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Abstract

Mathematical disease modelling has long operated under the assumption that any one

infectious disease is caused by one transmissible pathogen spreading among a population.

This paradigm has been useful in simplifying the biological reality of epidemics and has

allowed the modelling community to focus on the complexity of other factors such as popula-

tion structure and interventions. However, there is an increasing amount of evidence that

the strain diversity of pathogens, and their interplay with the host immune system, can play

a large role in shaping the dynamics of epidemics. Here, we introduce a disease model with

an underlying genotype network to account for two important mechanisms. One, the dis-

ease can mutate along network pathways as it spreads in a host population. Two, the geno-

type network allows us to define a genetic distance between strains and therefore to model

the transcendence of immunity often observed in real world pathogens. We study the emer-

gence of epidemics in this model, through its epidemic phase transitions, and highlight the

role of the genotype network in driving cyclicity of diseases, large scale fluctuations, sequen-

tial epidemic transitions, as well as localization around specific strains of the associated

pathogen. More generally, our model illustrates the richness of behaviours that are possible

even in well-mixed host populations once we consider strain diversity and go beyond the

“one disease equals one pathogen” paradigm.

Author summary

Epidemics rarely involve a single unique pathogen but are often modelled as such. Rather,

most pathogens circulate under a family of strains which can interact differently with the

host immune system and undergo further mutations. Here we extend a classic epidemio-

logical model to consider the genetic structure connecting these strains—i.e., the genotype

network mapping possible mutation pathways—and investigate the dynamics and emer-

gence of epidemics beyond the “one disease equals one pathogen” paradigm. This simple

model allows us to consider the impacts of (i) mutation, (ii) cross-immunity between
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strains, (iii) competition between strains, and (iv) the structure of the genotype network.

We find that, altogether, these features do not affect the classic epidemic threshold but

localize outbreaks around key strains and yield a second immune invasion threshold

below which the epidemics follow almost cyclical and chaos-like dynamics. Our results

illustrate how little biological realism is needed to introduce key features of real epidemics

in even the simplest disease models: epidemic cycles, unpredictability, and heterogeneous

strain prevalence.

Introduction

Viral species are known to often undergo rapid evolution. Since the early 20th century, influ-

enza viruses have been described as having marked variability and unpredictable behaviour

[1]. Subsequent RNA virus studies of the 20th and 21st century have focused on, among others,

the Zaire ebolavirus, strains of the SARS-CoV species, and HIV-1, all possessing high mutation

rates [2]. These frequent mutations contribute to the antigenic evolution of these viruses,

allowing them to evade recognition by the human immune system [3].

Despite the long-standing knowledge of subtypes and strains within viral species, mathe-

matical disease modelling has continued to model viral diseases with one underlying pathogen.

Notably, influenza violates the “one disease, one pathogen” paradigm: numerous types, sub-

types, and strains of influenza viruses challenge the human immune system, driving vaccine

effectiveness below 50% in most recent years [4–7]. Models which fail to account for antigenic

variation of a pathogen may lead to biased characterizations of epidemic emergence and

progression.

Modelling multi-strain pathogens with consideration for antigenic properties requires the

inclusion of cross-protective effects, in which the immunity acquired towards one strain offers

partial protection towards another strain based on their antigenic similarity. Cross-protection

is seen in numerous viral species [8–10]. In general, more similar strains will have greater

cross-protective effects, as with seasonal influenza [11]. However, cross-protective immunity is

not necessarily a monotonically decreasing function of antigenic distance. Antibody-depen-

dent enhancement has been observed in dengue viruses, in which a past infection may in fact

increase the risk of severe infection [12, 13]. Regardless, approximations of cross-protection

may be made through antigenic distance or genetic distance. This relationship may be deter-

mined by a function of genetic distance to approximate the unique antigenic distances between

all strains.

Several models have been proposed in the growing sub-discipline of multistrain disease

modelling [14]. These models balance biological assumptions with computational tractability

through reduction via symmetry (e.g. antigenic neighbourhoods [15]), age structure [16], and

deciding to capture either infection history or immune status [14], among other modelling

choices. Cross-protective immunity has been explored in two-strain models [17], multi-strain

models with a restricted number of antigenic loci and alleles [18], and temporary cross-protec-

tive immunity in dengue models [19] capable of producing cyclical and chaos-like infection

progression. However, the effects of an underlying genotype network structure—governing

viable mutation pathways and genetic distances between strains—have not been thoroughly

explored with multistrain models. Genotype networks consist of nodes that represent strains,

with edges connecting strains that differ by one nucleotide or amino acid in some antigenic

region of a gene or protein [20]. Genotype networks are a complementary structure to
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phylogenetic trees, and are a useful way of representing genetic distance necessary for cross-

immunity in multi-strain models.

