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As the biopharmaceutical industry evolves to include more diverse protein formats and
processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain
processing flexibility without compromising quality. Active control of CQAs has been demon-
strated using model predictive control techniques, which allow development of processes
which are robust against disturbances associated with raw material variability and other
potentially flexible operating conditions. Wide adoption of model predictive control in bio-
pharmaceutical cell culture processes has been hampered, however, in part due to the large
amount of data and expertise required to make a predictive model of controlled CQAs, a
requirement for model predictive control. Here we developed a highly automated, perfusion
apparatus to systematically and efficiently generate predictive models using application of
system identification approaches. We successfully created a predictive model of
%galactosylation using data obtained by manipulating galactose concentration in the perfu-
sion apparatus in serialized step change experiments. We then demonstrated the use of the
model in a model predictive controller in a simulated control scenario to successfully
achieve a %galactosylation set point in a simulated fed-batch culture. The automated model
identification approach demonstrated here can potentially be generalized to many CQAs,
and could be a more efficient, faster, and highly automated alternative to batch experiments
for developing predictive models in cell culture processes, and allow the wider adoption of
model predictive control in biopharmaceutical processes. VC 2017 The Authors Biotechnol-
ogy Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemi-
cal Engineers Biotechnol. Prog., 33:1647–1661, 2017
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Introduction

The production of biopharmaceuticals requires meeting

high standards of purity, consistency, and quality to ensure

the safety and effectiveness of products for patients. To

maintain these high standards, regulatory agencies (in collab-

oration with industry) continue to adopt improved process
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filing approaches, including Quality by Design (QbD).1–3 As

a consequence of the development of better technologies and

quality approaches, the expectations for demonstrating

control of the quality of biopharmaceutical products has

increased.

One goal of QbD is to lower product variability and

increase product quality by increasing control of the produc-

tion process and achieving a Quality Target Product Profile

(QTPP). A common approach for controlling a QTPP is to

develop a production process in which product Critical Qual-

ity Attributes (CQAs) are maintained within a predefined

range by controlling Critical Process Parameters (CPPs).

Because the production of biopharmaceutical products occurs

via recombinant gene expression in cell hosts, many of the

CQAs in these products are dictated by the state of the cell

host in the cell culture production process.4 CPPs are typi-

cally defined experimentally in the cell culture process by

systematically manipulating recipe variables, such as media

components or other culture conditions, and observing the

ultimate outcome on the expressed protein CQAs. The exper-

imental identification of CPPs requires a substantial use of

resources prior to regulatory filing, and represents an area

for possible acceleration of the biopharmaceutical commer-

cialization process.

The biotherapeutic market is undergoing a transformation

from the commercialization of predominantly large market

“blockbuster” antibody products, to smaller volume high

value “niche” products. In addition, increased expiration of

patent protection has increased the development of low mar-

gin biosimiliars. This market trend means companies have

more candidate products in development with more diverse

protein formats. Increasing quality expectations, a greater

diversity of products, and a demand for higher throughput in

today’s biopharmaceuticals market creates a unique chal-

lenge for the development and manufacturing of new prod-

ucts. Producing biotherapeutics that meet expectations for

increases in quality across diverse protein formats pushes

development organizations to quickly develop processes,

manufacture clinical trial material, and provide tightly con-

trolled product quality attributes for an increasing number of

product candidates.

Product attribute control can allow more robust
control of CQAs

A routine approach in industry to determine how to con-

trol CPPs to achieve CQAs is to execute cell culture pro-

cesses according to a predefined, tightly controlled recipe.

This recipe (commonly including set points for CPPs, media/

feed compositions, and feeding strategies) is determined

from laboratory scale experiments, and is selected based on

the recipe’s ability (in conjunction with tight controls on raw

material variation) to yield an acceptably low degree of vari-

ation in the product CQAs (among other process consider-

ations, like product titer). This method of control is

commonly referred to as open-loop control, where CPPs are

set in the absence of any in-process measurement of product

CQAs. Increasingly, emphasis is being placed on developing

closed loop control strategies, where CPPs are actively

manipulated during the process within a defined range to

achieve the desired CQAs. This active control methodology

has been called product attribute control.5 In the context of

QbD, product attribute control may allow development of

processes with tighter CQAs, and thus greater control over
the QTPP.

In addition to the identified CPPs, other complex interac-
tions can impact a given CQA in a cell culture process (e.g.,
raw material variations, changes in cell metabolic state, dilu-
tion rates in perfusion). In addition, measurement of many
CQAs is time-consuming, making frequent in-process mea-
surement difficult. Because of this complexity, a model pre-
dictive controller is often the controller of choice for
achieving product attribute control in cell culture and fer-
mentation processes.6,7 To develop a model predictive con-
troller, a predictive model of how a given change in a
culture variable affects the desired CQA over time must be
developed. These models are typically constructed by devel-
oping some expert understanding of the fundamental under-
lying processes that lead to changes in the CQA, aided with
directed experimentation. This sort of development usually
yields a fundamentals based model that approximates the
observed dynamics of the CQA in response to changes in the
CPP. This model development methodology currently
requires some understanding of the fundamental dynamics of
the system by trained experts, and has been successfully
demonstrated.5

Limitations of batch DoE approach to relate
CPPs to CQAs

Although the successful application of product attribute
control has been demonstrated, the process of defining CPPs
and constructing a control strategy for CQAs remains a
time-consuming endeavor. Commonly, process optimization
is carried out through many manually executed experiments
(usually in a batch DoE format) followed by evaluation by
expert-level scientists to understand the implications for pro-
cess and media optimization. This approach takes a consider-
able amount of time and effort, and often produces data that
is not ideal for developing a product attribute control
scheme.

For instance, DoE style experimentation does not allow
process dynamics that are related to product quality attrib-
utes to be deconvoluted from those which are unrelated in a
time-varying system. Additionally, batch DoE experimental
methods also rely on disparate sets of experiments to identify
optimal process parameters, which requires many experi-
ments to gather sufficient data to develop an effective con-
trol strategy. Furthermore, due to the amount of analytical
effort typically required to take relevant product quality
measurements, experimental design typically prioritizes mini-
mized analytical measurements and leads to an insufficient
amount of data generated. This insufficiency does not allow
prediction of the effect of process parameters on those meas-
urements, making control strategy design difficult. Finally,
creation of a predictive model useful for control based on
these datasets typically requires fundamental a priori knowl-
edge of the underlying system, which does not allow for a
reliable, systematic approach to be applied across a breadth
of CQAs for development of model predictive controllers.

Taken together, this commonly used process development
methodology, although usually ultimately effective, often
makes it difficult and time-consuming to develop a robust
control strategy. There remains a need for the application of
a more systematic development approach in order to meet
the challenge of developing a higher number of higher qual-
ity products on more diverse protein platforms.
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Using system identification in automated perfusion
apparatus to systematically relate CPPs to CQAs

To address these challenges, we implemented a methodol-

ogy for efficiently relating CPPs to product CQAs for devel-

opment of model predictive controllers using an automated

cell culture platform. This approach systematically subjects

cells grown in a pseudo-steady-state perfusion apparatus to

perturbations in CPPs, such as the concentration of feed

components, and records the changes in the CQAs over

time. This approach allows creation of predictive models

predicting the effect of CPPs on CQAs and subsequent

development of model predictive controllers in an auto-

mated, systematic fashion. This systematic approach is in

principle generalizable to a diverse set of CPPs and CQAs,

making it particularly well suited for an agile process devel-

opment environment.

