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Abstract: The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure
to plasma produced by the positive, negative, and axial negative corona discharges. The positive
discharge appeared as the most effective, causing the death of cercariae and miracidia within 2–3 min
of exposure. The negative discharge was less effective, and the axial discharge was ineffective.
The water pre-activated (PAW) by the discharges showed similar efficiency, with the exception
of the significantly effective PAW activated with axial discharge. These facts, together with the
observation of various reactions among plasma-damaged schistosomes, suggest that the mechanisms
of inactivation by different types of discharges are different.

Keywords: non-thermal plasma; decontamination

1. Introduction
1.1. Genus Schistosoma

The genus Schistosoma belongs to the phylum Platyhelminthes, class Trematoda, and
family Schistosomatidae. This genus contains almost 30 species, and among them, the
species Schistosoma haematobium, S. mansoni, S. japonicum, S. intercalatum, and S. mekongi are
important in human medicine as the causative agents of a disease called schistosomiasis or
bilharziasis. About 250 million people suffer from schistosomiasis, mainly in Africa, Asia,
and South America. In the temperate zone, mostly imported infections occur; however,
also spreading from endemic areas with subsequent life-cycle establishment has been
recorded [1,2]. Besides schistosomiasis, also cercarial dermatitis or swimmer’s itch, a
benign disease of worldwide distribution caused by schistosomes of bird-specific species
(e.g., Trichobilharzia) occurs frequently also in the temperate zone.

The life-cycle of schistosomes involves two hosts, namely aquatic snails and mammals.
In water, motile miracidia (ciliated larvae) hatch from schistosome eggs, search for the
snail, and penetrate its body surface. In snails, miracidia transform into the sporocysts,
from which cercariae develop in the snail hepatopancreas and are released from the snail
to the water environment. Swimming cercariae are attracted to the skin of vertebrates by
chemotaxis and the temperature gradient. During penetration through the skin, they trans-
form into the schistosomula and subsequently enter the blood vessels. In the bloodstream
of the host, schistosomes migrate, mature, and lay eggs, which are excreted with urine or
feces into water, thus closing the cycle. The life-cycle is schematically shown in Figure 1;
for a more detailed description, see, e.g., [3].

Human infection occurs mainly after exposure in natural freshwater reservoirs. Acute
and chronic schistosomiasis may be recognized. Initially, Katayama syndrome including
fever, headache, myalgia, rash, respiratory symptoms, and hematuria or hematochezia may
develop; later on, chronic manifestations develop, including constipation, diarrhea, dysuria,
chronic bowel inflammation with intestinal wall ulceration, fibrosis, hyperplasia, polyposis,
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and hepatosplenomegaly associated with fibrosis and portal hypertension; bladder cancer
may develop. A reliable diagnostic method is microscopic detection of eggs in urine, feces,
or tissue biopsy together with the detection of specific antibodies, e.g., by ELISA; less
frequently, detection of parasitic DNA and RNA by PCR is done [4,5]. Effective peroral
medication with praziquantel (PZQ) and oxamniquine (OXA) is available; the mechanism
of their action is not known in detail [6].
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Besides medication including mass drug administration campaigns, various ap-
proaches are used to eradicate schistosomiasis from the environment, among them the
improvement of sanitation, intermediate host control, and water body engineering. An ef-
fective inactivation of swimming infective schistosome larvae (cercariae and/or miracidia)
would be highly appreciated.

Several methods have already been proposed for inactivating schistosomes. Inactiva-
tion of cercariae is difficult; variable survival times were reported: according to [7], they
can survive up to 36 h in water due to glycogen stores. Temperatures above 45 ◦C are lethal
to cercariae, but at lower temperatures, they survive for up to 100 h [8]. Cercariae survive
in distilled water; their viability increases with increasing glucose concentration; on the
contrary, higher concentrations of sodium chloride are not favorable to them [9].

