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In recent years, deep learning has made successful applications and remarkable achievements in the field of medical image
registration, and the method of medical image registration based on deep learning has become the current research hotspot.
However, the performance of convolutional neural networks may not be fully exploited due to neglect of spatial relationships
between distant locations in the image and incomplete updates of network parameters. To avoid this phenomenon, MHNet, a
multiscale hierarchical deformable registration network for 3D brain MR images, was proposed in this paper. This network
was an unsupervised end-to-end convolutional neural network. After training, the dense displacement vector field can be
predicted almost in real-time for the unseen input image pairs, which saves a lot of time compared with the traditional
algorithms of independent iterative optimization for each pair of images. On the basis of the encoder-decoder structure, this
network introduced the improved Inception module for multiscale feature extraction and expanding the receptive field and the
hierarchical forecast structure to promote the update of the parameters of the middle layers, which achieved the best
performance on the augmented public dataset compared with the existing four excellent registration methods.

1. Introduction

Medical image registration is the process of optimally align-
ing the moving image with the reference image through a
certain spatial transformation, and it is the preliminary work
for some medical image analysis operations such as identifi-
cation and segmentation. The quality of registration directly
affects the effect of its task and the follow-up task, so the
research on medical image registration technology has far-
reaching and realistic significance. Depending on the type
of spatial transformation, image registration includes linear
transformation and nonlinear transformation. The linear
transformation includes rigid registration and affine regis-
tration. It is an overall transformation for the global image
and is often used as a preregistration operation for complex
multistage registration [1]. Deformation registration is non-
linear registration, which allows local elastic transformations
of images, and can capture irregular deformations between
tissues or organs to achieve fine alignment between images
[2]. Researchers have proposed many traditional intensity-
based or feature-based iterative algorithms for deformable

medical image registration [3–5]. These algorithms use mul-
tiple iterations to continuously update and optimize the
transformation parameters by calculating the similarity
between the moving and the reference images. Although this
kind of method has achieved remarkable results on many
datasets, it is not suitable for clinical medical research that
has strict requirements on computing time and efficiency
due to its huge time consumption and the operational com-
plexity caused by manual parameter adjustment. In recent
years, deep learning, especially the convolution neural net-
work (CNN), has had a subversive impact on the field of
computational vision, including image classification, image
segmentation, and target detection. The deep learning-
based registration method replaces the iterative optimization
process of the traditional algorithm by using a trained model
to achieve fast registration of an unseen pair of image
volumes. It has developed rapidly and has become the main
direction of medical image registration research today by
virtue of its excellent computing speed and accuracy. The
registration methods based on deep learning were originally
proposed in the form of supervised learning, but obtaining
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the ground truth required by supervised learning is not
trivial, because the ground truth contains a large amount
of annotation data. The ground-truth deformation field or
region of interest (ROI) labels required for supervised train-
ing often need to be manually labeled by experts [6, 7], but
the acquisition cost is expensive and highly dependent on
professional knowledge. Therefore, there were methods to
replace the manual annotation with random transformation
synthesis [8] or the results obtained by traditional algo-
rithms [9, 10], but these methods will restrict the upper limit
of the registration accuracy.

The emergence of the spatial transformer network (STN)
[11] has greatly promoted the development of unsupervised
learning. STN, a differentiable module, can be directly
embedded in the registration model, generate a sampling
grid according to the deformation field predicted by the
neural network, and warp the moving image through multi-
linear interpolation to obtain the deformed image, which
makes it possible to calculate the image similarity in the
training process. De Vos et al. [12] proposed the first unsu-
pervised registration network based on image similarity,
which takes the similarity between the deformed image
and the reference image as the loss function, making end-
to-end unsupervised network training possible. After that,
De Vos et al. [13] first proposed an unsupervised affine
and deformable image registration framework, which inte-
grated linear and nonlinear registration in one architecture
by stacking multiple CNNs, achieving a coarse-to-fine regis-
tration. Fan et al. [14] proposed BIRNet, which introduced
the deformation field evaluated by the traditional registra-
tion algorithm as the ground truth on the basis of the
unsupervised learning strategy to guide loss attenuation in
a dual-supervised way. At the same time, the similarity loss
is calculated by using the deformed image patches with
different resolutions, so as to speed up the convergence of
the network. These algorithms all have good registration
performance, but they are all based on 3D image patches.
This situation often causes the convolution neural network
to ignore the long-range spatial relationship in the image,
which restricts the network to predict relatively large local
deformation. Balakrishnan et al. [15, 16] proposed the Vox-
elMorph framework to realize the registration of the entire
image. The VoxelMorph framework defines the registration
process as a function, parameterizes the function through
the CNN network, and uses the complete 3D image as train-
ing data to continuously update and optimize the parame-
ters. The trained network can achieve one-pass registration
of unseen input images, which achieves unsupervised regis-
tration of full-size images. Zhao et al. [17] also designed an
unsupervised deformation network Volume Tweening
Network (VTN), which can solve large displacement defor-
mation end-to-end by recursively cascading multiple
deformable networks. However, due to the increase of
CNN depth and downsampling times, to keep the output
displacement vector field matching the input image, VTN
has more stringent requirements on the size of the input
image and device memory.

