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Glossary
Hemagglutination inhibition The ability of an immune
serum to block the clumping of red blood cells caused by
cross-linking of the cells by multivalent viruses with
receptors for red blood cell surface antigens.
Heterotypic Able to recognize more than one virus
serotype.
Jennerian A vaccine approach in which an animal virus is
used to protect humans from disease.
Reassortment The exchange of gene segments between
viruses with multipartite genomes during coinfection.

Split vaccine A vaccine with antigens from chemically
disrupted virus particles.
Subunit vaccine A vaccine with antigens that are purified
virus or microbe components.
Toll-like receptors A type of receptor that recognizes
conserved microbial components and triggers an innate
immune response but does not undergo splicing
recombination to generate diversity.
Viremia Presence of virus in the blood.

Abstract

Most vaccines in use today are the result of empirical development. The mechanism of action of many vaccines in common
use remains incompletely understood. Understanding how such vaccines protect is an ongoing subject of study using
increasingly sophisticated immunological tools, such as B cell and T cell repertoire and transcriptome analysis. Such tools are
also being applied to the design of vaccines against those viral targets that have evaded vaccine-mediated protection thus far.
As basic immunological science intersects with the practicalities of assuring vaccine safety, tolerability, efficacy, and
consistency in the clinic, the practical utility of more sophisticated immunological measures for vaccine development may be
determined by whether they can be reduced to simply executed, highly standardized, reproducible assays with outcomes that
have clear interpretations for vaccine development and use. Basic immunology, empirical vaccine testing, and regulatory
science are all necessary contributors to developing the next generation of vaccines, including vaccines effective against the
pathogens for which vaccines are not currently available.

Introduction – Viral Vaccines Now in Use

Immunization against viruses has achieved some of the greatest
successes of medicine, such as the eradication of smallpox
worldwide and the control of polio in most of the world. Yet,
there are major viral pathogens, such as the human immunode-
ficiency virus (HIV), hepatitis C virus (HCV), respiratory syncy-
tial virus (RSV), and human cytomegalovirus, for which no
effective vaccines are available, despite decades of research
and development. Table 1 lists the viral agents for which
licensed vaccines are now available in the United States. With
a singular exception, these viruses show limited antigenic diver-
sity and have undergone little antigenic change over time. That
exception, influenza virus, defines the current limits of our
ability to immunize effectively in the face of substantial anti-
genic diversity and change.

On the list, there are few vaccines developed using the tools
of modern molecular biology or sophisticated immunological
methods. Many of the vaccine antigens (such as those in
vaccines against influenza virus, Japanese encephalitis virus,
rabies virus, and poliovirus) are produced by growing viruses

and chemically inactivating them. Other viral vaccines are
produced by propagating live viruses that have been attenuated
by experimental passage in culture or in nonhuman hosts
(influenza virus, yellow fever virus, measles virus, mumps
virus, and rubella virus), by using virus strains originating in
nonhuman hosts (‘Jennerian’ vaccines – rotavirus, vaccinia
virus), or by nonrecombinant genetic manipulation (genome
segment reassortment through coinfection for rotavirus and
influenza virus). Some preparations of vaccines still in use
(against influenza virus and yellow fever virus) are produced
by virus propagation in fertilized chicken eggs rather than in
cell culture. Exceptions to the generally low technology
approaches to producing vaccine antigens include recombi-
nantly produced vaccine antigens for hepatitis B virus (HBV),
human papillomavirus (HPV), and influenza virus. The HPV
and HBV vaccine antigens, which are expressed in yeast or
insect cells, self-assemble into particles that resemble those
released from virus-infected cells (Zeltins, 2013).

Similarly, most vaccines in use today are either unadju-
vanted or adjuvanted with alum, which has been used to
enhance immune responses to vaccines since the 1920s
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(Baylor et al., 2002). There are a few exceptions. One licensed
HPV vaccine includes a Toll-like receptor agonist adjuvant
based on monophosphoryl lipid (MPL) A, and some
influenza vaccines available in the European Union and
other countries include oil-in-water emulsion adjuvants
(Del Giudice and Rappuoli, 2015; Garcon et al., 2011).