Schistosomes can be removed from water by filtration through sand filters [10] or inac-
tivated by chlorination of water [11]. UV radiation in the wavelength range of 200–300 nm
has also been used to inactivate schistosomes; cercariae were damaged already when
exposed to UV radiation of 3 mL cm−2 [12].

1.2. Non-Thermal Plasma

Plasma, called also the fourth state of matter, is a partially or fully ionized gas. There
is a distinction between high temperature plasma, reaching temperatures of thousands of
Kelvin, and the non-thermal plasma (NTP), which occurs at nearly ambient temperature
and contains low-temperature ions and highly energetic free electrons. NTP may be
easily obtained by various electric discharges; briefly, the most commonly used are corona
discharges, plasma jet (called also plasma needle, plasma torch or plasma pen), dielectric
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barrier discharge, gliding arc and microwave discharges. For a more detailed description
of plasma sources, see, e.g., [13–20].

NTP is widely used in many areas of human activity including modification of surface
of various materials including nanoporous membranes, in food industry, biotechnology or
wastewater treatment. Its applications in biology and medicine summarized numerous
reviews [21–24] or the comprehensive book of [25]. Medical applications include mainly
disinfection processes, but also acceleration of the blood coagulation and improved wound
healing, dental applications or cancer therapy [26,27]. In addition to the direct action of
plasma, the effects of plasma activated water (PAW) persistent for many months after
exposure due to the presence of stable reactive oxygen and nitrogen species (RONS) are
also significant [28–30].

The nature of chemical reactions in NTP is rather complex, for details see [31–33].
Various species as ions, radicals, and stable or unstable electroneutral molecules, namely
superoxide anion, singlet oxygen, hydroxyl and hydroperoxyl radical, nitric oxide radical,
peroxynitrite and others are present. The lifetimes of these species are very short with
typical half-periods of life from nanoseconds to a few seconds. The stable compounds
formed are hydrogen peroxide, ozone and nitrogen oxides NOx. The microbicidal activity
of NTP is mediated mainly by RONS arising from surrounding gases, but the mechanisms
of biological effects of NTP in unicellular microbes are still poorly understood: Apart from
physical destruction, apoptosis also occurs in unicellular microbes including yeasts [34].
Some hallmarks of apoptosis were also found in the higher unicellular eukaryotes, as
Trypanosoma spp. or Dictyostelium discoideum exposed to NTP.

Most studies on the disinfection effects of NTP have been devoted to bacteria, but
attempts to inactivate viruses or fungi both in vitro and in vivo are also frequent; however,
a very wide range of experimental parameters and specific results were reported [35,36].
In general, different microbes exhibited different sensitivity to NTP: while bacteria can be
completely inactivated in seconds to minutes, yeasts required exposure for several minutes,
but mold and bacterial spores for several tens of minutes. Compared to planktonic forms,
microorganisms embedded in biofilm are significantly more resistant to the microbicidal
action of plasma and therefore require a longer exposure time to achieve inactivation [24].

Reports on the inactivation of parasites using NTP are rather rare. Hayes et al. [37]
evaluated a pulsed-gas plasma discharge (PPGD) system for its ability to inactivate the
waterborne enteroparasite Cryptosporidium parvum, causing cryptosporidiosis in humans.
Rowan [38] summarized the broader context of water purification using pulsed-gas plasma,
including inactivation of Cryptosporidium. Heaselgrave et al. [39] described the inactivation
of Acanthamoeba, which causes a potentially blinding keratitis most commonly seen in
contact lens wearers. Using the system of ambient air plasma confined to the surface of a
metallic mesh used as the ground electrode, trophozoites of Acanthamoeba were completely
inactivated within 0.5–2 min, and complete inactivation of the highly resistant cyst stage
was achieved after 4 min of exposure.

