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Simple Summary: This study explored the relationship between Brachionus calyciflorus-associated
bacterial and bacterioplankton communities in freshwater. We believe that our study makes a
significant contribution because zooplankton and bacterioplankton are the basic components in the
aquatic ecosystem, zooplankton has an important role between lower (phyto-, protozooplankton) and
higher (fish) trophic levels, and bacteria participate in biogeochemical cycle processes such as nitrogen
and carbon cycle, where the symbiotic relationship between them plays an important role in the
nutrient cycle, so researching the symbiotic relationship between them will contribute to monitoring
the process of environmental change and ecological restoration. Overall, our study expands the
current understanding of zooplankton–bacteria interaction and promotes the combination of two
different research fields.

Abstract: Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth.
Therefore, the abundance of zooplankton-associated bacteria is much higher than that of free-living
bacteria, which has profound effects on the nutrient cycling of freshwater ecosystems. However, a
detailed analysis of associated bacteria is still less known, especially the relationship between those
bacteria and bacterioplankton. In this study, we analyzed the relationships between Brachionus calyci-
florus-associated bacterial and bacterioplankton communities in freshwater using high-throughput
sequencing. The results indicated that there were significant differences between the two bacterial
communities, with only 29.47% sharing OTUs. The alpha diversity of the bacterioplankton commu-
nity was significantly higher than that of B. calyciflorus-associated bacteria. PCoA analysis showed
that the bacterioplankton community gathered deeply, while the B. calyciflorus-associated bacterial
community was far away from the whole bacterioplankton community, and the distribution was
relatively discrete. CCA analysis suggested that many environmental factors (T, DO, pH, TP, PO4

3-,
NH4

+, and NO3
-) regulated the community composition of B. calyciflorus-associated bacteria, but

the explanatory degree of variability was only 37.80%. High-throughput sequencing revealed that
Raoultella and Delftia in Proteobacteria were the dominant genus in the B. calyciflorus-associated
bacterial community, and closely related to the biodegradation function. Moreover, several abundant
bacterial members participating in carbon and nitrogen cycles were found in the associated bacterial
community by network analysis. Predictive results from FAPROTAX showed that the predominant
biogeochemical cycle functions of the B. calyciflorus-associated bacterial community were plastic
degradation, chemoheterotrophy, and aerobic chemoheterotrophy. Overall, our study expands the
current understanding of zooplankton–bacteria interaction and promotes the combination of two
different research fields.
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1. Introduction

In a freshwater ecosystem, zooplankton and bacterioplankton are fundamental com-
ponents of the food web. Zooplankton plays an important role between lower (phyto-,
protozooplankton) and higher (fish) trophic levels [1]. Bacteria participate in biogeochemi-
cal cycle processes such as ammonia oxidation [2], nitrogen cycle [3], and carbon cycle [4].
Generally, they are viewed as independent study objects that are only indirectly connected
via nutrient cycling and trophic cascades [5]. Until recently, attention has been paid to
bacteria that colonize inside and outside zooplankton, known as zooplankton-associated
bacteria [6,7].

Some studies have pointed out that the community structure of zooplankton-associated
bacteria is mainly determined by the species-specific characteristics of the host and the
environmental characteristics of the host (including food and the surrounding bacterial
community) and has a similar community composition but a different relative abundance
than the bacterioplankton in the surrounding water [8,9]. Bacterioplankton can use organic
matter released by zooplankton as a carbon and nitrogen source for survival and reproduc-
tion [10]. Zooplankton provides a unique microhabitat by releasing bioavailable dissolved
organic matter and nutrients during digestion [6,11]. Driven by different physical and
chemical conditions, a unique associated bacterial community was constructed [12]. The
composition of the zooplankton-associated bacterial community depends on the bacterial
pool in the surrounding water, and zooplankton migrate vertically in layered water, which
is convenient for associated bacteria to obtain and spread from different water layers [13].

It has been reported that changes in environmental factors, such as temperature and
nutrients, will affect the composition and diversity of the bacterioplankton community [14],
and thus affect those in the zooplankton-associated bacterial community [9]. Conversely,
different associated bacterial community compositions will also have different effects on
the population dynamics of the host. Callens and others [15] used antibiotics to interfere
with the microbial community in the culture environment and found that they had a
strong impact on the subsequent colonization of Daphnia magna-associated bacteria, and
then affected the growth of D. magna. These studies indicate that the composition of
bacterioplankton in environmental water may be an important factor in the construction of
the zooplankton-associated bacterial community, which has an important impact on the
growth and reproduction of hosts. There is an active bacterial exchange process between
zooplankton-associated bacteria and bacterioplankton, and the close relationship between
them can widely affect the behavior, growth, and biogeochemical activities of bacteria [16].
Therefore, the exploration of the relationship between bacterioplankton and associated
bacterial communities is helpful to better understand how native bacterial communities
shape the composition of associated bacteria and affect the interaction between host and
bacterial communities, and also has important scientific significance for understanding the
adjustment of the whole aquatic ecosystem function.