The strategy of using experiments wherein input variables

are manipulated in a prescribed fashion to specifically deter-

mine the dynamic input-output relationship between CPPs

and CQAs is known as system identification.8 System identi-

fication approaches have the benefit of: requiring limited

fundamental knowledge of the system a priori, reducing the

total number of experiments required via simultaneous varia-

tion of multiple inputs, being systematic and amenable to

automation, and are in principle generalizable to a diverse

set of inputs and outputs. In addition, Systems ID approaches

are designed to efficiently generate predictive models of pro-

cesses that can be used for control. System identification

approaches are applied successfully in many industrial appli-

cations including hybrid car battery management, unmanned

flight, and supply chain management.9–11

Although system identification approaches have been

applied successfully to build control strategies in many

applications, application of these approaches to cell culture

processes presents unique challenges including: the highly

multivariate nature of cell culture processes, difficulty in

measuring the CQAs of interest, and potential dynamic

behavior of the processes which might limit the application

of the technique to cell culture.

Systems identification approaches have previously been

applied for batch processes.12,13 However, cell culture pro-

cesses are especially multivariate. In a typical batch experi-

ment, a multitude of factors (metabolite concentrations, cell

states, cell density, etc. . .) are all changing with time as the

cells constantly consume the nutrients of the media and pro-

duce byproducts. This makes it difficult to observe the

effects of an independently manipulated variable on the

product in isolation of other changing variables. Addition-

ally, due to the long time scales involved with mammalian

cell culture processes (a typical run lasts about 2 weeks),

gathering the amount of data required for application of a

system identification approach would take a prohibitively

long time.

The difficulty in measuring CQAs arises from the fact that

typical CQA measurement methods for protein therapeutics

often require a series of steps (separation of the cells from

the culture broth, separation of the protein from the broth

components, followed by additional digestions and dilutions)

before ultimate measurement of the CQA. This measurement

difficulty limits the amount of data that can be gathered

practically in a system identification experiment. Addition-

ally, due to the long timescales involved with mammalian

cell culture, sampling must occur at very inconvenient times

(such as the middle of the night).

Finally, the degree to which nonlinearities, time-variance,

and hysteresis are dominant effects in the underlying pro-

cesses is unknown. Each of these effects require additional

model complexity to adequately represent the input-output

relationship between CPPs and CQAs and could limit the

successful application of the technique to cell culture

To address these challenges, we designed and constructed

an automated, pseudo-steady-state apparatus based on perfu-

sion technology to execute system identification experiments.

The pseudo-steady-state perfusion culture allows indepen-

dent manipulation of input CPPs (like concentrations of

media components) in a fashion that is more independent of

the highly multivariate nature of the cell culture process,

thereby greatly simplifying the detection of the effect of

each CPP on the output CQA. The pseudo-steady-state appa-

ratus also allows multiple manipulations of each CPP to be

carried out in sequence, while not having to complete an

entire batch process to detect the ultimate effect of the CPP

on the endpoint CQA. Additionally, due to the fact that the

culture is at a pseudo-steady-state, non-linearities, time-

variance, and hysteresis effects can be detected by varying

the order of manipulations of CPPs and looking for changes

in outcome of CQAs over time.

Additionally, the perfusion system was automated to allow

the increased data generation required by system identification

techniques. Specifically, cell containing and cell free samples

were sampled automatically using an aseptic autosampler to

deliver samples to a liquid handling robot that automated the

sample preparation. In addition, this system was designed to

store samples at stable conditions during the night so human

sampling was not required at inconvenient times.

Experimental design and rationale

In this study, we sought to determine whether a system iden-

tification experiment performed on a pseudo-steady-state

apparatus could be used to create a predictive model of a CQA

given an arbitrary CPP manipulation in a fed-batch system.

Because of the importance of N-glycosylation as an impor-

tant effector of the half-life, immunogenicity, and secondary

effector function of therapeutic proteins,14,15 we utilized N-gly-

can galactosylation as a model quality attribute. A systems

identification approach for generating a predictive model of

galactosylation was applied to a model Chinese Hamster Ovary

(CHO) cell line grown in perfusion culture by manipulating the

galactose concentration in the extracellular medium and record-

ing the resulting galactosylation of the expressed antibody.

In the work presented here, we hypothesize that the emer-

gent dynamics of a model CHO cell culture system are simple

enough to yield quantifiable process behavior that can be used

to construct a predictive model of process outputs such that the

model can be used for model predictive control. To test the

hypothesis, we used a pseudo-steady-state apparatus with a

CHO cell line expressing a glycosylated monoclonal antibody

(mAb) and subjected the culture to step-increases in galactose

feed concentration. We then developed a predictive model of

N-glycan galactosylation vs. galactose feed concentration and

implemented the model as part of a model predictive controller

in simulation. The performance of the controller was evaluated

under simulated fed-batch conditions.
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Materials and Methods

Cell culture

The CHOZNVR GS2/2 cell line producing a monoclonal
antibody against the Rabies virus was used (MilliporeSigma;
St Louis., MO). The CHO cell line was maintained in shake
flask prior to inoculation of a bioreactor. The maintenance
media for cell growth in the shake flasks was CD CHO
Fusion (MilliporeSigma; St. Louis MO). Cells were grown to
a density of 3 3 106 cells mL21 and then passaged into a
new shake flask at 2 3 105 cells mL21. At the time of inoc-
ulation for bioreactor studies, bioreactors were inoculated at
a density of 3 3 105 cells mL21. Media and feed of these
reactors were comprised of the Ex-CellVR AdvancedTM CHO
Fed Batch System (MIlliporeSigma, St. Louis, MO).

Perfusion reactor

Perfusion cultures were grown in 2-L glass bioreactors
(Broadley-James, Irvine, CA) with a 1-L working volume. Perfu-
sion bioreactors were equipped with a peripheral alternating tan-
gential flow filter (ATF), containing a 0.2-lm pore cell-retention
device (Refine Technology, Waltham, MA). Operational condi-
tions were as follows: temperature 378C 6 0.18C, dissolved oxy-
gen 30% 6 5% air saturation, agitation 138 6 5 rpm, pitched
blade impeller. Once the viable cell density of the culture
reached 5.0 3 106 cells mL21 perfusion was initiated. During
perfusion, a chemically defined nutrient feed, a mixture of 90%
Ex-CellVR AdvancedTM CHO Fed Batch System Media and 10%
Ex-CellVR AdvancedTM CHO Fed Batch System Feed was fed at
a rate of 0.21 nL cell21 day21 (1065 mL day21). The media/
feed blend ratio was determined based on the volumetric compo-
sition of the media equivalent to day 5 of a model fed-batch cell
culture process (i.e., one 10 vol% bolus feed has been added by

day 5). The perfusion rate was chosen to simulate the relative

nutrient abundance present on day 5 of a model fed batch culture.