To date, only one study has been published on the effect of low-temperature plasma
on schistosomes [40]. The dielectric barrier discharge in the stream of carrier gas (He, O2,
or air) was used as the plasma source. Cercariae of Schistosoma japonicum floating on a
water suspension surface were exposed, and the damaged or inactivated cercariae sank to
the bottom and were evaluated microscopically. Exposure in an oxygen stream has been
shown to be effective, but less effective in an air stream; exposure in a helium stream was
ineffective. However, in no case the inactivation of all cercaria was achieved even after
ten minutes of exposure. The action of RONS is proposed as a mechanism of inactivation:
reactive oxygen species cause damage to the surface of the cercariae, diffuse through the
cell membrane, and interact with intracellular components that affect the metabolism of
the cercariae. Reactive nitrogen particles, especially nitric oxide, are toxic, cause nitration
of DNA and proteins, and together with superoxide or hydrogen peroxide, oxidize lipids
in the cell wall of cercariae.
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In this study, we tried to verify Schistosoma inactivation using another source of plasma
(different types of corona discharge) and another species (Schistosoma mansoni), as well as
to supplement the study of cercariae with the study of miracidia.

2. Materials and Methods
2.1. Corona Discharges

Three types of DC corona discharges were employed to produce the non-thermal
plasma, namely the positive discharge, negative discharge, and axial negative discharge.
An intradermal medical needle was used as the working electrode in all cases, and a
platinum wire was used as the ground electrode. An annular electrode was used as a
ground in the case of axial discharge. Diagrams of their electrical connection are shown in
Figure 2, Figure 3, and Figure 4, respectively. The voltage source HT 2103 (Utes Brno, Czech
Republic) was used, and the discharges were stabilized by an inserted resistor R = 20 MΩ.
The positive discharge was operated at voltage U = 9 kV and current I = 300 µA, the
negative one at U = 9 kV and current I = 350 µA, and the axial one at U = 5 kV and
I = 150 µA. In the case of the axial discharge, the current passed outside the exposed
sample, on which only the generated active particles fell. The appearance and properties
of individual discharges were described in [14].
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2.2. Preparation of Plasma-Activated Water

Aliquots of 1.5 mL of bottled drinking water (Rosana, Czech Republic) were activated
by exposure to positive, negative, and axial discharges, respectively. Different exposure
times were used, respecting the different efficiencies of the individual discharges: 2 min
for the positive, 8 min for the negative, and 75 min for the axial discharges. Details are
given in the Results in Table 1. The achieved pH and concentrations of active components,
namely nitrate, nitrite, and hydrogen peroxide, were estimated using Quantofix test strips
(Macherey-Nagel, Düren, Germany).

Table 1. Properties of pre-activated water (PAW).

Exposure
Time (min) pH NO3−

(mg·L−1)
NO2−

(mg·L−1)
H2O2

(mg·L−1)

unexposed 0 7 <15 0 0

positive
discharge

2 6 250 0 25

30 4 >500 40 >100

negative
discharge

8 6 250 0 10

30 4 >500 40 10

axial
discharge 75 6 500 40 25

2.3. Preparation of Infectious Larvae

Schistosoma mansoni cercariae were obtained from an infected intermediate host, the
freshwater snail Biomphalaria glabrata, kept in permanent laboratory life-cycle. The required
number of infected snails was transferred to a beaker with bottled drinking water (Rosana,
Praha, Czech Republic), previously proven as optimal for the cultivation of the snails
used, and placed under a light source, where cercariae were released within 30 min. Water
with cercariae was sieved (1 mm mesh) to remove large organic parts (e.g., snail feces
or plant food traces); cercariae were subsequently concentrated in the upper part of a
darkened narrow neck beaker using positive phototaxy. The number of cercariae in 1 mL
was assessed using binocular stereomicroscope, adjusted to approximately 50 cercariae per
mL, and aliquots of 1 mL of this suspension were transferred to 5 mL bowls to be exposed
to plasma.