Although the close relationship between copepod, cladoceran, and bacteria has been
widely studied [12,17,18], studies on rotifer-associated bacteria remain scarce. Rotifers
can account for between 10% and 44% of total zooplankton production [19], and thus
play an important role as herbivores suspension breeders and predators in zooplankton
communities. Additionally, some scholars believe that the habitat’s bacterial community
composition (BCC) influences rotifer culture stability and population growth in the labo-
ratory [20,21]. These studies only analyzed the bacterial community in water, while the
analysis of rotifer-associated bacteria was little or not detailed, especially the analysis of the
relationship between rotifer-associated bacteria and bacterioplankton in freshwater was
even less.

As a cosmopolitan rotifer species, B. calyciflorus was the subject of this study and is
often used as a model organism. Most studies have focused on food restriction [22], toxicity
tests [23], and interspecific competition [24]. However, few studies have focused on the
relationship between B. calyciflorus-associated bacteria and bacterioplankton communities.
Although the bacterioplankton community serves as a source library for zooplankton-
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associated bacterial communities, given the high sensitivity of the bacterial community
structure to environmental changes and the fact that B. calyciflorus provides a microhabitat
distinct from the surrounding water, we hypothesized that the B. calyciflorus-associated
bacterial community structure is significantly different from the bacterioplankton commu-
nity structure. Furthermore, we hypothesized that the physical and chemical factors in
the surrounding water were not the main factors regulating the B. calyciflorus-associated
bacterial community structure. To test these hypotheses, our study used high-throughput
sequencing technology to clarify taxonomic and functional information of B. calyciflorus-
associated bacterial and bacterioplankton communities and analyzed them in combination
with physicochemical factors in the surrounding water.

2. Materials and Methods
2.1. Sample Collection and Treatment

All samples were collected from Lake Jinghu (31◦19′45′′ N, 118◦22′29′′ E) in Wuhu
city, Anhui, China, where the average depth of water is 2 m, and all field sampling work
was conducted from June 2021 to May 2022. We identified B. calyciflorus by taxonomic
macroscopic characteristics [25]. When sampling work was carried out every month, water
temperature (T), dissolved oxygen (DO), and pH were measured by a YSI multi-parameter
water quality analyzer (YSI 6600, Yellow Springs, OH, USA). Mixed layers of water sam-
ples were collected to perform physicochemical and water bacterial community structure
analysis. Determination of TN, TP, PO4

3−, NH4
+, and NO3

− was completed by the Taihu
Lake Ecosystem Experimental Station of the National Academy of Sciences. Total nitrogen
(TN) was determined by the alkaline potassium persulfate digestion UV spectrophotomet-
ric method, ammonia nitrogen (NH4

+) by Nessler’s reagent spectrophotometry, nitrate
nitrogen (NO3

−) by UV spectrometry, and total phosphorus (TP) and phosphate (PO4
3-) by

the ammonium molybdate spectrophotometric method [26].
In addition, the maximum number of B. calyciflorus were sampled to drag horizontally

and vertically with a plankton net (64 µm mesh), and a total of 7.5 L of well-mixed water
samples were collected from 0.5 m, 1 m, and 1.5 m in the lake using a glass water collector
(size 2.5 L), respectively. Subsequently, all samples were immediately taken back to the
laboratory to obtain B. calyciflorus-associated bacterial (AB) and bacterioplankton (NB)
samples, thereby avoiding great changes in the microbiota. Undamaged, actively swimming
B. calyciflorus were picked out, rinsed with sterilized water 3~5 times to remove loosely
attached bacteria, then used for isolation of total DNA, and finally transferred into 1.5 mL
sterile centrifuge tubes. In particular, due to the small size of B. calyciflorus and the limited
biomass of the associated bacterial community, to ensure a sufficient sample size for
bacterial sequencing, it is necessary to pick more than 500 similar individuals in each
sample. In addition, B. calyciflorus-associated bacteria include all bacteria attached to the
outer surface and resident in the gut, so bacterial DNA was extracted from the entire
individual of B. calyciflorus. At the same time, 500 mL mixed water samples were pumped
through a 0.22 µm membrane (Shanghai Sangon Biotech, F513134), then used for isolation
of total DNA, and placed into 1.5 mL sterile centrifuge tubes. All obtained bacterial samples
were preserved below −80 ◦C until further analysis.