This was accomplished using a previously described method.16

Specifically the “equivalent CSPR” was calculated and used as

the perfusion rate.

Cell density control of perfusion reactor

Cell density was maintained at 5.0 3 106 cells mL21 for the

duration of the experiment via control by dielectric spectros-

copy, measured using a frequency scanning capacitance probe

(Aber Futura, Aber Instruments, Aberystwyth, UK). The viable

cell density was chosen to simulate a typical day 5 value

observed in a model fed-batch cell culture process. In conjunc-

tion, the reactor volume was maintained at 1,000 mL via the

reactor scale. A linear calibration curve between capacitance

measured at 607 kHz and viable cell density was constructed

for the cell line using data obtained during the growth phase of

the culture, based on the method described here.17 The probe

was zeroed in media without cells prior to inoculation. Viable

cell density was monitored and periodically checked against

values predicted by capacitance. Very little drift in the calibra-

tion was observed during the course of the experiments.

Two PID loops were constructed to control the reactor

volume and VCD. Figure 1 shows a schematic of the perfu-

sion system. PIDA represents the loop that controls the reac-

tor volume. Because the nutrient feed is fed at a constant

rate into the reactor, only the cell-free permeate and cell

bleed pumps can be manipulated to hold reactor volume con-

stant. PIDA controls the overall reactor volume by measuring

vessel weight and manipulating the permeate pump rate to

achieve set point. Simultaneously, PIDB controls the VCD

Figure 1. Schematic representation of automated perfusion system used in this study.
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value predicted by the capacitance readout by manipulating
the cell bleed pump rate to maintain set point.

Fed batch bioreactor operation

Fed batch cultures were used to generate validation data
sets to test the model generated from perfusion experiments.
Cells were cultured in 3-L Broadley–James reactors with a
2-L working volume. Operating conditions were identical to
the perfusion system, as described above. The culture was
fed 10% v/v of nutrient feed containing enough concentrated
glucose to raise the reactor concentration to 4 g L21. Feed-
ing occurred on days 3, 6, and 9 from the start of the 14-day
culture.

Sampling and data collection

Perfusion and fed batch bioreactors were manually sam-
pled every day of the culture between 8:00 AM and 12:00
PM. Prior to taking the sample, 3 mL of cell broth was
removed to clear the dead volume in the sampling tube. A
5 mL sample was removed for gas, electrolyte, metabolite,
nutrient, osmolality, and cell density analysis using the Nova
Flex (Nova Biomedical Corporation, Waltham, MA) from
the unfiltered bioreactor contents. In perfusion cultures,
30 mL of clarified permeate was taken from the shell side of
the ATF and frozen at 2808C to be analyzed for glycan pro-
file at a later time. In fed batch cultures, 30 mL whole cell
broth was taken, centrifuged and supernatant removed and
frozen for glycan analysis.

In addition, the MASTTM (Modular Aseptic Sampling
Technology) system (Capsugel, Bend, OR) was used to take
automated samples from the perfusion system when manual
samples were inconvenient. This automated system uses
pneumatics to draw samples from the reactor and send them
to analytical instruments. Nightly, one sample was delivered
directly to the Nova Flex and one sample to the Gilson
GX271 liquid handler (Gilson, Middleton, WI). In addition,
30 mL of clarified cell broth was sampled and delivered to a
chilled, 68C rack on the liquid handler. The antibody was
subsequently purified using an automated protein A purifica-
tion method developed here for the Gilson liquid handler
(HiTrap rProtein A FF, 1 mL column, GE Healthcare,
Wauwatosa, WI). At the end of each automated sample, the
full panel of Nova Flex (Nova Biomedical, Waltham, MA)
data is collected and purified mAb sits on the chilled rack
for storage and future glycan analysis.

Effect of galactose concentration on GLUT1 and GLUT4
protein levels

In a separate experiment, the CHOZN cells (Sigma–
Aldrich; St. Louis, MO) were grown in the wells of deep 12-
well plates. Like the perfusion reactor the cells were grown
in a 90/10 blend of the Platform Media/Feed. The cells were
treated with either 1, 5, or 10 mM galactose. Following 4
days in culture the cells were harvested, centrifuged, and the
pellet flash frozen at 2808C until Western blot analysis.

Perfusion step-change experiments

A system identification approach based on step changes in
galactose feed concentration was employed to generate the
necessary dynamic data for model construction. To accom-
plish this, the perfusion reactor was subjected (once steady-

state was reached) to increasing or decreasing concentrations

of galactose selected from (0, 0.1, 1, 2, 5, and 10 mM). The

order of the steps was randomized, with the exception of the

first perfusion experiment, where all steps were executed in

order of increasing concentration. The data presented here

was gathered from a total of three perfusion experiments,

where each perfusion experiment consisted of a series of

multiple step changes, and the order of the steps between

each perfusion experiment was different. Before switching of

galactose concentration, steady-state was confirmed by

ensuring there was no greater deviation in the

%galactosylation than 6 2%galactosylation for the previous

six measurements. The sampling procedure included twice

daily samples on days that there was not a step-change, and

four daily samples for 2 days following a step change. This

sampling frequency was determined through experimentation

to define the data resolution necessary to capture the steady

state and dynamic characteristics of the system. The step

changes were performed by introducing a bolus of galactose

to immediately raise the galactose concentration to target,

and then changing the feed composition to the appropriate

concentration of galactose.

Analytical methodology

Determination of Reactor Galactose Concentration. To

measure the galactose concentration in the perfusion reactor,

the Galactose Assay Kit and protocol (Item # MAK012;

Sigma–Aldrich, St. Louis MO) was followed. The assay is

based on measuring the enzymatic oxidation of galactose to

produce a product with an absorbance of 570 nm.

N-Glycan Analysis. A 500 mg of purified antibody was

digested at 378C with 2 mL of PNGaseF (NE Biolabs) over-

night. Following digestion, liberated N-glycans were labeled

with 2-aminobenzamide for 2–3 h at 658C. Labeled glycans

were then isolated using GlykoPrep G cartridges (Prozyme).

Samples were then analyzed by LC/MS and HPLC-FLD

analysis, according to the previously published method.18

Analysis of the glycoforms produced by the CHOZNVR

GS2/2 cell line revealed that the predominant mAb bound

glycans were the fucosylated non-galactosylated (G0F),

fucosylated mono-galactosylated (G1F), and fucosylated

di-galactosylated N-glycans (G2F) (Figure 2). Therefore, for

determining the effect galactose concentration had on the

galactosylation of mAbs, we focused on these three glyco-

forms. Specifically, we calculated the %galactosylation by

taking the sum of G1F and G2F intensity and dividing by

the sum of the G0F,G1F, and G2F intensity.

Western Blot Analysis of GLUT1 and GLUT4 Protein
Levels. Cell lysate was prepared by homogenization with

20 passes through a glass dounce homogenizer in a Phos-

phate Buffer containing a protease inhibitor cocktail (Thermo

Fisher; Waltham, MA). A 10 mg of protein were loaded per

sample and separated using a 10% polyacrylamide gel (Bio-

Rad). Following subsequent Western transfer to a PVDF

membrane, blots were blocked and incubated with primary

antibody against GLUT1 (1:1K, LSBio; Seattle, WA),

GLUT4 (1:1K, LSBio; Seattle, WA), and GAPDH (1:10K,

LSBio; Seattle, WA). Blots were subsequently incubated

with corresponding secondary antibody conjugated to Cy5

dye (Jackson Immuno; West Grove, PA). Blots were imaged

on a GE Typhoon scanner and analyzed using ImageJ.