Moreover, the genotype network gives us a proxy through which we can specify potential

mutation pathways between strains. Mechanisms for pathogen mutation have previously been

included in mathematical models [21, 22], often to consider the emergence of antiviral resis-

tance [23–26]. Particularly, these models predict the emergence of sequential epidemic transi-

tions—with a first epidemic threshold defining the emergence of macroscopic disease spread

and a second marking the emergence of treatment resistant strains [24]. However, such models

are often limited to only two pathogen strains as they require specification of the fitness cost

associated with resistance. We therefore aim to introduce a more general model, allowing

large number of strains to mutate along specific network pathways. While this general model

could consider a complex fitness landscape over this genotype network, we focus on the case

of neutral evolution and show how the previous results discussed here can all co-exist within a

single, fairly simple model.

We introduce a multistrain Susceptible-Infectious-Recovered-Susceptible (multistrain

SIRS) epidemic model with an underlying genotype network, allowing the disease to evolve

along plausible mutation pathways as it spreads in a well-mixed population. We then investi-

gate the effects of genotype network structure on the emergence of an endemic state and on

the fitness distribution of strains across the genotype network. Altogether, our results chal-

lenge the typical phenomenology of epidemic models. We observe localization of infections in

the genotype space and identify two epidemic transitions. The first corresponds to the emer-

gence of an endemic state where new infections mostly target the susceptible portion of the

population, and the second marks the point where recovered individuals significantly contrib-

ute to new infections. Between these thresholds, we find chaos-like behaviour which can be

maintained for arbitrarily long times, yielding time series with epidemic cycles featuring large,

unpredictable fluctuations.

Methods

We study the spread of infectious disease within a well-mixed population for a defined geno-

type network of the chosen pathogen. Our model is as follows.

The underlying epidemiological dynamics correspond to a simple SIRS model, but where

we add a genotype network defined as a set of potential mutations, meaning an infection of

strain i 2 [1, N] can mutate along the network to a neighbouring strain j 2 N i, where N i spec-

ifies the set of first network neighbours of strain i. Biologically, this network is defined such

that neighbouring strains i and j differ by one unit of genetic distance.

The strains spread within a well-mixed host population. Host individuals are defined as sus-

ceptible (S) if they possess no immunity to any strain of a disease, see Fig 1. Susceptible indi-

viduals progress to infectious state Ii at transmission rate β for every contact with individuals

infectious with strain i, occurring at rate βIi for every susceptible individual. Note that this

basic transmission rate is held constant for all strains, as we focus on neutral evolution as a

first approximation.

Individuals in Ii can either: (i) recover at rate γ to state Ri and acquire direct immunity for

strain i and partial immunity to strain j 6¼ i; or (ii) become infected with strain Ij via mutation

at a rate μ for all strains j in N i. Individuals in Ri will either: (i) lose immunity and progress to

S at rate α, or (ii) become infected with strain j 6¼ i to which they only possessed partial immu-

nity and progress to Ij at a reduced rate β�, where β� is an exponentially decaying function of
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genetic distance between strains i, j. Specifically:

b
�
/ 1 � e� xij=D ð1Þ

where xij is the genetic distance between strain i, j (approximated by shortest path of length

xij = xji between strains i, j in the genotype network) and Δ is the characteristic length of immu-

nity transcendence (0 < Δ<1). This model makes the simplifying assumption that an indi-

vidual only possesses immunity to the most recent strain of infection, existing in one immune

state at a time.