2.2. Sequence Determination of the 16S Gene from the Bacterial Community

Genomic DNA of bacterial communities was extracted from samples using the E.Z.N.A.®

Soil DNA Kit (Omega Biotek, Norcross, GA, USA). The V3-V4 hypervariable region of the
bacterial 16S rRNA gene was amplified by PCR thermal cycling apparatus (GeneAmp®

9700, ABI, USA) using primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTC-TAAT-3′). PCR amplification was carried out using TransStart
Fastpfu DNA Polymerase (TransGen AP221-02) in a 20 µL reaction system, and ampli-
fication parameters were as follows: the initial denaturation at 95 ◦C lasted for 3 min,
then denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C
for 45 s, 27 cycles in total, with a single extension at 72 ◦C for 10 min and termina-
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tion at 10 ◦C. The PCR product was extracted from a 2% agarose gel, purified using
the AxyPrep DNA Gel Extraction Kit (AxyPrep Biosciences, Union City, NJ, USA), and
quantified using a Quantus™ fluorometer (Promega, Madison, WI, USA). According to
the standard protocol of Majorbio BioPharm Technology Co., (Shanghai, China), ampli-
cons were collected and purified in an equimolar and double-terminal manner on the
Illumina MiSeq PE300 platform (Illumina, San Diego, CA, USA). UPARSE (version 7.1
http://www.drive5.com/-uparse/ accessed on 20 June 2022) was used to cluster opera-
tional taxons (OTUs) with a 97% similarity cut-off value, and chimeric sequences were iden-
tified and deleted. The classification of each OTU representative sequence after removing
singletons was analyzed against the Silva database (version 138 https://www.ar-bsilva.de/
accessed on 20 June 2022) using a 70% confidence threshold using the RDP classifier (version
2.11 https://sourceforge.net/projects/rdpclassifier/ accessed on 20 June 2022).

2.3. Data Analysis

The data of high-throughput sequencing analysis and mapping were carried out with
the help of the Majorbio Online Cloud Platform (http://www.majorbio.com/ accessed on
20 June 2022). Using Qiime (version 1.9.1 http://qiime.org/install/index.html accessed
on 20 June 2022) to calculate alpha diversity index under different random sampling,
using R language (version 3.3.1) and Python to complete sparse curve analysis, PCoA
analysis, Venn diagram, species composition analysis, heatmap, intergroup difference test,
co-occurrence network and FAPROTAX (FAPROTAX v1.2.1, http://www.loucalab.com/
archive/FAPROTAX/lib/php/index.php?section=Download accessed on 20 June 2022)
function prediction analysis and mapping.

The other data were analyzed using SPSS 22.0 and expressed as mean ± SD (standard
deviation). The one-sample Kolmogorov–Smirnov procedure and Levene’s test were used
to test the data for normality and homogeneity of variances, respectively. For the parameters
with significant effects, multiple comparisons were conducted to identify which groups
were significantly different among the treatments. For data with homogenous variance,
Duncan’s method was selected to compare the differences among groups, and the data
with uneven variance were compared using the Games–Howell method. In the process of
variance analysis, the data that did not conform to the normal distribution were adjusted
logarithmically. The formula for data logarithmic processing was as follows [27]:

Yi = ln(xi + 1) (1)

where xi is the original value and Yi is the converted value.

3. Results
3.1. Alpha and Beta Diversity of AB and NB Communities

A total of 3,518,091 bacterial sequences were obtained from 24 samples involving
12 months, with an average read length of 416 and a total number of 4621 OTUs. The
sequencing results showed that the effective sequence number of some samples of B. ca-
lyciflorus-associated bacteria in June, July, September, and November was too low, so it is
necessary to reject abnormal data. Meanwhile, the chloroplasts, mitochondria, and species
with a total sequence number of less than 10 need to be removed, and then the minimum
sample sequence number of 6303 was selected for subsampling analysis to finally obtain
the total number of 43 phylum, 121 class, 184 order, 457 family, 840 genus, and 2428 OTUs.

Sparse analysis showed that the sparse curve of the AB samples was close to saturation,
while the NB samples did not tend to be flat (Figure S1), indicating that the AB samples
were enough to complete the sequencing of most members of the bacterial community,
while the NB samples were insufficient. The sequencing coverage of AB samples reached
99%, indicating that the sequencing depth was enough to cover most bacteria, including
rare species, while the sequencing coverage of NB samples only reached 97% (Table 1). The
phylogenetic diversity index (PD), species richness (Chao), and Shannon diversity index
of the AB group were significantly lower than the NB group (p < 0.001) (Table 1). These

http://www.drive5.com/-uparse/
https://www.ar-bsilva.de/
https://sourceforge.net/projects/rdpclassifier/
http://www.majorbio.com/
http://qiime.org/install/index.html
http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download
http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download
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results indicated that the diversity of the AB community was significantly lower than the
NB community (p < 0.001). In addition, alpha diversity was not significantly different
between summer (June to August) and autumn (September to November) in both AB and
NB groups, and the Shannon diversity index was significantly lower in winter (December
to February) than in both summer and autumn (p < 0.05, Table S1).