Viral Vaccine Mechanism of Action and Correlates of
Protection

Vaccines are more complex in their mechanism of action than
almost all other pharmaceutical products. Rather than acting
directly through a well-defined, single ligand–receptor inter-
action, vaccine antigens and adjuvants have a series of
complex interactions with multiple components of the
immune system at or near the site of immunization and

sometimes at systemic sites as well. These interactions prime
the host for an anamnestic response to a subsequent infec-
tious challenge, often at another anatomic site in the host,
at a time remote from the immunization. The antigens in
the viral challenge may have differences from those in the
vaccine. In some cases, the host may have experienced infec-
tion with an antigenically related virus prior to immuniza-
tion, adding an additional element of complexity to the
vaccine immune response. The complex immunology that
underlies protection from disease by immunization makes it
a fascinating subject for scientific investigation. However,
for practical vaccine development, straightforward, definitive,
easily executed, reproducible, and readily interpreted immu-
nological assays are needed to characterize and define the
response to vaccines more fully. The intersection between
the rich complexity of vaccine immunology and the practical
need for simplicity in regulatory science contributes to a gap
between the science and practice of vaccinology.

For some vaccines, simple models of the determinants of
protection have proven sufficient for practical decision
making. For example, if the HBV vaccine elicits a postvaccina-
tion-binding titer against the HBV surface antigen (SAg)
�10 mIU/ml, a subject is considered to be protected (Jack
et al., 1999). Even if the anti-SAg titer falls to<10 mIU/ml after
having been �10 mIU/ml, substantial levels of protection
persist (West and Calandra, 1996). Similarly, for the yellow
fever vaccine, a plaque neutralization serum antibody titer of
0.9 neutralization index (equivalent to the difference in titer,
log10, between pre- and post-vaccination serum) is strongly
associated with protection (Mason et al., 1973). Neutralization
of virus by antibody is generally considered the dominant
mode of protection against those viruses whose pathogenesis
requires viremia. Examples include poliovirus, smallpox virus,
yellow fever virus, HBV, varicella zoster virus (for chicken pox,
not zoster), measles virus, mumps virus, and rubella virus. This
is likely an oversimplification of the true situation, but it has
proved a useful simplification for vaccine development and
monitoring (Plotkin, 2013).

Assigning reliable correlates of protection can be more
challenging for vaccines against viruses that predominantly
infect and replicate at a mucosal surface. For inactivated influ-
enza vaccines, a serum hemagglutination inhibition (HI) titer
of 1:40 has long been accepted as a correlate of protection,
based primarily on studies in young adults (de Jong et al.,
2003). However, considerably higher antibody levels may
be required to protect children, with HI titers of 1:110 confer-
ring 50% protection after immunization with an adjuvanted,
inactivated influenza vaccine (Black et al., 2011). In the
elderly, measures of cell-mediated immunity, such as gran-
zyme B levels in virus-stimulated peripheral blood mononu-
clear cells, may correlate better than serum antibody titers
with vaccine-elicited protection (McElhaney et al., 2009). In
addition, the correlates of protection after immunization
with inactivated influenza vaccines do not predict protection
after immunization with live attenuated influenza vaccines,
which offer more protection than would be predicted based
on the elicited serum HI or neutralization titers (Beyer et al.,
2002). Whether cell-mediated effector mechanisms, mucosal
antibody, or some other factor is primarily responsible for
protection by live attenuated influenza vaccines or natural

Table 1 Viruses for which vaccines are licensed and available in the
United Statesa

Virus Type(s) of Vaccines

Adenovirus types 4 and 7 Oral live attenuated, bivalent
Hepatitis A virus Inactivated virus, alum adjuvanted
Hepatitis B virus Recombinant, self-assembling

antigen, alum adjuvanted
Human papillomavirus types 6,

11, 16, 18, 31, 33, 45, 52, 58
Recombinant virus-like particles;

adjuvanted with alum or with
alum and monophosphoryl lipid A;
bivalent, quadrivalent, or
9-valent

Influenza virus (seasonal) Live attenuated, recombinant, or
inactivated split or subunit; trivalent
or quadrivalent