In this paper, we proposed a novel unsupervised fully
convolutional neural network for 3D brain MR image regis-

tration, called multiscale hierarchical deformable registra-
tion network (MHNet). While abandoning the manual
parameter tuning of traditional registration methods and
the ground truth requirements of supervised learning net-
works, MHNet introduced the improved Inception module
for multiscale feature extraction and the hierarchical forecast
structure to guide the update of the parameters of the middle
layer in the network, which enlarged the receptive field,
improved the ability to control the details and global infor-
mation in the image, and can predict the deformation field
in real-time for unseen image pairs. MHNet performed reg-
istration evaluation on 3D brain MR scans on the publicly
available dataset and compared the final registration results
with traditional algorithm and deep learning-based registra-
tion models. The results showed that our method can
achieve excellent registration performance. The main
achievements of this work are summarized as follows:

(1) MHNet is a fast unsupervised deformable registra-
tion network, which will not face the dilemma of lack
of ground truth, and can register a pair of 3D MRIs
within 1 s, meeting the needs of clinical medical
research

(2) This paper innovatively added a multiscale feature
extraction module and a hierarchical forecast struc-
ture to the encoder-decoder structure to facilitate
network learning and achieved better registration
results than other deep learning networks

(3) This paper proposed a dataset augmentation
method, which can effectively expand the training
data and increase the diversity of features learned
by the network, thereby improving the registration
performance of the model

The rest of this paper is organized as follows. Section 2
presents the materials and our methods, including the
dataset and augmentation method, the overall process of
registration, network design, evaluation method, and imple-
mentation details. Section 3 presents experimental results.
Section 4 discusses the findings based on the results, and
Section 5 concludes the paper.

2. Materials and Methods

2.1. Experimental Data. This study performed registration
tasks on the LONI Probabilistic Brain Atlas (LPBA40) data-
set [18]. The LPBA40 dataset is public and available on the
web. The data in LPBA40 was derived from T1-weighted
brain MR scans of 40 healthy, normal volunteers, with 56
structures labeled by experts, and all image volumes had
been strictly aligned with the MNI305 brain atlas. All images
have original size 181 × 217 × 181 and resolution 1mm × 1
mm × 1mm. We used advanced normalization tools (ANTs)
[19] to perform initial affine alignment on all images. Mean-
while, all images were uniformly clipped to 160 × 192 × 160,
and image intensity normalization was carried out to accel-
erate the speed of network convergence. We chose 1 image
as the reference image, 25 images as training samples, and
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the remaining 14 images as test samples. Each input to the
network consisted of the reference image and a training or
test sample (moving image).

However, 25 training data is too sparse for CNN, the
network cannot be fully trained and may even overfit. This
paper proposed a dataset augmentation method. We regis-
tered the images in the training set with each other and used
the obtained deformed images as new training data to
expand the number of training data. This approach is mainly
based on two considerations. On the one hand, all existing
data registration algorithms cannot achieve 100% accuracy,
and the new image generated is an intermediate image
between the reference image and the moving image, which
cannot completely match the reference image and the
moving image. On the other hand, deep learning models,
unlike traditional registration algorithms, do not iteratively
learn features and calculate the deformation field required
for warp, so this intermediate deformation result is nonrepe-
titive and efficient training data for neural networks to learn.
The specific implementation method is to use the antsRegis-
trationSyNQuick command in ANTs to quickly register the
training data, and the time to register a pair of training
image volumes is only about 10s (under 8 threads). For a
training dataset with the number ofN , two original images
X and Y are randomly selected. If X is used as the reference
image and the Y is used as the moving image, a new training
image Y ′ can be generated by registering the two images. On
the contrary, taking Y as the reference image and X as the
moving image, a new deformed image X ′ can also be gener-
ated through registration. Therefore, the number of new
images M generated by this method can be calculated by
the following equation.

M = A2
N =N × N − 1ð Þ: ð1Þ

In this way, the dataset can be enlarged by N − 1 times,
and the total number of training images is N2. After aug-
mentation, the number of training images in the research
had been successfully increased from 25 to 625. Figure 1
shows the augmentation effect of our dataset in this way.