Biotechnol. Prog., 2017, Vol. 33, No. 6 1651



Protein levels were normalized to the corresponding GAPDH

intensity.

Data analysis

Calculation of %Galactosylation. The cell line used in

this study predominantly produced fucosylated N-glycans of

the groups G0F (0 galactose), G1F (1 galactose), and G2F (2

galactose). The degree of galactosylation was calculated by

taking the sum of the intensity of G1F and G2F, and divid-

ing it by the sum of G0F, G1F, and G2F. Therefore, we are

expressing the degree of galactosylation as the percentage of

galactosylated N-glycans to all N-glycans. This attribute is

referred to here as %galactosylation.

Calculation of the Cell-specific Consumption Rate of
Galactose. During the steady-state phases of the experi-

ment, the reactor was fed a constant concentration of galac-

tose. Because of the cellular consumption of galactose, there

is a difference between the concentration in the reactor and

the concentration in the feed at steady-state in the presence

of cells. This concentration difference was used to calculate

the cell specific consumption of galactose as follows (Eq. 1):

CSCRgal;ss5
Fin 3 ðCgal; feed; ss 2 Cgal; reactor; ssÞ

VCD3V

CSCRgal;ss5 cell specific galactose consumption rate lmol=cell=dayð Þ

Cgal;feed;ss5 steady2state feed galactose concentration lMð Þ

Cgal;reactor;ss5 Steady2state reactor galactose concentration lMð Þ

VCD 5 viable cell density cells mL21
� �

V5 reactor volume mLð Þ

Fin5 feed flow rate ðmL day21Þ
(1)

Determination of Model constants by Curve-Fitting. As

experimental responses to step changes in galactose feed

concentration resembled that of a second order dynamic

model, the dynamic step response data was fit to model

outputs of a second order dynamic model (see Eq. 4). Spe-
cifically, Kcells and scells constants were optimized to achieve
a minimum sum of least squares fit to experimental step
response data. Optimization was performed using the fmin-
search algorithm in MATLAB (version 2015a, Mathworks,
Natick, MA) which is based on the Nelder-Mead simplex
algorithm.19

Calculation of Galactose Concentration vs. Time in Fed-
batch System. Because galactose is not a typically mea-
sured metabolite during mammalian cell culture processes,
the galactose concentration profile was predicted in the fed-
batch model as shown in Eq. 2. The equation uses knowl-
edge of the uptake kinetics of galactose generated experi-
mentally, combined with measurements of the viable cell
density, reactor volume, and feed recipe to determine the
galactose concentration in the reactor over time.

Galt5
Galt213Vt2

VmaxGalt21

km1Galt21
3VCDt213Vt3Dt1

Vbol;tCbol;t

Vt

Vt

(2)

Simulation of Model Predictive Controller. A model pre-
dictive controller (MPC) was constructed using a receding hori-
zon approach with bias correction (further described in the
Results). All simulations were performed in MATLAB (version
2015a, Mathworks, Natick, MA). In each MPC simulation, the
model was either assumed to predict the actual output perfectly,
or disturbances and measurement noise were added to the actual
output to simulate model error. In the case where the model pre-
dicts the output perfectly, the measured values were assumed to
be equal to the model predicted value at each measurement time.

Measurement error was added by adding Gaussian noise
with a standard deviation equal to the average standard devi-
ation of measured %galactosylation measurements at steady-
state in the perfusion experiments (r/l 5 0.009) to the model
forecasted values. Disturbances were added by adding a
functional offset to the measured values.

Disturbance functions tested in this study were 61% con-
stant offset and 60.1 3 t offset (a linearly increasing offset).
Both the disturbances and measurement errors were

Figure 2. Example chromatogram showing abundance of fucosylated glycans G0F, G1F, and G2F isolated from CHO cell culture sys-
tem used in this study.
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calculated by iteratively adding each to a zero bias model

predicted %galactosylation for each sampling instant, and

then implementing a feed pump rate based on those values

with disturbances and error added.

Conditions used in the simulations were:

� Initial reactor volume 5 1 L
� Bolus nutrient feeds (not containing galactose) on days

3.2, 6.2, and 9.2 of 100 mL each
� Galactose feed concentration 5 100 g L21

� No galactose in the basal media
� %Galactosylation set point 5 50%
� Sampling interval 5 24 h
� Simulation time step 5 0.1 days
� Measurement lag 5 24 or 48 h

The optimizer used in the MPC was fmincon, a con-

strained nonlinear optimization function in MATLAB.20

Results

Pseudo-steady-state experiments

To create a predictive model of %galactosylation, training

data was generated to determine both the steady-state and

dynamic response of %galactosylation to specified inputs. In

this study, a pseudo-steady-state perfusion system was used

to subject the cell culture to step changes in galactose con-

centration. The resulting data were then used to obtain the

effect of each step change on galactose consumption and

%galactosylation, ultimately supporting the development of a

predictive model.

Specifically, a pseudo-steady-state cell culture was sub-

jected to step increases in reactor galactose concentration.

The resulting response of %galactosylation of mAb N-gly-

cans was measured. Each step-response was allowed to reach

steady-state with respect to %galactosylation, defined as six

consecutive measurements within 2% galactosylation of each

other. Switching of the step (galactose concentration) was

not initiated until the above criteria were met (Figure 3).

Each step change caused the reactor galactose concentra-

tion to immediately increase (due to a bolus addition of

galactose, as described in Methods) and then stabilize at a

steady-state. The difference between the galactose concentra-
tion of the feed media and the reactor was used to calculate
the cellular consumption of galactose (CSCR gal,ss), as out-
lined in the methods. In addition, each step change of galac-
tose concentration of >0.1 mM produced a corresponding
increase in %galactosylation of secreted antibody. The
%galactosylation increased dynamically in response each
bolus addition of galactose, with all responses reaching a
new steady-state value within 12–48 h.

Figure 3. Example step-response experiment.

Reactor galactose concentration is manipulated in a step-wise
fashion and the resulting change in %galactosylation and reac-
tor galactose concentration is recorded. Increases in
%galactosylation are observed at galactose feed concentrations
of 100 lM and above. No galactose was fed prior to day 19.

Figure 4. (a) Steady-state cell specific galactose consumption rate
as a function of reactor galactose concentration. (b)
Steady-state %galactosylation as a function of reactor
galactose concentration. (c) Linear correlation of
steady-state %galactosylation as a function of galactose
uptake rate. Steady-state cell specific galactose con-
sumption rates were fit to a Michaelis–Menten kinetic
model. The steady-state %galactosylation was linearly
correlated with the cell specific galactose consumption
rates for corresponding galactose concentrations. The
data labels in Figures 4a,b are the galactose concentra-
tions in the reactor feed, whereas the x axis is the mea-
sured galactose concentration in the reactor.
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Steady-state galactosylation characterization

The values obtained from calculating the steady-state

galactose consumption (CSCRgal,ss) and %galactosylation
were analyzed against the respective reactor concentration of
galactose, to determine how the steady-state consumption

rates and steady-state %galactosylation were impacted by the
concentration of galactose (Figures 4a,b).