Influenza virus (H1N1 pandemic) Live attenuated or inactivated split or
subunit, monovalent

Influenza virus (H5N1
prepandemic)

Inactivated split, unadjvuanted or
adjuvanted with an oil-in-water
emulsion, monovalent

Japanese encephalitis virus Inactivated unadjuvanted or
adjuvanted with alum

Measles virus Live attenuated (in combination with
mumps and rubella with or without
varicella)

Mumps virus Live attenuated (in combination with
measles and rubella with or without
varicella)

Rubella virus Live attenuated (in combination with
measles and mumps with or
without varicella)

Poliovirus Inactivated, trivalent
Rabies virus Inactivated
Rotavirus Live attenuated, monovalent or

pentavalent
Smallpox virus Live attenuated, Jennerian (bovine

virus)
Varicella virus Live attenuated (two dosages – low for

prevention of chicken pox in
children and high for prevention of
shingles in the elderly)

Yellow fever virus Live attenuated

aInformation from US Food and Drug Administration (2015).
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infection remains controversial despite several decades
of study.

A reliable correlate of protection is even more elusive for
rotavirus, which causes diarrhea by infecting the small intes-
tinal epithelium. Based on studies in animal models, homo-
typic neutralizing antibodies were thought to play a key role
in protection, making viral serotype an important distinction.
Yet, in humans, a monovalent live attenuated rotavirus
vaccine provides substantial heterotypic protection (Leshem
et al., 2014). There are a number of candidates for the mech-
anism of the greater breadth of protection, including hetero-
typic neutralizing antibody, heterotypic nonneutralizing
antibodies that block intracellular replication, and cell-
mediated effector mechanisms, with no mechanism widely
accepted as responsible. Cell-mediated effector mechanisms
are thought to play a significant role in vaccine-mediated
protection from a few viruses, such as varicella zoster virus
(in adults) and influenza virus (with live attenuated vaccines)
(Forrest et al., 2008; Weinberg et al., 2009). Eliciting an effec-
tive T helper (Th) response is essential for mounting an
affinity-matured, durable humoral response to vaccines. The
control of more changeable viruses and the harnessing of
cell-mediated effector mechanisms for prevention of viral
diseases in humans are, therefore, two of the chief challenges
in modern vaccinology.

Immunological Assays for Viral Vaccines

Increasingly sophisticated tools of B cell repertoire analysis,
transcriptome analysis, and advanced functional imaging are
being used to understand vaccine mechanism of action (Tsang
et al., 2014; Jiang et al., 2013; Karlsson et al., 2015). Yet, as is
the case for the technologies used to manufacture most
current human vaccines, the core immunoassays used to bring
viral vaccines to licensure are generally simple, as exemplified
by antibody-based viral neutralization assays, enzyme-linked
immunosorbent assays, and multiplex binding assays. This
restricted range of assay types largely reflects a need to stan-
dardize assays rigorously (Guidance for Industry. Bio-
analytical Method Validation (Draft) 2013) and practical
limitations on the sophistication of assays that can be used
as primary endpoint in the large-scale clinical trials (often
with tens of thousands of subjects) required to bring novel
vaccines to licensure. More sophisticated measures of cell-
mediated immunity have had a prominent role in vaccine
research but a much more minor role in vaccine licensure.
The difficulty of standardizing such assays and assigning
a threshold assay value that indicates protection has limited
their use as correlates of protection for vaccine trials being
used for registration. Similarly, although mucosal immunity
surely plays a major role in determining vaccine-mediated
protection, challenges in sample collection and assay consis-
tency have the consequence that serum antibody levels rather
than measures of mucosal immunity are favored as correlates
of protection for vaccine licensure. Nevertheless, measures of
cell-mediated immunity, such as enzyme-linked immunosor-
bent spot assays and fluorescence-activated cell sorter–based
T cell functional analyses, are routinely used as explor-
atory endpoints during vaccine development. Recently,

investigators have also added systems biology approaches,
with transcriptional array, mass cytometry–based cell sorting,
and luminex binding assays to their analytical tool box for
investigating the early innate immune responses to vaccina-
tion (O’Gorman et al., 2014; Tsang et al., 2014). To date,
none of these interesting approaches have proven sufficiently
robust or predictive to be used as licensure criteria. Standard-
ization of such assays could lead to a more prominent role for
assays of cell-mediated, mucosal, and innate immunity in
vaccine development.