Altogether, the dynamics of our model can be followed by the following set of ordinary dif-

ferential equations (ODEs),

dS
dt
¼ � b

XN

i¼1

SIi
N
þ a
XN

i¼1

Ri ð2Þ

dIi
dt
¼ b

SIi
N
� gIi þ m

XN

j¼1

AijðIj � IiÞ þ b
XN

j¼1

1 � e� xij=D
� � IiRj

N ð3Þ

dRi

dt
¼ gIi � aRi � b

XN

j¼1

1 � e� xij=D
� � IjRi

N ð4Þ

where Aij is an element of the adjacency matrix of the genotype network, equal to 1 if there is

mutation pathway between i and j and 0 otherwise. The total proportion of individuals infected

can be obtained by summing over all strains, I(t) = ∑i Ii(t), and we also focus on its asymptotic

value I� = limt! 1∑i Ii(t).
We therefore have 5 important epidemiological parameters: transmission rate β, recovery

rate γ, rate of waning immunity α, mutation rate μ and immunity transcendence Δ. Unless

mentioned otherwise, we fix the recovery rate γ = 1 such that other rates are defined in units of

infectious period (and Δ in units of genetic distance). The other parameters then allow us to

investigate different regimes of interest.

Fig 1. Compartmental model of a multistrain epidemic with an underlying genotype network (left) and table of parameters (right).

https://doi.org/10.1371/journal.pcbi.1008606.g001
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As Δ! 0, immunity becomes strain specific with no cross-protective effects. As Δ!1,

immunity becomes broad-reaching to the point of universal protection across all strains. With

β� as a function of distance, we are able to reduce model complexity by avoiding specification

of b
�

ij among all strains, whose values may not be known in real-world applications. Instead,

we rely on the inverse relationship between antigenic distance and cross-protection that has

been observed in influenza viruses [11]. Note that this relationship may not be monotonically

decreasing for all pathogens, in which case β� may be defined by a function of genetic distance

unique to the pathogens.

Our most important assumption is perhaps that only the most recent infection is relevant

for cross-immunity effects. Indeed, Ii and Ri specify the pathogen involved only in the most

recent infection for every individual. The alternative would have been to model an infectious

state Ii,j,. . . for all unique infection histories, of complexity Oð2nÞ if order does not matter and

complexity Oðn!Þ if it does. While a big assumption, focusing on the most recent infection

reduces the complexity to OðnÞ. Computational feasibility would be largely restricted other-

wise, which would limit the analysis of the effects of genotype network structure [14, 27]. The

infection history approximation enables genotype networks to be large enough to contain

complex structure, necessary to investigate the role of genotype networks in epidemic

progression.

Results

We focus our attention on the consequences of the genotype network underlying the spread of

the disease. In order to gain as much insights as possible on how it affects prevalence of a dis-

ease, we keep the network itself simple using well-known graph toy models composed of lat-

tices, chains and stars.

Localization in genotype space

We first ask which strains can be expected to have an advantage, not because of their own fit-

ness or of our epidemiological parameters (as they all share the same β, γ and α), but because

of their position in the genotype network. We use three simple network structures—a star, a

square lattice, and a chain, all containing 25 strains—and run our model to produce a large

outbreak with β = 25 much greater than the expected SIRS epidemics threshold of βc = 1.

Accordingly, we set the evolutionary dynamics to be much slower than that of epidemic spread

with μ = 10−3. We then let the system reach its endemic steady state, where the derivatives in

Eqs (2)–(4) essentially go to zero such that the system is at equilibrium.

We observe a localization of infections by strain within genotype networks as shown in Fig

2, top row. Stationary or endemic infection counts differ from strain to strain. This holds true

even with the assumption of neutral evolution, based solely on their position in the network

and the resulting cross-protective immune effects. Epidemics can therefore be localized

around a minority of strains, as is clear in the lattice and chain networks.

We quantify this localization phenomena with Kish’s effective sample size [28], referred to

here as effective participation ratio n�eff ¼ neff=n ¼ ð
P

i IiÞ
2
=ðn
P

i I
2
i Þ. As n�eff ! 1, all strains

contribute an equal number of infections. As n�eff ! n� 1, only one strain contributes infections.

In Fig 2, top row, we observe lower n�eff in the lattice and chain, indicating greater localization.

A small number of strains are able to escape strong cross-protective immunity in the corners

of the lattice and at the ends of the chain, while such heterogeneity is not seen in the star and

ring networks.
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As network structure determines infection localization, so does the transcendence of

immunity. In Fig 2, middle row, we see n�eff as a function of β and immunity transcendence Δ,

revealing regimes of strong localization in the lattice and chain networks where n�eff remains

small. High values of Δ> 10, indicating far-reaching cross-protection, are associated with

localization in these two networks. The structure of the star and loop networks allow them to

escape localization effects influenced by large Δ.