Schistosoma mansoni miracidia were obtained from previously infected mice: immers-
ing mice in water containing cercariae accomplished the infection; afterwards, the mice
were kept under standard conditions. After 6 weeks, necessary to complete the life-cycle of
Schistosoma, the mice were necropsied, and the livers were homogenized in drinking water.
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As in the previous case, the homogenate was placed under a light source, miracidia floated
to the surface and were collected. Aliquots of the miracidia suspension were adjusted to
samples with a volume of 1 mL containing approximately 20 miracidia and transferred to
5 mL bowls to be exposed to plasma.

The experiments including the use of the experimental animals for the present study
were approved by the Ministry of Education, Youth and Sports of the Czech Republic (Ap-
proval Number MSMT-7063/2017-2). All the animals used in the study were maintained by
certified persons (Certificate Number CZ 02627) in specifically accredited laboratories (Ac-
creditation Number 70030/2013-MZE-17214), both issued by the Ministry of Agriculture of
the Czech Republic.

2.4. Infectious Larvae Inactivation by Plasma

The above-described samples containing cercariae were exposed to the positive, neg-
ative, and axial discharges, respectively. Each suspension was exposed for one minute,
observed and evaluated with a stereomicroscope (BEL Engineering, Monza, Italy), and
re-exposed for another minute. This process was repeated until all cercariae were killed.
The sample temperature reached maximal 35 ◦C as determined by an infrared thermometer,
and its evaporation was negligible. The observed cercariae were counted and, according to
the degree and nature of their damage, classified into eight categories (types), as summa-
rized in Table 2. The whole procedure was repeated three times; the numbers of cercariae
displaying particular types of damage were averaged, rounded to whole individuals, and
are summarized in the Results. To rule out the possibility that the tail drop (Type VIII)
was caused mechanically, the cercaria suspension was mixed for 10 min in a vortex mixer
(Grant Instruments, Shepreth, UK) at ca. 1000 rpm, and evaluated as above.

Table 2. Types of cercariae damage.

Damage Type Description

Type I normal movement Fast swimming employing tail movement

Type II resting position Floating in a vertical position without
movement

Type III sinking to the bottom No movement; sinking to the bottom

Type IV crawling at the bottom Spasmodic motion at the bottom

Type V normal movement with tail detachment Active crawling of the cercarial body at the
bottom

Type VI agony Occasional twitches at the bottom

Type VII death No activity

Type VIII death with tail detachment No activity; the tails detached

In addition, the viability of cercariae was determined by staining them with methylene
blue. This test is based on the fact that methylene blue penetrates only dead cells and stains
them blue, while this stain does not penetrate living cells, so they remain unstained. Cer-
cariae were obtained as described above under Preparation of Infectious Larvae. Aliquots
containing approximately 20 cercariae were exposed to the positive or negative discharge
for 1, 4, and 8 min. All samples were stained with methylene blue (0.15% in PBS, Sigma-
Aldrich, St. Louis, MO, USA) for 15 min, then the non-absorbed methylene blue was
washed with phosphate buffer, and the samples were evaluated using a stereomicroscope
and photographed under the optical microscope Eclipse E200 (Nikon, Tokyo, Japan).

Miracidia suspensions were exposed to the positive, negative, and axial discharges,
respectively. Each suspension was exposed for one minute, observed and evaluated with a
stereomicroscope, and re-exposed for another minute. This process was repeated until all
miracidia were evaluated as dead. The observed miracidia were counted and, according to
the degree and nature of their damage, classified into 5 categories (types), as summarized
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in Table 3. The whole procedure was repeated three times, and the numbers of miracidia
displaying particular types of damage were averaged, rounded to whole individuals, and
are summarized in the Results.

Table 3. Types of miracidia damage.

Damage Type Description

Type I normal movement Swimming in the water

Type II slow motion Floating with active movement rarely seen

Type III crawling at the bottom Active movement at the bottom

Type IV agony Occasional twitches at the bottom

Type V death No activity

2.5. Inactivation of Schistosoma Infectious Larvae in PAW

Aliquots of 10 µL suspensions containing approximately 50 cercariae or 20 miracidia
were added to 1 mL of freshly activated water. Their damage was then evaluated by
stereomicroscopic observation in the same manner as the samples directly exposed to
plasma (see above).

