects of strychnine.11,22,27 We found that

TXA acts as a competitive antagonist of glycine receptors,

with an IC50 of 1mM (see Fig 2B).47 Similar to GABAA

receptors, glycine receptors generate both synaptic currents

and tonic inhibitory currents (Fig 3A).61 Thus, we com-

pared the potency of TXA for inhibition of spontaneous

miniature inhibitory postsynaptic currents and a tonic cur-

rent in spinal cord neurons (see Fig 3C).47 Tonic glycine

current was found to be 10-fold more sensitive to TXA

(IC50 5 90 mM) than synaptic currents.47 Therefore, the

potency of TXA is greatest for glycine receptors that gen-

erate a tonic inhibitory current (see Fig 3B).

FIGURE 2: Tranexamic acid (TXA) is a competitive antagonist of glycine (Gly) receptors. (A) Glycine and TXA are structural ana-
logues, suggesting that TXA competes with glycine at the agonist binding site of glycine receptors. (B) TXA (1mM) inhibits gly-
cine (100mM)-activated currents in cortical neurons. The concentration–response plots for glycine current recorded in the
absence and presence of TXA are shown. The results indicate that TXA is a competitive antagonist of glycine receptors.
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Finally, others have studied the effects of TXA on the

activity of excitatory amino acid receptors.49,57 Binding

assays and electrophysiological studies show that TXA

(5mM) does not directly inhibit the N-methyl-D-aspartate57

or a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

subtypes of glutamate receptors.49 Thus, the proconvulsant

properties of TXA are likely mediated by disinhibition of

tonic glycine current.

Anesthetics Reverse TXA Inhibition of
Glycine Receptors

Because the tonic current generated by glycine receptors is

highly sensitive to TXA inhibition, drugs that reverse this

inhibitory effect may mitigate TXA-associated hyperexcit-

ability. There are no commonly used selective glycine

receptor agonists that can be administered intravenously

to patients in the intensive care unit. However, several

general anesthetics, including the inhalational agents iso-

flurane, sevoflurane, and desflurane and the intravenous

anesthetic propofol, act as positive allosteric modulators of

glycine receptors.65,66 Whole-cell recordings of currents in

spinal cord neurons showed that clinically relevant con-

centrations of isoflurane (150 and 250 mM) and propofol

(3 mM) fully reversed TXA inhibition of tonic glycine cur-

rent.47 In addition, field recordings from slices of mouse

cortex showed that isoflurane (250 mM) and propofol

(1 mM) completely reversed the hyperexcitability produced

by TXA.47 Therefore, isoflurane and propofol, as well as

other anesthetics that increase glycine receptor function,

might be effective either for treating or for preventing

TXA-associated seizures (Fig 4).

Prevention and Treatment of
TXA-Associated Seizures

Currently, there are no recommended treatments for

TXA-associated seizures. Given the low incidence and

variable clinical manifestations of TXA-associated seiz-

ures, randomized controlled clinical trials that compare

the efficacy of various anticonvulsants treatments are

likely to be impractical. Nevertheless, results from animal

studies have shown that TXA inhibition of tonic glycine

current is rapidly and completely reversed by the general

anesthetics isoflurane or propofol.47 These results suggest

that general anesthetics may be useful to consider for the

first-line treatment for TXA-associated seizures in

patients. For example, TXA-associated seizures could be

prevented by simply prolonging the delivery of anes-

thetics during the early postoperative period. Notably,

FIGURE 3: Tonic glycine current is highly sensitive to tranexamic acid (TXA) inhibition. (A) Inhibitory receptors are expressed in
synaptic and extrasynaptic regions of the neuron. These receptors are composed of different subunits and have distinct phar-
macological properties. Extrasynaptic receptors mediate a tonic inhibitory conductance. (B) Summary table of the half-maximal
inhibitory concentration (IC50) values for TXA inhibition of synaptic and tonic currents mediated by glycine and c-aminobutyric
acid type A (GABA) receptors. (C) TXA (1mM) inhibits synaptic and tonic glycine currents in a similar manner as the competitive
glycine antagonist, strychnine. Synaptic currents were studied by recording miniature inhibitory postsynaptic currents. Tonic
currents were evoked by applying a low concentration of glycine (10 mM), similar to the ambient concentration present in the
extracellular fluid, to the bath solution. SEM 5 standard error of the mean.
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patients experience seizures most often in the first few

hours after admission to the intensive care unit. At this

time, TXA levels are either peaking or declining slowly.47

In contrast, anesthetic levels are declining rapidly in the

CNS, as drug delivery has been terminated.67 Thus, the

anesthetic is no longer available to provide anticonvulsant

effects. Consistent with this notion that anesthetics pro-

tect against TXA-induced seizures, many patients first

develop seizures during emergence from propofol seda-

tion.17,24 Also, case reports indicate that propofol is

effective for treating seizures in patients who inadver-

tently received an intrathecal injection of TXA.15,23

Although treatment with a general anesthetic is likely to

be effective, these drugs should only be administered

under conditions that allow their safe use. This review

does not provide specific recommendations regarding

doses of anesthetics, as treatment of patients during the

early postoperative period in the intensive care unit is

highly complex. Treatment must be guided by the judg-

ment and skill of the care providers.