Challenges to Vaccine-Mediated Protection from Viral
Diseases

Antigenic diversity and antigenic change remain key challenges
for the development of effective vaccines for several important
agents. Influenza vaccines must change composition on an
almost annual basis to track antigenic drift or shift, and the
vaccine varies considerably in effectiveness from year to year
depending in part on the accuracy of the antigenic match
between the vaccine and circulating strains. For pathogens
that are more variable than influenza, such as HIV and HCV,
attempts at immunization have thus far proven largely ineffec-
tive despite the identification of viral targets of broadly neutral-
izing antibodies (Burton and Mascola, 2015; Kong et al., 2012;
Throsby et al., 2008; Whittle et al., 2011).

Evasion of vaccine-mediated immunity, for example, by
replication in privileged reservoirs, poses another challenge
for vaccine development. HIV evades vaccine-mediated immu-
nity not only by selection of resistant variants in response to
immune pressure, but also by replication in immune-privileged
sites, such as cells of the central nervous system (Churchill and
Nath, 2013). The latency of herpes viruses has posed a challenge
for vaccine development, though not an insurmountable
challenge, as evidence by the efficacy of varicella zoster vaccines
against reactivation disease (shingles) (Lal et al., 2015; Oxman
et al., 2005).

The duration of immunity elicited by viral vaccines also
varies. In the best case, a single immunization with the live
attenuated yellow fever vaccine appears to confer lifelong
protection (although current recommendations are for
a booster every 10 years for those at risk) (Gotuzzo et al.,
2013). At the other extreme, the need for annual immunization
against influenza does not appear to be solely due to antigenic
changes in circulating viruses, as the duration of immunity eli-
cited by nonadjuvanted, inactivated influenza vaccines appears
to be limited, with vaccine strain-specific effectiveness
decreasing over the course of a season more than can be
accounted for by the antigenic drift of circulating viruses
(Kissling et al., 2013; Pebody et al., 2013).

Special populations pose a particular challenge for viral
vaccines. The neonatal response to immunization differs
from responses later in life, with preferential elicitation of
memory B cells rather than plasma cells and a more Th2-biased
T cell response (Wood and Siegrist, 2011). Passively transferred
maternal antibodies can interfere with vaccine immunoge-
nicity, particularly in infants below 6 months of age (Crowe,
2001). Safety is a critical issue for neonatal immunization.
For example, findings of excess wheezing and hospitalization
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prevent a live attenuated influenza vaccine from being used in
infants under 2 years of age despite its utility in older children
(Prutsky et al., 2014). To overcome these factors and to take
advantage of prime-boost effects, infant immunization is
generally carried out with multiple doses, often including
remote boosters.

For RSV, a major cause of the infant disease for which there
is currently no licensed vaccine, there is insufficient time to
elicit an active immune response before the peak incidence
of severe disease at approximately 2 months of age. This early
peak of disease is a chief rationale underlying proposals for
maternal immunization against RSV (Anderson et al.,
2013). Immunizing pregnant women can increase the levels
of pathogen-specific antibodies transferred transplacentally
or in breast milk to newborns. Immunization of pregnant
women is gaining increasing acceptance, in part due to the
experience of immunizing pregnant women during the 2009
influenza pandemic (which caused disproportionately severe
illness in pregnant women) (Fell et al., 2012), evidence of
improved birth outcomes with influenza immunization
during pregnancy (Steinhoff et al., 2012), and the success of
maternal immunization to prevent neonatal tetanus
(Blencowe et al., 2010).