Table 1. Alpha diversity index of B. calyciflorus-associated bacteria (AB) and bacterioplankton (NB)
(Wilcoxon rank-sum test).

Estimators AB (Mean ± SD) NB (Mean ± SD) p Value

Shannon 1.86 ± 0.83 4.27 ± 0.41 <0.001
Chao 237.26 ± 114.92 769.47 ± 188.45 <0.001

Coverage 0.99 ± 0.01 0.97 ± 0.01 <0.001
Pd 26.48 ± 9.02 57.69 ± 11.80 <0.001

PCoA based on Bray-Curtis distance was used to study the community difference of
the AB and NB samples. PCoA clearly distinguishes between AB and NB communities
(Figure 1). According to the Bray–Curtis dissimilarity, the B. calyciflorus-associated bacterial
(AB) communities were taxonomically distant from the bacterioplankton (NB) communities.
The difference is that the NB community is more tightly clustered (Figure 1).
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Figure 1. PCoA principal coordinate analysis of B. calyciflorus-associated bacterial and bacterioplank-
ton communities.

3.2. Differences in Community Composition of the AB and NB Groups

The AB community was mainly composed of Proteobacteria (76.67± 12.67%), Actinobac-
teriota (11.83 ± 7.27%), Cyanobacteria (4.05 ± 2.37%), Verrucomicrobiota (2.16 ± 1.48%), Fir-
micutes (1.44 ± 1.30%) and Bacteroidota (1.44 ± 0.69%) (Figure 2A). In the composition of
the NB community, Actinobacteriota (33.94 ± 10.42%) had the highest relative abundance,
followed by Cyanobacteria (22.38 ± 9.52%), Proteobacteria (18.08 ± 3.91%), Bacteroidota
(8.24 ± 2.51%), Firmicutes (5.70 ±1 1.64%), Verrucomicrobiota (4.89 ± 1.83%), and so on
(Figure 2A). Proteobacteria not only dominated the AB community but also the only taxa
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whose relative abundance was higher than that of the NB community (Figure 2A). Pro-
teobacteria were mainly composed of Enterobacterales, Burkholderiales, Pseudomonadales,
Rickettsiales, and Rhizobiales (Figure 2B). Actinobacteriota was the most important bacte-
rial taxa of bacterioplankton, which was mainly composed of Microtrichales, and Frankiales
(Figure 3). The relative abundance of Cyanobacteria was second among the AB and NB
communities, which were mainly composed of Synechococcales (Figure 2B). Furthermore,
in both groups AB and NB the relative abundance of Proteobacteria was higher in spring
and winter than in summer and autumn, while Actinobacteriota and Cyanobacteria were
lower in spring and winter than in summer and autumn (Figure S2).
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Figure 2. Relative abundance of the community composition of B. calyciflorus-associated bacteria and
bacterioplankton. (A) Community barplot analysis at the phylum level. (B) Community heatmap
analysis on the order level.

The community composition of the AB and NB groups was quite different, and
Proteobacteria was the most significant taxa (Figure 2). After analyzing the differences
of the top 15 genera (Student’s t-test) by the difference significance test between groups,
it was found that there were significant differences in 13 genera (p < 0.05). Among the
13 genera with significant differences, only the relative abundance of Raoultella and Delftia
was significantly higher in the AB group than in the NB group (Figure 3). The relative
abundance of Pseudomonas and Candidatus_Megaira was also higher in the AB group.
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3.3. Significantly Different OTUs between AB and NB Communities

The number of OTUs shared by the AB and NB communities was 974 (40.12%), while
the number of unique OTUs was 418 (17.22%) and 1036 (42.67%), respectively (Figure 4A).
At the same time, the NB community has more abundant OTUs, which further illustrates its
higher alpha diversity. The shared OTUs were mainly composed of Raoultella (OTU2508),
Delftia (OTU3989), Cyanobium PCC-6307 (OTU2205, 2255, and 4176), and the hgcI clade
(OTU2852 and 2456) (Figure 4B). However, among shared OTUs, the distribution of species
abundance in the AB and NB communities was not matched. For example, OTU2508
and OTU3989 were the only OTU in Raoultella and Delftia, respectively, and their relative
abundance was the highest in the AB community but lower in the NB community (Figure 4).
Among the unique OTUs of the AB community, Candidatus Hepatincola (OTU118) and
Tyzzerella (OTU1258) were abundant (Figure 4B). Among the unique OTUs of the NB
community, there was little difference between OTUs with relative abundance above 1%
(Figure 4B). Surprisingly, the OTUs with a relative abundance of less than 1% were 54.66%
in the unique OTUs of the AB community and as high as 81.64% in the NB community
(Figure 4B).