3. Results
3.1. Direct Action of Discharges on Cercariae

The graph in Figure 5 shows the action of the positive discharge on cercariae. The
empty column corresponds to the unexposed control with intact cercariae. After 1 min of
exposure, conspicuous damage of the cercariae was apparent, whereas only inactivated
cercariae with no signs of life and without tails (Types VII and VIII) were present. No tail
loss was observed after mechanical vortexing of the cercariae suspension.
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The graph in Figure 6 shows the gradual inactivation of cercariae by the negative
discharge. A significant inactivation occurred later, after 3–4 min of exposure. Cercariae
with no signs of life (Type VII) were observed after 4–5 min. Tail loss (Type VIII) occurred
after 7 min, and complete inactivation occurred after 8 min of exposure.

The effect of axial discharge was considerably lower than that of other discharges.
Only minor Types II and III damage was observed after exposure for 30 and 60 min. The
inactivation of cercariae was observed after a long exposure of 75 min. Due to this negligible
effect, the time dependence is not presented here in extenso.
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3.2. Effect of PAW on Cercariae

Table 3 summarizes the estimated composition of pre-activated water (PAW) prepared
by various discharges. Exposure times causing complete inactivation of cercariae were
chosen for individual discharges, i.e., 2 min for the positive, 8 min for the negative, and
75 min for the axial discharges. In addition, PAW exposed for 30 min to the positive and
negative discharges was prepared.

The action of water activated by the positive discharge on cercariae is shown in
Figure 7. The first signs of damage appeared after two minutes of exposure to this PAW;
after 10 min, no cercaria showed any signs of active movement; after 15 min, all cercariae
were inactivated. The action of this PAW caused a significantly lower incidence of tail
dropping than the direct action of the positive discharge.
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Cercariae transferred to water activated by the negative discharge (Figure 8) were
partially able to adapt to the adverse conditions and showed only slight damage after
10 min of exposure. After 25 min, very few cercariae with normal movement were observed,
and the complete inactivation occurred after 30 min. Detached tails were found only rarely.

In water activated by the axial discharge, the cercariae were significantly damaged
after only five minutes of exposure; their movement was significantly limited after 10 min.
After 17 min, they were completely inactivated (Figure 9).
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3.3. Microscopic Observation of Exposed Cercariae

Cercariae exposed for 1 min to the positive discharge were usually stained only
partially with methylene blue (Figure 10a); sometimes, the tail detachment (Figure 10b),
typical of longer exposures to this discharge, had already occurred. Cercariae exposed
to the negative discharge for 1 and 4 min remained native (unstained, Figure 11a), while
samples exposed for 8 min contained only inactivated stained cercariae (Figure 11b).
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Figure 10. Partially stained cercaria (a) and dead cercaria without a tail stained with methylene blue (b).
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Figure 11. Intact cercaria (a) and dead cercaria stained with methylene blue (b).

3.4. Direct Action of Discharges on Miracidia

The effect of the positive discharge on miracidia depending on the exposure time is
summarized in Figure 12. It was apparent that the movement of miracidia was significantly
affected already during the first minute of exposure; several moving miracidia were still
visible at the second minute. Complete inactivation of the suspension with approximately
20 miracidia occurred after 3 min of exposure.
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Figure 13 shows the effect of the negative discharge on miracidia. Between the first
and fourth minutes, a transitional area can be seen where miracidia tried to adapt and
withstand the adverse conditions. However, after five minutes of exposure, they no longer
showed any signs of life.