At the other end of the age spectrum, immune senescence
creates challenges for immunizing the elderly. High-dose
formulations of inactivated influenza vaccine and varicella
zoster vaccine and an adjuvanted formulation of inactivated
influenza vaccine have been used to increase vaccine effective-
ness in the elderly (DiazGranados et al., 2014; Mannino et al.,
2012; Oxman et al., 2005). Immunodeficiencies also pose
a challenge for immunization. For example, renal failure
patients on hemodialysis are at particular risk for the acquisi-
tion of hepatitis B. Yet, the HBV vaccine is less likely to elicit
protective antibody titers in this population. This has led to
the licensure of a hepatitis B vaccine adjuvanted with an
MPL-analog adsorbed on aluminum phosphate for those
with renal insufficiency in the European Union (Kundi,
2007). There are also safety concerns around the use of live
attenuated vaccines in the immunodeficient, with some live
attenuated vaccines (such as those targeting smallpox virus,
yellow fever virus, or rotavirus) causing clinical illness due
to infection with the attenuated vaccine virus in those with
immunodeficiency (Bakare et al., 2010; Reed et al., 2012;
Seligman, 2014).

The potential for vaccine-mediated disease enhancement has
substantially hindered the development of an RSV vaccine
(Anderson et al., 2013). In the 1960s, a formalin-inactivated
RSV vaccine candidate primed immunized infants for more
severe RSV disease upon natural RSV challenge (Kapikian
et al., 1969). A preponderance of evidence suggests that an
immunopathologic Th2-biased cellular response coupled with
a minimal neutralizing antibody response to the vaccine was
responsible for the enhanced disease, although the mechanism
of the vaccine-mediated disease enhancement is still not
completely understood (Graham, 2011). Observations of
vaccine-enhanced disease have also been made in humans after
immunization with an inactivated measles vaccine (Fulginiti
et al., 1967) and in a ferret model with experimental immuniza-
tion against the severe acute respiratory syndrome coronavirus
(Weingartl et al., 2004).

Prospects for Applying Modern Immunology for
Improved Vaccines

As is evident from the preceding comments, there is ample
opportunity to apply state-of-the-art immunology as well as
more modern manufacturing practices to vaccines. There
remains a large gap between the large diversity of immuniza-
tion approaches in research and early development and the
limited application of new science and technology to vaccines
that have been licensed or that are in late-stage development. In
part, this reflects the challenges of replacing sufficiently effec-
tive, old vaccines with new ones. The old vaccines have
a long track record of safe administration; for the new vaccines,
knowledge of safety, efficacy, and effectiveness is necessarily
more limited, no matter what theoretical advantages new tech-
nologies may offer. In addition, many of the old, established
vaccines still in use are remarkably inexpensive, undermining
the economics that would permit replacement with much
more expensive new vaccines, burdened by new development
costs. Nevertheless, key viral pathogens, such as HIV, RSV,
CMV, herpes simplex virus, dengue virus, and HCV have
resisted successful vaccine development using conventional
techniques and are prime targets for innovative approaches.

More sophisticated application of immunology to vaccine
development could address some of the challenges in the clin-
ical development of vaccines. For example, increased use of
immunological markers of vaccine safety, immunogenicity,
and efficacy could limit clinical trial sizes and durations.
More intensive study of smaller numbers of subjects in early
clinical trials could lead to the testing of more vaccine candi-
dates and better informed decisions on whether to progress
vaccine candidates to larger-scale clinical testing or to switch
to more promising alternative vaccine candidates (Rappuoli
and Aderem, 2011). For example, CD4þ T cell responses
observed 3 weeks after immunization with a H5N1 influenza
vaccine predict neutralizing antibody responses 6 months after
immunization, potentially enabling more rapid answers about
immunogenicity from clinical trials of such vaccines (Galli
et al., 2009).