As evidenced by the asymptote in the CSCRgal,ss vs.
galactose concentration curve, higher concentrations of

galactose feed (5 and 10 mM Galactose) exhibited saturating
behavior (Figure 4a). This kinetic behavior suggests an enzy-

matic regulation of galactose consumption and was therefore
analyzed using Michaelis–Menten kinetics. The cellular con-
sumption rate data was fit using least squares regression to a

Michaelis–Menten model, yielding a Vmax of 4.07 3 1022

lmol cell21 day21 and a Km of 1.63 mM.

The steady-state %galactosylation as a function of galac-
tose concentration exhibited similar behavior to the galactose

consumption, suggesting that %galactosylation may be
directly correlated to the galactose consumption rate. When
analyzed, the correlation of steady-state %galactosylation vs

galactose uptake results in a direct, linear correlation
(slope 5 380. %*cell*day/lmol, intercept 5 45.5%,

R2 5 0.944) (Figure 4c).

Model development—dynamic response of %galactosylation
to galactose concentration

To use the data obtained from the galactose step change

experiments to train a predictive model of %galactosylation
for an arbitrary galactose concentration profile, the dynamics
of the %galactosylation as a function of changes in galactose

concentration must be determined independently of any con-
voluting effects which are unique to the apparatus.

By analyzing the steady-state CSCRgal,ss and
%galactosylation the steady-state differences in response

between the various step-changes are defined. However, the
period prior to reaching each steady state reveals information
about the kinetic response of %galactosylation to the

changing concentration of galactose. As an example the
kinetic response of %galactosylation to step changes in
galactose concentration from 0 to 5 mM is graphed in (Fig-
ure 5). The increase in %galactosylation does not occur
immediately, in contrast to the behavior of the galactose
reactor concentration. In fact it takes days (2) to reach the
new steady-state %galactosylation values after initiation of a
step-change. These kinetics appear to follow an over-damped
second order response (Figure 5).

In the pseudo-steady-state apparatus used in this study, the
observed dynamics are a convolution of both (1) the change
in %galactosylation of the protein produced by cells (which
is what we are trying to determine), and (2) the dilution/resi-
dence time effects of the expressed protein in the continu-
ously stirred tank reactor (CSTR) apparatus, as shown
schematically in Figure 6.

Where U(s) is the input galactose concentration, Kcells and
scells are the gain and time constant of the change in
%galactosylation of expressed antibody from the cell popula-
tion, KCSTR and sCSTR are the gain and time constant of the
change in %galactosylation of measured antibody in the sys-
tem due to CSTR dynamics, G(s) is the production rate of
galactosylation antibody over time, the Y(s) is the measured
%galactosylation in the reactor over time.

Specifically, a cell population in this system that is sub-
jected to a change in galactose concentration (U(s)) will, in
response, change the %galactosylation of the protein it is
expressing (G(s)). However, in order to measure this change
in the CSTR apparatus, we must measure the
%galactosylation present in the bulk media (Y(s)). At the
time of a change in %galactosylation of the protein produced
by the cell population (G(s)), the reactor still contains pro-
tein with a %galactosylation resulting from the previous
galactose concentration. Therefore, a measurement of the
%galactosylation of protein in the bulk media (Y(s)) will not
reach a new steady-state until the protein from the previous
steady-state has been diluted out of the system by the contin-
uous addition of fresh media and replaced by the production
of the protein with the new galactosylation (G(s)) level. This
results in a series convolution of the galactosylation dynam-
ics of the cells and the dilution dynamics of the CSTR

Figure 5. Example dynamic step response of %galactosylation in
response to step increase in galactose concentration.

A second order step-response model (solid line) was fit to the
observed %galactosylation data (o). The galactose concentration
(x) was raised to 5 mM initially using a bolus addition at t 5 0
days, and then the reactor was continuously fed media containing
galactose at 5 mM. The actual reactor concentration of galactose
is lower than the feed concentration due to cellular consumption.

Figure 6. Schematic representation of physical situation pre-
sent in pseudo-steady-state apparatus.

The measured %galactosylation (Y(s)) is a function of the cell
specific production rate of galactosylated antibody (G(s)) and
the fresh media dilution rate. KCSTR and sCSTR are functions of
the perfusion apparatus dilution rate, and are known, whereas
Kcells and scells are unknowns.
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apparatus. Therefore, in order to calculate the dynamic

response rates of %galactosylation to concentration changes,

the dilution kinetics of the apparatus (CSTR) and the kinet-

ics of the change in %galactosylation need to be considered

together.

This series relationship is formalized in a block diagram

(Figure 7).

Because any observed dynamic output in a CSTR will be

due to a series combination of the CSTR kinetics and the

actual change in %galactosylation driven by the cell

response, the response of each step change was assumed to

be second order. Note that although the CSTR dynamics are

known to be first order, the cell response dynamics (resulting

in output G(s)) were assumed to be first order. The dynamics

of either block can be of any order, but this assumption sim-

plifies the data analysis and fits the observed responses for

this particular experiment. This analysis gives the following

equation for a dynamic step-response of %galactosylation for

a given step increase in galactose concentration in the

Laplace domain Eq. 3:

YðsÞ5 KM

ðscellss11ÞðsCSTRs11Þ (3)

Representing Eq. 3 in the time domain for the over-damped

case results in Eq. 4

yðtÞ5KM 12
scellse

2t=scells 2sCSTRe2t=sCSTR

scells2sCSTR

� �
1y0 (4)

Where y(t) is the observed %galactosylation measured in the

reactor at any time, K is the system gain (%galactosylation/

mM galactose), M is the step magnitude (mM), y0 is the

starting %galactosylation prior to initiation of the step

change. Note K is the product of Kcells and KCSTR.

Because the feed rate and reactor volume were held con-

stant for all experiments (steady-state assumption), we can

assume that the time constant associated with CSTR dynam-

ics (sCSTR) was also constant for the data collected. In this

case, the CSTR time constant sCSTR is simply the mean resi-

dence time of the reactor Eq. 5.

sCSTR5Residence Time 5
V

Fin

(5)

The resulting fit constants for the cell dynamic portion of the

response can then be obtained by fitting K and scells to the

%galactosylation response data using least squares regres-

sion. The cell response time constant (scells) as a function of

galactose concentration can then be determined (Figure 8).

The response time for cellular %galactosylation shows a
decrease in response time between galactose concentration of
1 and 5 mM, followed by an increase in response time
between 5 and 10 mM. The fact that the response time is not
constant as a function of galactose feed concentration sug-
gests that the underlying dynamics of the system are chang-
ing as a function of the galactose feed concentration in a
manner which is not entirely captured by the simple linear,
first order approximation used here. This nonconstant
response time was captured in the model by allowing scells

to vary as a function of galactose concentration.