3.4. Relationship between Bacterial Community and Environmental Parameters

There are many environmental factors related to community distribution, but many
of them have strong collinearity. Variance Inflation Factor (VIF) analysis was a commonly
used method for screening environmental factors and computed as VIFj = 1/(1 − Rj

2),
Rj

2 represents the proportion of variance of the jth independent variable related to other
independent variables in the model [28]. In general, a VIF greater than 10 indicates that
the regression model has severe multicollinearity. Through VIF variance expansion factor
analysis, the environmental factors with VIF greater than 10 were screened and removed,
and multiple screenings were performed until the VIF values corresponding to the selected
environmental factors were all less than 10. Finally, the environmental factors associated
with AB and NB communities were screened out as T, DO, pH, TN, TP, PO4

3−, NH4
+,

and NO3
- (Table S2). After the DCA analysis, the CCA model was selected to analyze

the correlation between bacterial communities and environmental factors. As shown in
Figure 5, the two bacterial communities had different responses to environmental factors.
The T, DO, pH, TP, PO4

3−, NH4
+, and NO3

− were significantly correlated with the variation
of AB community, and all the selected parameters on the first two axes explained 39.55%
of the bacterial community change (Figure 5A). The T, DO, TP, PO4

3− and NO3
− were

significantly correlated with the variation of the NB community, and all the selected
parameters on the first two axes explained 39.69% of the bacterial community change
(Figure 5B).
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Figure 5. The canonical correspondence analysis (CCA) plot investigates correlations between
bacterial communities and environmental factors at the OTU level. (A) B. calyciflorus-associated
bacteria community; (B) bacterioplankton community. Each significant factor (p < 0.05) is shown in
the plot with red arrows.

3.5. Co-Occurrence Network of AB and NB Communities

To infer the potential keystone taxa of AB and NB communities at OTUs, a co-
occurrence network was calculated based on Spearman r (correlation function, p < 0.05),
and the correlations with absolute r values above 0.6 were retained (Figure 6). The top
50 dominant taxa of relative abundance at the order level were selected for the network
analysis. We selected the values that can screen out the top 10 of the highest degrees,
closeness centrality, and betweenness centrality as thresholds for defining keystone taxa in
bacterial communities. For the AB group, OTUs with degree centrality, closeness centrality,
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and betweenness centrality higher than 0.55, 0.62, and 0.03, respectively, were selected as
the keystone taxa. For the NB group, OTUs with degree centrality, closeness centrality, and
betweenness centrality higher than 0.51, 0.51, and 0.05, respectively, were selected as the
keystone taxa. Three keystone taxa were speculated from both network structures. The key-
stone taxa of the AB community were composed of Frankiales (OTU2852), Microtrichales
(OTU2544), and Gammaproteobacteria_Incertae_Sedis (2845). The keystone taxa of the NB
community were composed of Frankiales (OTU2852 and 2823), Microtrichales (OTU4176),
and Burkholderiales (OTU2398) (Figure 6 and Table S3). We counted the edges in the
network and found that the AB community had 336 edges, of which 268 were positive and
68 were negative correlations, while the NB community had 256 edges, of which 160 were
positive and 96 were negative correlations (Table S4).
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Figure 6. The OTU co-occurrence network of B. calyciflorus-associated bacterial and bacterioplankton
communities. (A) B. calyciflorus-associated bacteria (AB); (B) bacterioplankton (NB). The nodes are
colored according to order. Green edges represent positive correlations, and red edges represent
negative correlations. Node size is proportional to the betweenness centrality of each OTU, and edge
thickness is proportional to the weight of each correlation.