2.2. Registration Method. For a given pair of reference image
F and moving image M defined in the 3 −D space
domainΩ ⊂ R3, 3D image registration is to warp M through
the spatial transformation T (i.e., deformation field ϕ)
between F and M, so that the warped image M ∘ ϕ and F
reach the optimal alignment. How to find the parameterized
optimal spatial coordinate transformation through CNN
was the key point of this work. Figure 2 shows the complete
architecture of the proposed registration model. This model
takes the reference image F and the moving image M as
input and generates a displacement vector field (DVF) after
the prediction of the CNN f :

ϕ = f θ F,Mð Þ, ð2Þ

where θ represents the parameters of the network. Then, the
STN [11] was applied to nonlinearly warp the moving image

M with the deformation field ϕ (or DVF) and generate the
deformed image M ∘ ϕ. The voxel location i in the moving
image M may deviate from an integer location after being
superimposed with the voxel displacement uðiÞ in the defor-
mation field. But the intensities are only defined at integer
locations, so the intensity of each voxel location M ∘ ϕðiÞ
needs to be obtained by trilinear interpolation:

M ∘ ϕ ið Þ =M i + u ið Þð Þ, ð3Þ

M ∘ ϕ ið Þ = 〠
j∈Z i′ð Þ

M jð Þ
Y

d∈ x,y,zf g
1 − jd − id′

�� ��
� �

, ð4Þ

where i′ = i + uðiÞ, Zði′Þ denotes the neighboring voxel
location of i′, and d denotes the three directions in 3D space.

During the training process, the parameters of CNN θ
are continuously updated and optimized according to the
predefined loss function L. When there is a set of parameters
that make the value of the loss function tend to the mini-

mum (convergence), the optimal parameters bθ is obtained,
which can be expressed by the following equation:

bθ = argmin
θ

L Tϕ ; F,M
À Á

: ð5Þ

In this registration model, the L consists of two parts:
(1)Lsim—a measure of appearance intensity difference
between F and M ∘ ϕ. (2) Lsmooth—a regularization term that
constrains the smoothing of the deformation field.

In this paper, we adopted normalized cross-correlation
(NCC) [4] as the similarity measure, and its value is in
[0,1]. The closer it is to 1, the higher the similarity between
the two images. When used as a loss, we took its negative
value, which can be expressed as the following equation:

Lsim F,M, ϕð Þ = −NCC F,M ∘ ϕð Þ: ð6Þ

The deformation field predicted by CNN should be a
smooth mapping to the image, but in the training process,
in order to maximize the similarity between images, the
deformation field is often folded and discontinuous, which
is impossible in anatomy. When training is completely unsu-
pervised, applying a spatial regularization to the generated
deformation field is necessary. In addition, this move can
prevent the overfitting of CNN and improve the generaliza-
tion ability of the network. In this paper, the smoothness loss
was penalized by introducing a spatial gradient diffusion
regularization of the deformation field displacement [15]:

Lsmooth ϕð Þ = 〠
x∈Ω

∇u xð Þk k2, ð7Þ

where uðxÞ represents the displacement of each voxel x in
the deformation field and ϕ can be parameterized by uðxÞ.
Therefore, the total loss function can be expressed as

Ltotal = αLsim F,M, ϕð Þ + λLsmooth ϕð Þ, ð8Þ
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where α and λ are trade-off parameters used to adjust the
degree of similarity and regularization.

2.3. Multiscale Hierarchical Deformable Registration
Network.MHNet adopts an encoder-decoder network struc-
ture, introducing upsampling and downsampling operations
into a fully convolutional neural network to predict the DVF
required for moving image warping. This structure can
expand the receptive field of the network, showing strong
ability in pixel-level learning. Details about MHNet are
shown in Figure 3.

As the input of the network, the images F and M are
concatenated in the channel dimension to form an image
volume with a channel number of 2, which is passed to the
network. The encoding process is similar to the calculation
process of feature extraction in the classical convolutional
neural network, which repeatedly applies a 3D convolutional
layer with a commonly used and efficient convolution kernel
of 3 × 3 × 3 and a stride of 2. The use of strided convolution
can perform downsampling while extracting features, which
enlarges the receptive field by halving the size of the feature
maps. To extract more abstract features without changing
the size of the feature map, a convolutional layer with stride

1 is added after the strided convolution. In addition, a
LeakyReLu activation is designed after each convolution
operation to enhance the nonlinear representation of fea-
tures. After four downsamplings, the size of the feature
map is only 1/16 of the input image. In the decoding stage,
the size of the feature map is recovered by performing four
repeated alternating operations, each of which includes,
upsampling, skip connection, and convolution. The upsam-
pling layer applies trilinear interpolation with a sampling
factor of 2 to incrementally increase the feature map size.
After four upsampling, the feature map is restored to the
original image size, which ensures that the size of the final
output DVF can be consistent with that of input images.
The skip connection is to concatenate the upsampled deep
feature map in the decoding path and the shallow feature
map of the same size in the encoding path along the channel
dimension. The combination of abstract features and con-
crete features enables the network to more comprehensively
learn the detailed and global information in the image.