We hypothesized that the biological basis of this change
in the process time constant was due to a change in GLUT1
and GLUT4 protein levels. GLUT1 and GLUT4 are the
major transporters responsible for the uptake of galactose
into cells. To test this hypothesis, cultures were grown for 4
days in either 1, 5, or 10 mM concentrations of galactose
and the protein levels of GLUT1 and GLUT4 measured by
Western blot. When the normalized expression of GLUT1
and 4 are represented as a function of the corresponding
response times (scells), an inverse linear relationship is
observed (Figure 9). As the protein expression of GLUT1
and 4 increases the process time constant decreases. This
implies that the shorter process time constant is partially
driven by the increased protein expression of GLUT1 and 4,
and thus a potential for more rapid galactose uptake. Further,
since longer response times are observed at conditions with
lower galactose transporter expression, we conclude that
changes in expression of hexose transporters are a major
determiner of changes in characteristic response time (scells).

Figure 7. Theoretical block diagram depicting series convolution of constant CSTR kinetics and %galactosylation rate cellular kinetics.

The cell specific production rate of galactosylation mAb (G(s)) as a function of galactose concentration (U(s)) is the relationship to be determined in the
analysis.

Figure 8. Cellular %galactosylation response time (scells) vs.
galactose feed concentration.

The %galactosylation response time was determined by fitting
a second order model (Eq. 4) to %galactosylation data
obtained from step response experiments.

Biotechnol. Prog., 2017, Vol. 33, No. 6 1655



Creation of predictive model of %galactosylation for
translation to industry relevant fed-batch platform

Using the step-response data to determine both the steady-
state gain (Kcells) and dynamic response time (scells), we then
produced a model that could predict the effect of a fed-batch
strategy on the resulting degree of mAb galactosylation. The
resulting model was used to predict %galactosylation vs.
time for a fed-batch culture system.

Because galactose is not a traditionally measured metabo-
lite in mammalian cell culture processes, any controller
which uses a model relying on this measurement would be
difficult to implement. Therefore, the galactose concentration
profile was calculated using knowledge of the galactose
uptake kinetics and galactose feed profiles (Eq. 2 in the
Methods).

To predict the %galactosylation at a given timepoint for
an arbitrary cell culture system, the response of the cells
must be determined for an arbitrary galactose input. Because
the kinetics of %galactosylation due to the cells were
assumed to be first order in this analysis (the first block in
Figure 7), the following model applies Eq. 6:

scells

dGðtÞ
dt

1GðtÞ5KcellsuðtÞ (6)

where G(t) is the galactosylation of antibody expressed at
time (t), the quantity Kcellsu(t) is the steady-state
%galactosylation at a given galactose concentration (u(t)),
determined by the steady-state analysis above, scells is the
time-constant as determined in the dynamic analysis above,
and dG(t)/dt is the rate of change of the %galactosylation of
expressed antibody at time (t). Note for small values of scells,
the system approximates steady-state.

Solving for G(t) with the initial condition G(t 5 0) 5 G0

yields the following equation for the %galactosylation over
time:

GðtÞ5 G02KcellsuðtÞ½ �e2t=scells 1KcellsuðtÞ (7)

We determined previously that the steady-state
%galactosylation varies linearly as a function of the cell

specific galactose uptake rate (Figure 4c). This relationship
was used to calculate the gain-dependent portion of (Eq. 7).

KcðuðtÞÞ5KcellsuðtÞ5a
Vmax uðtÞ
km1uðtÞ

� �
1b (8)

where Kc(u(t)) is the steady-state %galactosylation as a func-
tion of galactose concentration, Vmax and km are the maxi-
mum galactose uptake rate and Michaelis constant, and a
and b are the slope and intercept of the %galactosylation vs.
cell specific galactose uptake rate relationship determined in
Figure 4c.

We also previously determined from the step-change data
that the response time (scells) varies as a function of galac-
tose concentration. During model calculation, scells was inter-
polated from the scells vs. galactose concentration data
determined previously.

Substituting Eqs. 8 into Eqs. 7 and allowing scells to vary
as a function of galactose concentration yields the final form
Eq. 9.

GðtÞ5 G02KcðuðtÞÞ½ �e2t=scellsðuðtÞÞ1KcðuðtÞÞ (9)

To use the pseudo-steady-state apparatus in process develop-
ment and model predictive control, one must be able to gen-
erate predictions for industry relevant cell culture platforms
that may be different than those used to generate the model
(i.e., Perfusion vs. Fed-Batch Reactor). To test the prediction
quality of this approach, we applied predictions to a fed-
batch culture that was fed boluses of supplementary galac-
tose, as described in Methods.

In a fed-batch culture, unlike the perfusion system, the
viable cell density (VCD) of the reactor changes over time,
and thereby changing the rate of galactose consumption. In
addition, all secreted protein remains in the bioreactor. The
%galactosylation in a fed-batch reactor over time is given by
Eq. 10.

%GalcumðtÞ5
½mAbGal�
½mAbtot�

5

Ð t
0

VðtÞ3VCDðtÞ3QpðtÞ3GðtÞdtÐ t
0

VðtÞ3VCDðtÞ3QpðtÞdt
(10)

where V is the vessel volume, VCD is the viable cell den-
sity, Qp is the cell specific production rate of antibody, and

Figure 9. Cellular galactosylation rate time constant (scells) vs.
GLUT1 and GLUT4 transporter expression at vary-
ing galactose feed concentrations.

Normalized expression of GLUT1 and GLUT4 values were cal-
culated by measuring intensity of the respective GLUT signal
divided by the intensity of GAPDH signal. These normalized
expression values were graphed as a function the response
times calculated for the same galactose concentrations derived
from pseudo-steady-state experimentation. Linear regression
revealed an inverse linear correlation between GLUT expres-
sion levels and response time.

Figure 10. Predicted (-) and actual (o) %Galactosylation vs.
time for a fed-batch culture with galactose feeds.

Galactose was fed in combination with nutrient feeds in
boluses on days 3, 6, and 9. Actual %galactosylation is pre-
sented as a mean of three separate fed-batch runs. Error bars
represent 1 standard deviation.
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G is the %galactosylation of expressed antibody, given by
Eq. 7.

To evaluate the prediction quality of the fed-batch model
(Eq. 10), the model was evaluated for the conditions present
in the fed-batch experiments. Inputs to the model were ves-
sel volume, viable cell density, cell specific productivity of
mAb, galactose feed concentrations and feed volumes. We
observed a good prediction of %galactosylation over the
course of the fed-batch reactor (Figure 10).

Creation of model predictive controller for
%galactosylation and simulation in fed-batch platform

To demonstrate how the fed-batch predictive model could
be implemented for control of %galactosylation, we created
a model predictive controller in simulation using the fed-
batch predictive model outlined previously to control
%galactosylation to defined set point. The physical control
loop we simulated is outlined in Figure 11.

The model predictive controller was designed based on a
technique outlined previously,21 based on a receding horizon
approach incorporating bias correction to account for model
inaccuracies and measurement lag. A summary of the con-
troller execution steps is outlined in Figure 12.

For each sampling instant, a measurement lag of 24 h was
assumed. This is equivalent to the fastest turnaround between
sampling and measurement which can be achieved for the
glycan measurement used in this study. Here the sampling
time is labeled tm and the time at which the %galactosylation
measurement of the sample is received is labelled tcurrent.