Although analysis of biomarkers and more sophisticated
immunological analyses may enhance our ability to assess
some aspects of vaccine safety and immunogenicity in smaller
trials, it is less likely that such approaches will enable the detec-
tion of the unanticipated, idiosyncratic adverse events that
large phase III trials and postlicensure surveillance are designed
to detect. Examples of such idiosyncratic events include the
Guillain–Barre syndrome observed after influenza immuniza-
tion following the 1977 swine flu outbreak (Schonberger
et al., 1979), the narcolepsy associated with ASO3-adjuvanted
2009 pandemic influenza vaccine in northern European
adolescents (Ahmed et al., 2014), or the intestinal intussuscep-
tion associated to greater or lesser degrees with different live
attenuated rotavirus vaccines (Rosillon et al., 2015). However,
if a core set of safety and immunogenicity parameters could be
assessed in smaller trials through more intensive study of
immunological and other biomarkers, more of the burden of
detecting rare events could be shifted from large prelicensure
trials to postlicensure surveillance systems, decreasing the
barriers to advancing vaccines through licensure to meet the
unmet medical needs.
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B cell repertoire analysis has provided a wealth of new infor-
mation on the diversity of antibodies that collectively make up
a serum antibody response to a vaccine. A key finding has been
that, among the neutralizing antibodies elicited in response to
influenza virus, HIV, or RSV infection or immunization, some
have remarkably broad specificity (Burton and Mascola 2015;
Corti et al., 2013, 2011). To date, B cell repertoire analysis
coupled with the functional analysis of antibodies and the
structural analysis of antigen–antibody complexes has defined
the antibodies we want our vaccines to elicit and the target
structures on viruses recognized by such antibodies. Progress
has also been made in our ability to design epitope-focused
antigens that elicit such antibodies (Correia et al., 2014;
Schickli et al., 2015). However, to date, such engineered anti-
gens have not proven more effective at eliciting high titers of
broadly neutralizing antibodies than the intact glycoprotein
domains that contain the epitopes of interest. Iterative
improvement of such rationally designed antigens does,
however, hold promise for improved vaccines that target
patches of conservation on variable, multiepitope antigens.

Vaccines based on conserved T cell epitopes or internal
protein antigens that are the targets of T cell–based effector
mechanisms are an area of active research. Theoretically,
vaccines that target the conserved nonsurface proteins of
viruses that are expressed in infected cells could overcome the
antigenic diversity of surface neutralization determinants. For
example, in a small human live viral challenge study, the
vectored expression of the influenza internal matrix protein
and nucleoprotein together significantly reduced the number
of days of virus shedding during laboratory-confirmed influ-
enza infection (Lillie et al., 2012). It remains to be determined
whether such mechanisms of protection will prove effective
and durable enough to be the primary basis for vaccine-medi-
ated protection, however. Even absent the ability to suffice as
the primary basis for influenza vaccines, conserved targets of
T cell effectors may prove useful supplements to increase the
breadth of coverage by vaccines that also include targets of
more potently protective, strain-specific humoral immunity
(Antrobus et al., 2014). As T cell effector mechanisms involve
the killing of host cells, priming for increased T effector
responses does carry some risk of exacerbating disease even
as it accelerates viral clearance.

Increased insights into innate immune mechanisms have
informed the search for new generations of rationally
designed adjuvants. The adjuvants in currently licensed
vaccines, aluminum salts, oil-in-water emulsions, and MPL-
analogs have been the products of largely empirical develop-
ment efforts (O’Hagan and Fox, 2015). The elucidation of
Toll-like receptors as key sentry molecules that detect poten-
tial pathogens and recruit antigen-presenting cells for a subse-
quent antigen-specific response has enabled the rational
design of a new generation of potential vaccine adjuvants
(Wu et al., 2014). Using well-established principles of
small-molecule screening and optimization for ligand
binding, new Toll-like receptor agonists are now reaching
clinical testing. Similarly, the ability to target vaccine-
primed responses to mucosal tissues through the use of reti-
noic acid as an adjuvant, thus far demonstrated in preclinical
testing, provides an additional mode of action for adjuvants
to shape the character of vaccine-mediated immune responses

(Tan et al., 2011). It is important to note, however, that
demonstration of safety, especially as it applies to rare idio-
syncratic events, remains a critical hurdle to the licensure of
vaccines containing novel adjuvants.

Conclusion

Largely empirical approaches to vaccine development have
provided tremendous public health benefits. The under-
standing of vaccine immunology has advanced greatly since
many vaccines still in use were originally developed. Applying
this new knowledge could improve current vaccines and lead to
the development of vaccines for viral diseases that have resisted
vaccine-mediated protection to date.
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