3.6. Functional Characteristics of AB and NB Communities

Many microorganisms are involved in key biogeochemical processes and interspe-
cific interactions. FAPROTAX function prediction is mainly used to further analyze the
biogeochemical cycle function of microorganisms, especially the cycle function of sulfur,
carbon, hydrogen, and nitrogen. Through FAPROTAX function prediction analysis (based
on the Wilcoxon rank-sum test), 37 biogeochemical cycle functions were predicted from the
AB and NB communities (Figure 7A). Although phototrophy, photoautotrophy, oxygenic
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photoautotrophy, and plastic degradation were the most common functions among the
AB and NB communities, there were significant differences in functional abundance be-
tween the two bacterial communities (Figure 7). Among the most mainly biogeochemical
functions of the AB community were plastic degradation, chemoheterotrophy, and aerobic
chemoheterotrophy, while autotrophic functions, such as phototrophy, photoautotrophy,
and oxygen photoautotrophy, were more prominent in the NB community. In addition,
animal parasites or symbionts, human pathogens all, and human pathogen pneumonia
were abundant in the NB community (Figure 7B).
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Figure 7. Functional distribution of B. calyciflorus-associated bacterial and bacterioplankton commu-
nities based on FAPROTAX function prediction. (A) FAPROTAX function consequential heatmap;
(B) FAPROTAX functional groups difference test. Showing the significant difference in functional
groups of abundance in the top 10. The left shows the abundance ratio of different functional groups;
the middle shows the percentage of functional group abundance differences within a 95% confidence
interval. The right, ** p < 0.01 and *** p < 0.001.

4. Discussion
4.1. Community Composition Difference and Keystone Taxa between AB and NB Communities

In this study, the communities of AB and NB were compared to explore the relationship
between the two bacterial communities. Although they differed significantly from each
other, there was still 40.12% shared OTU between them, indicating that bacterial exchange
occurred between B. calyciflorus and environmental water. Some studies have pointed
out that zooplankton-associated bacteria community structures are determined by the
species-specific characteristics and contacted environmental characteristics (including
food and surrounding bacterial community) of the host [9]. Although the B. calyciflorus-
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associated bacterial community contains abundant rare OTU, which was not detected in
environmental water, this might be caused by insufficient coverage of the detection of the
bacterioplankton community. On the contrary, many bacteria in environmental water fail
to colonize in B. calyciflorus bodies, probably because their survival requirements do not
match the conditions and resources provided by the host [29].

Proteobacteria was the most important taxon in the B. calyciflorus-associated bacte-
rial community. Studies have shown that members of Proteobacteria are ubiquitous in
the different growth stages of rotifers [30]. In parity with our findings, a recent study
also found that Proteobacteria dominate the rotifer-associated bacterial community [21].
Host-related bacterial communities are usually obtained through the horizontal transmis-
sion of bacteria existing in the environment [15], but the host is also selective to different
bacterial communities [31]. In the present study, Proteobacteria was extremely abundant
among B. calyciflorus-associated bacteria, indicating that it may be more dependent on the
habitat environment provided by B. calyciflorus. Raoultella belongs to the Enterobacterales,
and commonly occurs in the natural environment, such as water, soil, and on plants [32].
The members of Raoultella can use glucose as carbon for the co-metabolic degradation
of refractory pollutants [33], which has been applied to boost biological performance for
the removal of refractory pollutants [34]. In addition, it has been confirmed that it has
a fixed nitrogen (N) ability [35]. Delftia belongs to the order Burkholderiales, and most
of its members have biodegradation effects, such as degrading peptidoglycan and ani-
line [36,37]. Delftia was widespread in rhizosphere soil, activated sludge, and polluted
environment [38], and has been reported to be found in the gut flora of fruit fly (Bactrocera
tau) and white shrimp (Litopenaeus vannamei) [39,40]. In this study, the relative abundance
of Raoultella and Delftia in B. calyciflorus-associated bacteria was extremely high but ex-
tremely low in the natural environmental water, indicating that they relied on the habitat
environment provided by the B. calyciflorus body, with host specificity. Rickettsiales belong
to Proteobacteria and are specialized intracellular parasites that can infect almost all species
of a major eukaryotic lineage [41]. Candidatus Megaira of Rickettsiales had a high relative
abundance in the B. calyciflorus-associated bacteria community and was usually associated
with ciliate protozoa and has been reported many times in ciliates [42,43]. Although the
host was the only resource provider of specific intracellular parasitic bacteria, and parasitic
behavior always produces costs, some studies have shown that members of Candidatus
Megaira can provide positive effects and improve competitive advantage for the host [44].
Furthermore, some members of Pseudomonadales, Rhizobiales, and Gammaproteobacteria
incertae sedis mainly involved biodegradation processes, such as phenanthrene [45] and
polycyclic aromatic hydrocarbons [46], as well as carbon and nitrogen cycles, such as nitrate
reduction [47] and nitrogen fixation [48,49]. All of the above may account for the high
relative abundance of Proteobacteria in B. calyciflorus-associated bacteria.