Once a %galactosylation measurement is received, the dif-
ference between the measured %galactosylation (y(tm)) and

the model predicted %galactosylation (ŷ(tm)) is calculated.

This difference is added to all remaining model forecasts for

the current model iteration, here called the bias

(B 5 y(tm) 2 ŷ (tm)).

The controller then creates a model forecast including the

bias for the timeframe t 5 tm to t 5 tcurrent. The controller

estimates the %galactosylation at tcurrent using this model

forecast. The initial conditions for this forecast are equal to

the conditions of the previously generated model forecast at

t 5 tm.

Once an estimated %galactosylation at the current time

(tcurrent) is generated, the controller then optimizes the galac-

tose feed pump set point to minimize the error between the

%galactosylation set point and a model predicted value at

some time (tcurrent1J) in the future. J is a tunable parameter

that for this simulation was set to 96 h. The galactose feed

pump set point was constrained to 0–10 mL day21 to prevent

excessive feeding. The optimized pump set point is then

implemented in the simulation and not changed until a new

measurement is received.

We implemented this model predictive control scheme in

simulation to gauge its’ ability to effectively control

%galactosylation to a set point by manipulating a galactose

feed pump rate.

In simulation, the controller was able to achieve a

%galactosylation within 0.5% of set point by the end of each

batch for a measurement lag of 24 h for all scenarios tested

(Figure 13). A measurement lag of 48 h was also tested,

with similar results (data not shown). The controller success-

fully kept the galactose concentration in the range explored

by the steady-state-apparatus (0–10 mM).

Figure 11. Schematic representation of the control loop simulated in the model predictive controller.

The controller used sparse measurements of %galactosylation combined with model forecasts to control a galactose feed pump. Ŷ is the model pre-
dicted %galactosylation, tm is the time at which the bioreactor was sampled, tcurrent is the time at which the %galactosylation measurement for the
sample is received, J is a tunable parameter that dictates how aggressive the controller is, Ysp is the %galactosylation set point, and P is the galac-
tose pump set point.
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Figure 12. Execution steps for model predictive controller developed using fed-batch %galactosylation forecast model.

The steps are executed every time a new sample measurement of %galactosylation is received, and a new galactose pump set point is
implemented.

Figure 13. Simulated MPC runs for controlling %galactosylation in a fed-batch run with: (a) no measurement noise or disturbances,
(b) measurement noise added, (c) measurement noise and constant 21% offset disturbance, (d) measurement noise and lin-
early increasing 20.1 3 t offset disturbance. Measured %galactosylation (o), model predicted %galactosylation (solid line),
galactose pump rate (dash dot line), model predicted reactor galactose concentration (dotted line).

1658 Biotechnol. Prog., 2017, Vol. 33, No. 6



Discussion

Feeding of galactose increases the %galactosylation
of a mAb

By increasing the extracellular concentration of galactose

we observed an increase in the %galactosylation of mAb.
This result agrees with prior work, as treatment with galac-
tose (as well as uridine and manganese chloride) increased
the degree of galactosylation of a mAb in two different cell-
lines.22 The %galactosylation was directly correlated with
galactose consumption rate which followed classic Michae-

lis–Menten kinetics. This observation, combined with the
fact that the protein levels of GLUT1 and GLUT4 were
inversely correlated with the characteristic response times,
suggests that the bottleneck in galactose utilization for galac-
tosylation is galactose transport, specifically through hexose
transporters. We observed an increase in the protein levels

of GLUT1 and GLUT4 when cultured in 1 and 5 mM galac-
tose relative to no galactose. At 10 mM galactose we did not
observe a change in GLUT1 and GLUT4 transporters. This
may suggest that the regulatory signal for hexose transporters
has a switch-point between 5 and 10 mM galactose. Indeed,
this biphasic response to hexose concentration by hexose

transporters has been genetically defined in yeast.23 Further-
more, the effect of high levels of hexose on the downregula-
tion of hexose transporters has been reported in cultures
derived from rat skeletal muscle.24 The effect of hexose
transporter expression on galactose uptake was demonstrated
through the stimulation of GLUT1 expression by glutamate

treatment and the concomitant increase in galactose uptake,
suggesting that GLUT expression is a major modulator of
galactose uptake.25 These observations reinforced choise of
galactose as a control handle for %galactosylation, and sup-
ported the use of a varying response time as a function of
galactose concentration in the model.

System identification with pseudo steady-state apparatus is
a viable technique for predictive model development

In this study, we demonstrated the ability to use a model

constructed from pseudo-steady-state apparatus data to pre-
dict the %galactosylation of a mAb in an industry relevant
fed-batch process. By analyzing both the steady-state galac-
tose consumption and %galactosylation, in combination with
the dynamics of the response, we developed a predictive
model for levels of galactosylation for a given galactose

feeding regimen. We then demonstrated the successful con-
trol in simulation of a realistic fed-batch scenario using the
predictive model in a model predictive control scheme.

One implication of our study, which has limited precedent
in the literature, is how well a model trained using data in a

pseudo-steady-state system would be able to predict in a fed-
batch context. Here we’ve shown that for galactosylation
this translation between systems is possible. Prior work dem-
onstrated the ability to develop a model predictive controller
for high mannose species in a semi-perfused system using
only data obtained through small microplate experimenta-

tion.5 This suggests that development of a MPC may be pos-
sible through experimentation in different culture systems
and scales, than that which the MPC is ultimately targeted
for. More studies need to be conducted to demonstrate the
wide applicability of this approach on other product quality
attributes (e.g., fragments, reduced species, O-glycosylation
and metabolic byproducts).

Pseudo steady-state apparatus has advantages over
fed-batch for controller development

One of the major goals for this study was to adopt the
recent advances in bioprocess automation technologies to
reduce laborious process development activities (like devel-
oping controllers for product CQAs). In this respect, the abil-
ity to generate a predictive model of cell culture process
outputs in a pseudo-steady-system has some distinct advan-
tages over other methods.

Most importantly, the step-response system identification
method used in this study is systematic, continuous, and in
principle generalizable to many product attributes. This
means that regardless of the product quality attribute being
studied, an experimental design can be generated algorithmi-
cally and executed continuously, allowing the process to be
highly automated.

Even though a fed-batch or other laboratory DOE study
design can also be automated,12 the actual execution of the
study design remains difficult to automate. Although technol-
ogies are being developed that may lower this technical bar-
rier for automation of fed-batch experiments (for example,
the ambr

VR

system), these solutions remain very capital inten-
sive, and usually require additional automation solutions to
test the number of variables required to generate a suitable
predictive model. Application of expert knowledge has
allowed some groups5 to significantly decrease the number
of experiments required to develop a predictive model for
better understood quality attributes, but this only applies to
CQAs where fundamental understanding already exists.
Finally, in a batch DOE the setup and takedown of experi-
ments would need to be automated in addition to the actual
experiment itself in order to realize the full benefits of auto-
mation. In contrast, for a continuous apparatus, execution of
many experiments can be accomplished by currently existing
technologies, such as manipulation of feeds by incorporation
of pumps with defined media, maintaining cell density with
an automated cell bleed (as accomplished here with dielec-
tric spectroscopy), and automated sampling technology com-
bined with automated analytics to record the output.