Stationary infection counts I� are also influenced by immunity transcendence Δ. In Fig 2,

bottom row, we see reductions in I� as Δ increases. As cross-protective effects increase, a

higher β becomes necessary to maintain infections. Again we see the importance of network

structure, with different values of Δ required between networks to affect I�.

Fig 2. Infection localization and characteristics of endemic infection state. (Top) Localization within networks shown by endemic infection counts

I�i normalized by max(I�i ) for a given network. We use mutation rate μ = 10−3, transmission rate β = 25, waning immunity rate α = 1/50, and

transcending immunity Δ = 4. (Middle) Infection localization regimes are revealed where normalized effective sample size is low (lattice and chain),

occurring when few strains account for the majority of infections. (Bottom) endemic infections depend on not only transmission rate β, but also the

breadth of cross-protective effects determined by transcendence rate Δ. Fixed parameters are n = 25, μ = 10−3, α = 1/50.

https://doi.org/10.1371/journal.pcbi.1008606.g002
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Sequential phase transitions

We then look at the behaviour of the endemic state as we vary the basic transmission rate β.

We know from classic SIRS model that there should be an epidemic transition at βc = 1, mark-

ing a transition between a disease-free phase where the disease is too weak to establish itself in

the population if β< 1, and an endemic phase for larger values. Yet, one interesting result of

Fig 2, bottom row is that the epidemic threshold now seem to increase with transcending

immunity Δ. This is somewhat surprising given that Δ does not matter for any one strain,

which should still be able to survive on its own following SIRS dynamics once β> βc = 1.

In Fig 3, we take a deeper look at the phase diagram under varying transmission rate and

observe a second epidemic transition. More precisely, if α is not too large, I� is no longer a con-

cave function of the transmission rate; it emerges as expected at βc = 1 but has a new inflection

point at a much higher β value. This means that only modest increases in I� are seen when β is

just above to the epidemic threshold βc = 1, in contrast to standard SIS-like models in which

this regime experiences the most rapid rate of change in I� as a function of β [29].

We conjecture that this second phase transition is governed by what we call the immune
invasion threshold, corresponding to the point at which infected nodes starts to infect recov-

ered nodes (of other strains) effectively. To see this, in Fig 3(a), we compare the bifurcation

diagrams of two models: with and without waning immunity. In the latter case, in the station-

ary state, a node infected with strain i can only infect recovered nodes of strains j 6¼ i (since

S� = 0). The immune invasion threshold βI can thus be estimated from βc if α 7! 0. Surpris-

ingly, even though βc = 1 whenever α> 0, it is no longer the case when α = 0.

Previous work has demonstrated a similar phenomenon in which I� as a function of β is

dependent upon the level of transcendence of immunity [30, 31]. This indicates the impor-

tance of transcending immunity in multi-strain modelling. However, our model differs by

showing the development of a second transition that is absent from these models, having

potential consequences regarding the robustness of I� with change in β. The second transition

reveals that little changes may occur in I� below the second transition, while I� may change

rapidly above this transition in our model. Furthermore, the structure of the genotype network

itself is critical to the nature of this second transition. This difference with previous work

Fig 3. Bifurcation diagram for the model with varying levels of waning immunity on a star genotype network with 10 strains. We fix the recovery

rate to γ = 1, the mutation rate μ = 1/100, the transcending immunity Δ = 10 and we vary the transmission rate β. (a) We set the waning immunity rate

α 2 {0, 0.02} to illustrate the origin of the immune invasion threshold (vertical dotted line) obtained with Eqs (5) and (6). (b) For large enough values of

waning immunity rate, the immune invasion threshold disappears because recovered nodes quickly become susceptible again.

https://doi.org/10.1371/journal.pcbi.1008606.g003
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could be consequential in evaluating the utility of public health interventions aimed at reduc-

ing transmission rate.