Although the encoder-decoder structure can expand the
receptive field of the network to a certain extent, there are
still some problems: first, the receptive fields of the first sev-
eral layers in the network are still restricted by the size of the

(a) (b) (c) (d)

Figure 1: Cross-sectional slices of images at the same location. (a, b) The original training images. (c, d) The augmented new images.

STN

MHNet
DVF

Loss function

Moving image

Fixed image

Warped image

Backward
propagation

ConvNet

Figure 2: The overall framework of the proposed registration model. The solid and dashed lines represent the process of feedforward
calculation and gradient backpropagation, respectively.
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convolution kernel, while the global context information can
only be reflected in the deep features. Second, existing stud-
ies have shown that with the deepening of the convolution
layer, the influence from distant voxels will rapidly decay
[20]. In order to avoid the suboptimal registration effect
caused by insufficient receptive field size, inspired by
GoogLeNet [21], this work decided to add an improved
Inception module, as shown in Figure 4. In order to achieve
the purpose of expanding the receptive field by increasing
the size of convolution kernel, on the one hand, it is neces-
sary to use a larger size convolution than the conventional
3 × 3 × 3. On the other hand, compared with 2D convolu-
tion, 3D convolution has a larger increase in parameters
and computation. If the convolution kernel is too large, the
computation will increase dramatically. At the same time,
to maintain symmetry on both sides of the image in the pad-
ding operation, and to ensure that the anchor point of the
convolution kernel is in the center to avoid the offset of
the position information, the size of the convolution kernel
mostly adopts an odd value. Therefore, the convolution
kernels of 5 × 5 × 5 and 7 × 7 × 7 are suitable. Filters with
convolution kernels 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5, and 7 × 7
× 7 are used in this module. The stacking of filters of differ-
ent scales enables the network to perceive image local areas
of different sizes in the same layer and fuse features of
different scales, so the network can output feature maps
containing more spatial information. Since the use of 3D
convolution will lead to a surge in the number of parameters,
the bottleneck layer with a convolution kernel size of 1
× 1 × 1 is added before the large-scale filter for channel
dimension reduction, so as to reduce the computational

burden brought by module insertion. For a 3D convolu-
tion layer k, its parameter quantity Pk can be calculated
by multiplying the number of input channels Ck

in the
number of output channels Ck

out and the size of the convo-
lution kernel ½Hk ×Wk ×Dk�:

Pk = Ck
in ×Hk ×Wk ×Dk × Ck

out: ð9Þ

By adding a bottleneck layer to reduce the dimension
of the Ck

in, the number of input channels becomes Ck
in ′

ðCk
in ′ < Ck

inÞ. The parameter quantity of the convolution
layer at this time is

Pk′ = Ck
in × 1 × 1 × 1 × Ck

in ′ + Ck
in ′ ×Hk ×Wk ×Dk × Ck

out:

ð10Þ

In this paper, Ck
in = 2, Ck

in ′ = 1, Ck
out = 4,Hk =Wk =Dk

∈ f1, 3, 5, 7g. After calculation, the parameter quantity
of the Inception module without adding the bottleneck
layer is 3968, and the parameter quantity after adding
the bottleneck layer is 1994. It can be seen that the
addition of the bottleneck layer can effectively reduce
the consumption of memory.

Most registration networks only rely on the deformation
field generated by the end to guide the network parameter
update, thus ignoring the influence of the network middle
layers on the deformation field. During the training process,
when the loss is responded and the gradient is back-propa-
gated, the parameter optimization efficiency of the front-