In addition to the ability of the pseudo-steady-state appa-
ratus to be highly automatable, there is also a potential for
time-savings when compared to fed-batch experimentation.
A typical fed-batch study relies on run-to-run optimization,
meaning each fed-batch run is essentially one data point in a
DOE-style study design. Because each fed-batch run takes
12–14 days for cell culture processes (plus another typically
2 to 3 days for reactor setup and takedown), the potential
exists for shorter experiments to be performed in a pseudo-
state-apparatus. In the present study, the average step-change
experiment (equivalent to a full fed-batch condition for
model development purposes), was 4–8 days, which is sig-
nificantly shorter than a typical fed-batch study. In addition,
the current study design allowed each step change to proceed
well into its’ new steady-state, a very conservative approach.
Many system identification studies using the step-change
methodology have relied on datasets that are not required to
reach steady-state and were successful at quantifying the sys-
tem dynamics.26 In these studies, typically the output was
allowed to reach greater than 63% of the projected final
steady-state value (also known as the characteristic response
time). Application of these more aggressive system identifi-
cation methodologies to this experimental design could yield
even more time-savings; for the current study, this would
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have shortened the step change experiments to 2 days each.

Future work will demonstrate these more aggressive

approaches in practice for our system. A final time-savings

with the pseudo-state-apparatus comes from the ability to

serialize step-change experiments. After the initial startup

phase, there is no turn-around time between step change

experiments in the pseudo-steady-state apparatus. In the cur-

rent study, we demonstrated stability of the perfusion system

to >120 days, meaning many experiments could be serial-

ized in two virtually continuously operating vessels (data not

shown).

Pseudo-steady-state system allows observability of
phenomena which are difficult to detect in fed-batch
experiments

We showed that a pseudo-steady-state system allows indi-

vidual variables to be separated and manipulated indepen-

dently of each other (in this study just changing the

concentration of galactose at a constant cell-density). Here,

we investigated the effect of galactose on protein galactosy-

lation without the confounding effects of consumption or

production of other metabolites in a non-steady-state culture

that may have impacted galactosylation. Although single

media components can be manipulated independently in this

system, a resulting change in a CQA is not necessarily solely

due to a change in that component. Rather, the change in the

CQA could be a combination of other confounding variables

stemming from a change in cellular metabolism which

occurs as a result of the manipulated media component such

that the steady-state concentrations of other nutrients and

byproducts are also altered. For the purposes of developing a

model predictive controller, however, we showed that knowl-

edge of the simple single input single output (SISO) relation-

ship between galactose and %galactosylation was sufficient

to predict and control %galactosylation. The pseudo-steady-

state system allows easy identification of this SISO relation-

ship, which would be otherwise difficult to obtain in a batch

system. The ability to manipulate variables (especially nutri-

ent concentrations) independently represents an attribute of

this system that is crucial for adoption in a more complex

nutrient-to-output mechanism.

In addition, the pseudo-steady-state system allows

dynamic manipulation of input variables, and allows the

kinetic response of the output of interest to be recorded and

characterized in terms of the manipulated input. The ability

to selectively manipulate specific input variables (i.e., [galac-

tose]) using a well-defined input function allows the

observed dynamic outputs of the system in response to the

input function to be easily characterized using established

techniques. This ability allows one to extract not only

steady-state information from the system, but also character-

ize the time-dependence of how the output changes in rela-

tion to the input.

Another benefit of the pseudo-steady-state system is that

due to the continuous nature of the experiments, effects of

hysteresis can be easily detected by simply modulating the

order of dynamic experiments and recording the effect on

the output. Any effect of the past experiments or culture

conditions can be detected in this manner. Cell culture pro-

cesses typically exhibit non-linear behavior which is known

to result in hysteresis-type behavior. Knowledge of hysteresis

is important to maintain a culture in a favorable state in

order to actively control the output (i.e., Product Quality
Attributes).

In fact, in the current study, hysteresis effects were
detected for cultures exposed to >10 mM galactose. Specifi-
cally, steady-state galactosylation values at galactose concen-
trations of less than 10mM were increased after exposure to
>10 mM galactose feed. To avoid this complication, step-
responses occurring after the system was exposed to galac-
tose concentrations >10 mM were omitted. The galactosyla-
tion controller was also designed to avoid concentrations
above 10 mM.

Prediction obtained using this method is suitable for use in
model predictive controller

In this study we were able to create a predictive model
based on data from pseudo-steady-state experiments and suc-
cessfully predict the galactosylation behavior of a fed-batch
model system. We were also able to successfully control gal-
actosylation in simulation when the model was implemented
as part of a model predictive control scheme. The model we
constructed was designed intentionally to use only inputs
that could be easily automated using existing autosampling
technologies. To generate a prediction of the
%galactosylation profile vs. time for our system, one must
only supply the galactose feeding regimen, reactor volume,
viable cell density, and cell specific mAb productivity. This
allowed the use of the model in a model predictive controller
to control galactosylation using only inputs which are readily
measured in a typical cell culture process and
%galactosylation measurements.

A model predictive controller was built incorporating this
forecast model in a receding horizon method. In this
approach, long lead time measurements (such as many prod-
uct quality measurements, including %galactosylation) are
only measured sporadically during a cell culture process.
When a new output measurement is received, the controller
creates an input profile in such a way that a model forecast
of the desired output trajectory is achieved. The controller
implements control based on this model forecast until a new
output measurement is received, and an updated model fore-
cast is generated.

Here, we simulated control of %galactosylation in a fed-
batch cell culture by controlling a galactose feed pump. We
simulated long lead-measurements (24–48 h lead time) mea-
sured daily and found that control could be achieved despite
reasonable simulated measurement error and disturbances.
More work remains to demonstrate this type of controller in
practice for this system, but has been successfully demon-
strated on a functionally similar system (mannose).5

Conclusions

In this study we demonstrated the application of a system
identification approach for creating a predictive model of
%galactosylation for an arbitrary galactose feeding scheme,
and the use of that model in a model predictive controller to
control %galactosylation in a simulated fed-batch process.
The model was generated on cells growth in a pseudo-
steady-state perfusion apparatus subjected to step increases
in galactose concentration. The process used to generate the
data for training the predictive model and the generation of
the predictive model itself is highly automatable. Combined
with the ability to serialize many step change conditions
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during a single pseudo-steady-state experiment, this method

represents an efficient way to generate predictive models for

use in model predictive control schemes for galactose, and

may be generalized for controlling many CQAs.

As knowledge of criticality, and the ability to measure

more quality attributes for biotherapeutics increases in the

future, so will the need for tighter control of more CQAs.

Model predictive control is an attractive method for achiev-

ing this control. Using current model generation methodolo-

gies, the amount of work required by process development

groups to develop model predictive controllers will become

prohibitive. This controller development method is one tech-

nology that can help lower the barrier for development of

MPC schemes, and may catalyze wider adoption of active

control of CQAs as a method for achieving QTPPs of the

biopharmaceutical products of the future.
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