To derive the immune invasion threshold, let us rewrite the stationary state quantities I�, R�

when α = 0. We have

0 ¼ � gI�i þ m
X

j

AijI
�

j � mki þ bI
�

i

X

j

TijR
�

j ;

0 ¼ gI�i � bR
�
i

X

j

TijI
�

j ;

where Tij � ð1 � e� xij=DÞ. Isolating R�i in the second equation and reinjecting the solution in

the first one, we obtain a self-consistent equation for the fI�i g,

I�i ¼
P

jAijI�j
g

m
1 �

P
jTij

I�jP
k
TjkI�k

� �

þ ki
:

ð5Þ

Interestingly, the fI�i g do not depend upon β. However, we know that such solution is pos-

sible only if I�i > 0 8i, and this break down at βI when R� ¼
P

iR
�
i ! 1. Therefore, the

immune invasion threshold βI has the following explicit expression

bI ¼ g
X

i

I�iP
jTijI�j

; ð6Þ

where the fI�i g are evaluated from Eq (5).

We observe a direct relationship between Δ and βI. Namely, when Δ!1, Tij! 0 for all i,
j, hence βI!1, as seen from Eq (6). When Δ! 0, Tij! 1 for all i 6¼ j, and Tii = 0, hence

bI ! g
X

i

I�iP
j6¼iIj�

:

For large networks, βI� γ� 1 in the limit Δ! 0. Therefore, we conclude that increasing Δ
increases the immune invasion threshold, which makes sense based on intuition alone.

The relationship between the immune invasion threshold and the genotype structure is fur-

ther explored in Fig 4 for the three toy networks across multiple values of Δ. As Δ increases,

immunity becomes wide-reaching in genetic distance, approaching the effects of universal

immunity or a universal vaccine. This has the effect of necessitating higher β to produce the

same I� as lower values of Δ. Importantly, because of the sum in the denominator of Eq (6), the

immune invasion threshold βI is not simply set by the diameter of the genotype network (i.e.,

the maximum value of xij), and is instead set by the entire network structure. While strains

maximally distant from each other can much better infect recovered individuals, competition

between strains also play an important role: central strains can still infect individuals and grant

them better immunity due to their central position in the network. Thus, the network structure

plays a nontrivial role in setting the exact value of βI as determined by Eq (6).

Rich dynamics in between epidemic thresholds

Beyond the features of the endemic state, we observe rich prevalence dynamics throughout the

epidemic when transmission rates are between the epidemic threshold βc = 1 and the immune

invasion threshold βI� βc. By comparing the top, middle, and bottom rows of Fig 5 we see

infection counts throughout the epidemic simulation while the transmission rate lays in differ-

ent regimes, decreasing from β> βI to values closer to βc = 1.
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For transmission rate below the immune invasion threshold (bottom two rows), we see

oscillations in the overall infection counts across all three networks before converging on an

endemic value, resembling a dampened pseudo-chaotic behaviour. Both cyclical and chaotic

infection progression have been observed in modelling by Gupta et al., dependent upon the

strain structure [32]. The strain structure introduced by the genotype network enables a clear

depiction of these phenomena and allows us to show how the network structure itself impacts

the range of parameters where chaotic behaviour is expected.

Noting the different time scales shown, the chain rapidly converges on its endemic state

while the star undergoes drastic oscillations before convergence. We see variation in infection

counts at the strain level, with the infection counts for 3 of the 25 strains shown. At the strain

level we see convergence occurring on different time scales within the same network, as well as

variability in oscillatory nature.

In comparison, the top row of Fig 5 shows the rapid convergence on the endemic state

when the transmission rate is high (β = 25). There still exists infection localization, as indicated

by different endemic infection counts at the strain level, as well as variability in convergence

time between strains. However, the oscillatory nature is profoundly absent at transmission

rates well above βI. In contrast, as transmission rates are lowered towards βc = 1 in the bottom

rows of Fig 5, we see the oscillations preserved but stretched across a broader timescale. Impor-

tantly, as the timescale of oscillations is stretched, their minimal values decrease by orders of

magnitude. In practice, this shows that any finite size simulations of the dynamics captured by

our model would likely lead to strain extinction, with potential to reemerge through muta-

tions. Discrete events are unfortunately not captured in ODE models as they assume continu-

ous values, or infinite population.

Discussion

The introduction of an underlying genotype network to a multistrain model has demonstrated

the emergence of cyclicity, infection localization, and sequential phase transitions, all in one

model. Simple mathematical arguments have allowed us to solve for the transitions observed

and highlight the nontrivial impact of the structure of the genotype network. Rich infection

dynamics are seen between the epidemic threshold and the immune invasion threshold.