Actinobacteriota was the second dominant taxa among B. calyciflorus-associated bacte-
rial communities and also had the highest abundance among bacterioplankton in natural
water, which was mainly composed of Microtrichales and Frankiales. Its members are
highly correlated with important global nitrogen cycle pathways with denitrification and
nitrogen fixation [50], such as the CL500-29 marine group and the HgcI clade [51]. Cyanobac-
teria had the second highest abundance among bacterioplankton, and it was also the third
dominant taxa with B. calyciflorus-associated bacteria. We did not empty the intestinal
tract of B. calyciflorus before the detection of the bacterial community in this study, so the
detected associated bacterial community included not only the resident bacteria living in
the intestinal tract and the outer surface but also the bacterial community staying briefly in
the intestinal tract [12]. The abundant presence of Cyanobacteria in the associated bacteria
may result from the inevitable predation of Cyanobacteria by B. calyciflorus, especially
when cyanobacteria are abundant in the native environment [52]. Verrucomicrobiota,
Bacteroidota, and Firmicutes are common bacteria in freshwater [53,54]. The relative abun-
dance of these three taxa in the NB community was higher than that in the AB community,
which indicated that these taxa might come from the bacterioplankton community but had
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a lower level in the AB community due to host-specific selection pressure [55]. Environ-
mental pollutants, such as microplastics and nanoplastics, have been reported to induce
bacterial dysbiosis in the guts of Danio rerio, with a significant decrease in the relative
abundance of Verrucomicrobiota [56]. Both Firmicutes and Bacteroidota have functions
in cellulose degradation, carbohydrate, and amino acid metabolism [57,58]. Studies have
shown that the ratio of Firmicutes/Bacteroidota was often used as an index of obesity,
which was directly proportional to obesity [59], and was related to diet as well [60]. These
studies suggested that Firmicutes and Bacteroidota may affect metabolic processes, such as
energy, sugar, and lipids, in organisms.

The co-occurrence network is a new means that is often used to speculate and identify
the keystone taxa of microorganisms [61,62]. In this study, the network was also selected
to speculate on the keystone taxa of bacteria. The results showed that the keystone taxa
of B. calyciflorus-associated bacteria were composed of Frankiales, Microtrichales, and
Gammaproteobacteria_Incertae_Sedis, and the keystone taxa of bacterioplankton were
composed of Frankiales, Microtrichales, and Burkholderiales. Numerous members of these
three orders have been consistently identified as keystone taxa in different studies and
ecosystems [63]. The keystone taxa may play an important role in some processes, such
as nutrient cycling and energy flow, thus influencing the ecological functions of bacterial
communities that are not absolutely linked to their abundance [64]. Interestingly, the OTUs
with a relative abundance of less than 1% were 54.66% in the unique OTUs of B. calyciflorus-
associated bacteria and as high as 81.64% in bacterioplankton, so we might underestimate
the importance of rare taxa in bacterial communities.

4.2. Environmental Regulation of AB and NB Communities

Until now, there have been few studies on the differences between AB and NB com-
munities. Studies have shown that the alpha diversity of the AB group was significantly
lower than that of the NB communities [12,65]. The community diversity of the AB group
was significantly lower than that of bacterioplankton, and their composition was signifi-
cantly different, so the different microhabitats provided by zooplankton and water were
perhaps the main factors causing the difference. PCoA analysis showed that the AB and NB
communities were clustered separately, indicating that the bacterial communities in similar
habitats were more similar. It has been shown that zooplankton-associated bacteria are
not only actively exchanged with habitat bacteria communities, but also that most of them
come from the surrounding water environment [11,66]. However, only 40.12% of the same
OTUs were found between the two bacterial communities in this study, indicating that the
composition of the B. calyciflorus-associated bacterial community is very flexible and highly
correlated with microhabitat [67]. RDA analysis showed that T, DO, pH, TN, TP, PO4

3−,
NH4

+ and NO3
− were significantly correlated with the variation of AB community, but

they on the first two axes explained only 39.55% of the changes with bacterial community.
These also indicate that although environmental factors outside microhabitats participate
in the regulation of the bacterial community structure, they are not the key factors driving
the variation of the B. calyciflorus-associated bacterial community. In addition, the diversity,
as well as the relative abundance of both bacterial communities, had seasonal variations,
and T and NO3

− may be the main influencing factors [68,69].
The gut of zooplankton can provide good anaerobic conditions for Firmicutes [18].