The axial discharge inactivated the miracidia suspension only after a very long ex-
posure lasting 75 min, similar to that described under Section 3.1 for cercariae. Therefore,
the observations of the inactivation process are not recorded in the graph. From this ex-
periment, only a weak inactivating effect of this discharge on the miracidia of the genus
Schistosoma was found.
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3.5. Effect of PAW on Miracidia

Water previously activated by the positive discharge caused a noticeable inactivation
of miracidia after only 2 min of action, and after 10 min, their inactivation was complete
(Figure 14).
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Water previously activated by the negative discharge exhibited a similar, perhaps only
slightly slower effect, as in the previous case (Figure 15).
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The action of water activated by the axial discharge was even slower than in the
previous two cases; this PAW caused the complete inactivation of miracidia after 15 min of
exposure (Figure 16).
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4. Discussion

In the previous study of [40], the complete inactivation of cercariae was not achieved
even after ten minutes of exposure. However, the experimental conditions used were some-
what different from our report: Schistosoma japonicum and the dielectric barrier discharge
were employed. We do not assume that our somewhat different results would be due to a
different schistosome species, whose properties are unlikely to differ much. The different
efficiency of inactivation is probably due to the different efficiency of the discharge used,
caused by different mechanisms of its action. This is apparent from a comparison of the
efficiencies of different types of corona discharge, summarized in the Results. The positive
discharge appeared as the most effective, causing the complete inactivation within 2 min
of exposure. The negative discharge needed 8 min for the same effect, but the efficiency of
axial discharge was negligible. In addition, only after exposure to the positive discharge
the tail detachment was observed. Inactivation of cercariae by plasma-activated water
gave similar results, with PAW activated by a positive discharge appearing to be the most
effective. PAWs activated by negative and axial discharges showed somewhat weaker, but
remarkable and comparable efficiencies.

For the first time, the results of the inactivation of miracidia by low-temperature
plasma are presented here. The direct action of discharges displayed similar trends as for
cercariae: the positive discharge inactivated miracidia within 2–3 min, and the negative
one after five minutes of exposure. The axial discharge appeared as almost ineffective.
Concerning PAW, it inactivated miracidia after 10 min of action, both after activation with
positive and negative discharge. The effect of water activated by axial discharge was
comparable, although somewhat slower.

If completely inactivated, schistosomes were indeed dead, as demonstrated by deter-
mining their viability after methylene blue staining. This finding is significant as it denies
the possibility of recovery and subsequent infection by partially inactivated schistosomes.

The observation of exposed cercariae by electron microscopy provided preliminary
results indicating different mechanisms of action for different discharges. These findings
are not reported here, but we are working on a more detailed study confirming this
assumption, which will be published separately.

This holds also for the explanation of the mechanisms involved in the schistosome
inactivation. The chemical processes taking place in exposed water are relatively complex,
including various active components’ production, which have not yet been fully explained.
They have been discussed and summarized in many contributions, such as the reviews
of [29,31], and we contributed to this discussion in [28,41]. The discharges used differ by
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the rate of reactive particles generated. For the most effective positive discharge, atomic
oxygen, nitrogen, and OH˙ radicals were generated at higher amounts than in the less
effective negative one. The axial discharge was similar to the negative one, but it burned
over the sample only and not the sample directly. We believe that there is no place in this
work for a more detailed analysis of this voluminous issue.

The results presented in this paper are only pilot studies and apply only to exposures
of small volumes. For their practical use, further studies would be needed, using, for
example, the multi-electrode discharge arrangement or dielectric barrier type discharges
capable of hitting a larger volume of exposed liquid.

5. Conclusions

The low temperature plasma produced by corona discharges, as well as water activated
by these discharges (PAW) inactivate the cercariae and miracidia of Schistosoma mansoni. The
efficiency of this inactivation depends strongly on the nature of the discharge: the positive
discharge works within 2–3 min of exposure and the negative one within 5–8 min. The
direct action of the axial discharge is almost ineffective. Similar effects were observed for
the PAW, except for the PAW activated with the axial discharge, which inactivated cercariae
and miracidia after 17 and 15 min, respectively. Preliminary microscopic investigation
implies different mechanisms of inactivation for particular discharge types.
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