Fig 4. Integration of the ODEs on three toy genotype networks—The chain, square lattice and star—All with 25 strains. We fix the recovery

rate γ = 1, the mutation rate μ = 1/100, the waning immunity rate α = 1/50 and vary the transmission rate β under three values of transcending

immunity: Δ = 5 (Left), Δ = 10 (Center), and Δ = 50 (Right). Close to the inflection point of every I� curve (shown in solid lines) we find a

maximum in R� (shown in dashed lines). This point therefore marks a second activation threshold, one where the transmission rate is high

enough to counteract transcending immunity and spread the outbreak using the pool of recovered individuals.

https://doi.org/10.1371/journal.pcbi.1008606.g004
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Altogether, what these results show is that many features of infectious disease dynamics often

explained by environmental factors or host behaviour, such as cyclicity [33], unpredictability

[34] and sequential transitions [35], can also be explained by adding a layer of biological com-

plexity in the form of a genotype network. Our results thus highlight the importance of going

beyond the “one disease, one pathogen” paradigm, with complex dynamics emerging from

even the most simple genotype network structures.

Fig 5. Integration of the ODEs on three toy genotype networks—The chain (left column), square lattice (middle column), and star (right

column)—All with 25 strains. We fix the recovery rate γ = 1, the mutation rate μ = 1/1000, the waning immunity rate α = 1/5000 and the

transcending immunity Δ = 4 and vary the transmission rate: β = 25 (Top), β = 1.7 (Middle), β = 1.1 (Bottom). The system is initialized with a small

fraction 10−5 of infections on an “end strain” (end for the chain, corner for the lattice, leaf for the star). On the chain we see successive activation of all

strains, with the system stabilizing once the entire network is explored and evolution reaches a dead-end. The star sees cycles caused by activation of

the leaf strains. The lattice is much more interesting, with loops causing a random-like succession of strains to cycle. The dynamics become more

interesting for the bottom row, with transmission rates between the epidemic and immune invasion thresholds, with cycles and chaos-like dynamics.

The closer we get to the true epidemic thresholds βc = 1, the longer the interesting transient dynamics.

https://doi.org/10.1371/journal.pcbi.1008606.g005

PLOS COMPUTATIONAL BIOLOGY Multistrain epidemics with an underlying genotype network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008606 February 10, 2021 10 / 13

https://doi.org/10.1371/journal.pcbi.1008606.g005
https://doi.org/10.1371/journal.pcbi.1008606


Future work needs to be done to integrate this modelling approach with real genomic data.

Likewise, the interplay of our results with the finite size and the contact structure of the host

population needs to be investigated; as does the role of strain extinction and emergence. Dif-

ferent modelling approaches will need to be considered, such as explicitly modelling the

growth and evolution of the genotype network as it co-evolves (albeit on a different timescale)

with the spread of the infectious disease in the host population. Coupling the large modelling

literature on growing networks [36] with that of network epidemiology [29] should lead to a

richer understanding of how networks, both biological and social, impact epidemics. One

other temporal feature that should be taken into account is the immune history of individuals.

Whereas we currently only consider the most recent infection, the total immune history could

grow exponentially with the number of strains considered and therefore represents an impor-

tant modelling challenge. Finally, this type of model could also be appropriate to reimagine

vaccination strategies. The literature on targeted immunization and influential spreaders on

networks could then be leveraged [37–40], but rather than targeting central individuals the

objective would be to best hinder and block the immune evasion of the pathogen as it mutates

along its genotype network.

In terms of applying these models to specific scenarios, there is a need for unbiased patho-

gen genomic data, as well as an understanding of their antigenic properties, to inform models

that account for these features using real-world data and to refine the cross-protective immune

effects between strains of a pathogen. Similarly, we need more realistic models to take advan-

tage of the growing body of genomic data available and refine the mechanisms driving muta-

tion and immunity. We call for the refinement of immune mechanisms and immune history

to allow their incorporation in mathematical disease models. Further understanding of how

pathogens explore genotype space, the growth of genotype networks, the role of host immunity

towards past strains, and the influence of the above on the fitness landscape of pathogens will

better inform models incorporating multiple strains, cross-protective effects, and the evolution

of a pathogen.
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