Members of the Bacteroidota can break down chitin and the chitin exoskeleton of zoo-
plankton by using it as a source of carbon and nitrogen [70]. Free-living bacteria are often
exposed to environmental hazards, such as predation, virus cleavage, harmful radiation,
and chemicals. The exterior and interior of zooplankton provide specific microhabitats for
bacterioplankton, which can provide bacteria with resistance to these external hazards [6].
To sum up, the special microhabitat with selectivity to bacteria provided by B. calyciflorus
may not only be the main force driving the difference between associated bacterial and bac-
terioplankton communities but also the main reason why the alpha diversity of associated
bacteria was lower than that of the bacterioplankton community.
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4.3. Main Functions of the B. Calyciflorus-Associated Bacterial Community

The functions of microbial communities, predicted through software such as FAPRO-
TAX, are widely used in microbial ecology [71]. The most important biogeochemical cycle
functions of AB and NB communities include plastic degradation, phototrophic, photo-
synthetic autotrophic, and oxygen-producing photoautotrophic functions, while the most
prominent biogeochemical cycle functions of B. calyciflorus-associated bacterial community
were plastic degradation, chemoheterotrophy, and aerobic chemoheterotrophy.

Plastic pollution has become a global environmental problem, and the degradation of
plastics can be divided into abiotic degradation and biodegradation. Many abiotic factors,
such as ultraviolet radiation, oxygen, and temperature, are related to the incomplete and
long-term degradation of plastics, while bacteria are related to the complete degradation of
plastics [72]. Large plastics (>20 mm), microplastics (<5 mm) and nanoplastics (<100 nm)
have been proven to cause a series of toxicity to aquatic organisms after entering aquatic
ecosystems, but bacteria can use them as carbon sources for growth [56,73]. Actinobac-
teriota is mainly responsible for degradation under aerobic conditions, while members
from Proteobacteria and Bacteroidota are involved in degradation under anaerobic con-
ditions [74]. Studies have shown that microplastics will be ingested by zooplankton or
adsorbed on algae for re-feeding and will also adhere to the exoskeleton and appendages
of zooplankton, thus having a negative impact on the function and health of zooplank-
ton [75,76]. However, Canniff and Hoang [77] showed that the survival and reproduction
of D. magna were not significantly affected after ingesting a large quantity of miniature
polyethylene beads. Therefore, it is speculated that although the impact of microplastics on
B. calyciflorus may be deepened due to bioaccumulation [78], the associated bacterial com-
munity has improved the tolerance of B. calyciflorus to plastic pollution through a specific
composition. Chemoheterotrophy and aerobic chemoheterotrophy can use organic matter
to meet all or major carbon requirements under different oxygen conditions [79], which are
the most dominant putative functions predicted by various biologically associated bacterial
communities [71,80,81]. Nitrogen is the other most important element in a lake ecosystem.
The increase in nitrogen promotes the growth of phytoplankton, such as Cyanobacteria,
which will mass reproduce in summer [82], leading to the deterioration of water sources.
Nitrogen excretion by zooplankton can stimulate the growth of bacteria, especially denitri-
fying bacteria, such as related members of Actinobacteriota and Proteobacteria [10,83]. In
the B. calyciflorus-associated bacterial community, Proteobacteria and Actinobacteriota were
the most abundant taxa, which was consistent with the results of the above research. The
abundance of these bacteria in the associated bacteria indicates the importance of B. calyci-
florus-associated bacteria, owing to their potentially highly significant role in the nitrogen
biogeochemistry of lake ecosystems. In addition, human pathogens were abundant in the
bacterioplankton community. Environmental water can become contaminated by a variety
of sources, such as rainfall and human activities [84,85], so human pathogens can be found
in multiple bodies of water [86]. The public health impact of the transmission of human
pathogens in water is significant worldwide; hence, it is necessary to explore further in
the future.

5. Conclusions

Our study illustrated that B. calyciflorus-associated bacterial and bacterioplankton
communities have different characteristics, and B. calyciflours-associated bacteria exhibited
high host dependence. Raoultella and Delftia in Proteobacteria were the dominant groups in
the B. calyciflorus-associated bacterial community, and they have a good biodegradation
function. The functional prediction showed that plastic degradation, chemoheterotro-
phy, and aerobic chemoheterotrophy were the most prominent functions of the B. caly-
ciflorus-associated bacterial community. Moreover, several keystone bacterial members
participating in carbon and nitrogen cycles were found in the associated bacterial commu-
nity by co-occurrence networks, such as Microtrichales and Frankiales. All these results
indicate that B. calyciflorus-associated bacteria play an important role in host and even
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freshwater ecosystems. In the future, it is necessary to more intensively study the contribu-
tion of zooplankton-associated bacteria to special global biogeochemical cycles, such as
pollutant degradation.
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the number of species observed; Figure S2: Seasonal variation in the community composition
of B. calyciflorus-associated bacteria and bacterioplankton at phylum level, Table S1: AB and NB
communities alpha diversity index for all samples, Table S2: Sampling time and physicochemical
factors for all samples, Table S3: Network centrality coefficients for co-occurrence network analysis of
AB and NB communities, Table S4: Edge and node information for co-occurrence network analysis of
AB and NB communities.
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