If the use of propofol or other anesthetics is

deemed to be unsafe or if these drugs are unavailable,

alternative therapies can be considered. A second-line

treatment for TXA-associated seizures includes com-

pounds that increase GABAA receptor activity, which

may compensate for a reduction in glycinergic inhibition.

Benzodiazepines (lorazepam, midazolam, diazepam, and

clonazepam), which do not modify glycine receptors but

rather upregulate GABAA receptor function,68,69 have

been used to treat seizures following inadvertent intrathe-

cal injection of TXA27–29 or after cardiac surgery.16,26

Lorazepam may be considered for the treatment of seiz-

ures, rather than other benzodiazepines that have shorter

duration of action.

Finally, reducing the dose of TXA during surgery

may be the simplest and most practical strategy to pre-

vent TXA-associated seizures. TXA is a competitive

antagonist of glycine and GABAA receptors. Thus, a

lower dose of TXA is less likely to cause seizures, as

lower concentrations would be “outcompeted” by endog-

enous neurotransmitters at the agonist-binding sites of

glycine and GABAA receptors. The notion that higher

doses of TXA increase the risk of seizures is supported

by animal45 and human studies.16,20,26 Specifically, in

cardiac surgery patients, the use of higher doses of TXA

drastically increased the incidence of seizures.16,20,26

Lowered TXA dosing should also be considered for

patients with renal dysfunction, as renal excretion is the

major route of TXA elimination. Case reports indicate

that patients treated with TXA while undergoing dialysis

experience generalized seizures and myoclonic move-

ments.10,70 Interestingly, TXA administered to cardiac

surgery patients at doses recommended in the BART

Trial resulted in higher than expected plasma concentra-

tions, which exceeded the recommended therapeutic lev-

els.71,72 Consistent with these findings, lowering TXA

doses reduced the frequency of postoperative seizures.20

Therefore, decreasing the dose of TXA is likely the sim-

plest and most effective strategy to reduce the incidence

and/or severity of postoperative seizures. However, the

benefits of reducing TXA dose need to be balanced

against the possibility of reducing the drug’s antifibrino-

lytic effects.

Summary and Outstanding Questions

In summary, TXA-associated seizures occur most fre-

quently during the early postoperative period after car-

diac surgery but also occur in patients undergoing

noncardiac surgery and other medical treatments. To

reduce the risk of seizures, the lowest effective TXA dose

should be considered and dosing should be adjusted for

clinical conditions such as renal dysfunction. A high

index of suspicion is required to detect seizures, and

EEG monitoring may be considered for patients who

experience myoclonic movements or twitching or show

evidence of focal seizures. Based on results from preclini-

cal studies, general anesthetics including propofol and

isoflurane may be considered as the first line for preven-

tion and/or treatment. In high-risk patients, terminating

the TXA infusion early and/or prolonging the adminis-

tration of anesthetics may prevent seizures.

Although progress has been made in our under-

standing of the causes underlying TXA-associated seiz-

ures, many questions remain unanswered. First, it is

uncertain why cardiac surgery patients are more vulnera-

ble to TXA-associated seizures. One potential factor is

FIGURE 4: The molecular mechanism underlying tranexamic
acid (TXA)-associated seizures and the reversal of TXA-
mediated inhibition by anesthetics. TXA binds to the glycine
receptors, resulting in a decrease in inhibitory current. This
reduction in anion conduction increases excitability, which
gives rise to seizures. Anesthetics reverse the effect of TXA
by increasing glycine receptor function and thereby prevent
or reverse TXA-induced seizures.
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the high doses of TXA administered during cardiac sur-

gery.73 Also, cardiac surgery can cause intensive systemic

inflammation that increases the permeability of the

blood–brain barrier.74 A jeopardized blood–brain barrier

could facilitate the entry of TXA into the CNS. Second,

it is important to understand the mechanism by which

TXA gains entry into the CNS, as such knowledge could

aid in the development of neuroprotective strategies that

reduce TXA penetration. Third, it is of interest to know

whether TXA dosing should be reduced or avoided in

patients with a previous history of a seizure disorder or

those with clinical conditions, such as traumatic brain

injury, that damage the blood–brain barrier and predis-

pose to seizures. Also, antibiotics such as penicillins and

cephalosporins inhibit GABAA receptors and it is

unknown whether these drugs exacerbate the proconvul-

sant properties of TXA.

Finally, future studies are needed to determine

whether antifibrinolytic drugs other than TXA also cause

seizures. Interestingly, EACA is a structural analogue of

the amino acid glycine and case reports show that EACA

causes seizures.33 Our electrophysiological studies demon-

strated that EACA acts as a competitive antagonist of

glycine receptors (IC50 5 12mM) in mouse neurons.47

The potency of EACA for glycine receptors is 10-fold

lower than that of TXA; however, EACA is often admin-

istered at 10-fold higher doses than TXA to patients.75,76

Aprotinin is structurally distinct from TXA and EACA.

We observed that aprotinin does not inhibit glycine cur-

rents, even at a very high concentration (10mM).47

Antifibrinolytic drugs remain an important and

effective, low-cost intervention that reduces blood loss,

morbidity, and mortality. Understanding the cause of

TXA-associated seizures, recognizing the early warning

signs of impending seizures, and using anesthetics may

reduce the incidence and severity of seizures and lead to

better patient outcomes.
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