32 32

64 64 64

32

32

32

64

64

16 16 32

16 16 3 3

128 64 64

Inception

3

Convolution step
Skip connection

Upsample

Hierarchical
forecast

block

Hierarchical
forecast

block

Hierarchical
forecast

block

Hierarchical forecast block

Input

1/8

1/4

1/2

1/16

1

1

high

mid

low

Figure 3: Architecture of the multiscale hierarchical deformable registration network.
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end convolution layers is far less than that of the output part
at the end of the network. This situation tends to lead to
insufficient network learning, slow convergence, and adverse
overfitting. In order to improve this network defect, we add a
hierarchical forecast structure to the network, which uses the
characteristics of feature maps with different resolutions at
different levels in the decoding path to predict deformation
fields. Because of different levels and scales, feature maps
contain different semantic information and spatial informa-
tion. If the information can be fully utilized, the final defor-
mation result will be more delicate and accurate. To realize
the fusion of this information in the same dimension, the
feature maps need to be upsampled with factors of 8, 4,
and 2, respectively, and then three different deformation
fields are obtained after convolution. The deformation
fields generated by these intermediate layers can be
expressed as ϕlow , ϕmid, and ϕhigh, respectively. Finally, they
are concatenated with the deformation field generated at
the end of the network in the channel dimension, and the
deformation field with multilevel and multiscale informa-
tion can be obtained after a channel dimension reduction
operation. With the addition of this structure, the gradient
can rapidly be propagated along the hierarchical forecast
blocks, and the parameters of the intermediate layers enable
to have a greater and more effective update.

2.4. Evaluation Method. We use visual observation to quali-
tatively judge the quality of the registration results and use
Dice score [22] to calculate the volume overlap degree of
the same anatomical tissues Sf and Sw in the reference image

and the deformed image to quantitatively evaluate the
registration results:

Dice Sf , Sw
À Á

= 2
Sf ∩ Sw
�� ��
Sf
�� �� + Swj j : ð11Þ

The Dice score is between 0 and 1, with 1 representing
the complete overlap of corresponding tissues in the two
images. Therefore, the closer the Dice score is to 1, the better
the registration effect is.

In order to verify the effectiveness of our proposed
network, four advanced deformable registration algorithms
were selected as baselines. The first is symmetric normaliza-
tion (SyN) [23], one of the most superior traditional
registration algorithms. We completed the SyN with cross-
correlation as the similarity measure and gradient step size
= 0:15 by using the ANTs software package. MIDIR [24]
was selected as the second baseline, which is also based on
unsupervised deep learning and can produce diffeomorphic
deformation. In this model, the control point spacing of B-
spline transformation was set as 2. In addition, we also
selected the famous VoxelMorph as the baseline, which has
two variants, VoxelMorph-1 and VoxelMorph-2. The loss
function settings of MIDIR and VoxelMorph were the same
as those in this paper, and the hyperparameters α and λ in
Equation (8) were both 1. These settings had been proved
to be optimal in the original text. In order to show the per-
formance of MHNet more directly and intuitively, we also
added affine transformation for comparison.

Convolution step
Concatenate

Kernel size :
1×1×1

Channel :
4

Input
channel :

2

Output
channel :

16

Kernel size :
1×1×1

Channel :
1

Kernel size :
1×1×1

Channel :
1

Kernel size :
1×1×1

Channel :
1

Kernel size :
3×3×3

Channel :
4

Kernel size :
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Channel :
4

Kernel size :
7×7×7

Channel :
4

Figure 4: Schematic diagram of inception multiscale feature extraction module.
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2.5. Implementation. MHNet was implemented using
PyTorch. During the training process, considering that the
memory consumption required for processing 3D images is
large, we set the training batch size = 1 to avoid being out
of memory. By setting different values for training, the
hyperparameter values of the loss function to achieve the
highest registration accuracy were determined as α = 1 and
λ = 3. The model was trained for 70 epochs (43750 itera-
tions) using ADAM gradient optimizer to ensure that the
loss no longer changes significantly and the network is fully
converged. The initial learning rate was set to 10-4, and after
40 epochs, the learning rate was halved to avoid the step size
being too large and thus crossing the global optimal solution
and falling into the local optimal solution. All experiments
were performed on a single NVIDIA Tesla P100 GPU and
Intel Xeon Silver 4210 CPU.

3. Results

3.1. Comparative Experimental Result. Table 1 shows the test
results of MHNet and other baselines on the LPBA40 test
dataset. Avg. Dice is the average Dice score calculated on
all 56 anatomical structures of all test samples. At present,
SyN has only found a CPU implementation. To register a
pair of images in a single-threaded case, the average running
time is 3914 s. To save time, this paper conducted experi-
ments under 8 threads. It can be seen that MHNet achieves
the best results in methods based on deep learning and
achieves comparable performance to the state-of-the-art tra-
ditional method. Figure 5 shows the cross-sectional results of
a test sample deformed by several algorithms.

To quantitatively display the registration results in local
brain regions, we selected 12 brain anatomical structures of
interest. Table 2 shows the names of these ROIs and the
numbers assigned to them in this paper (we averaged the
Dice score of the same structure in the left and right
hemispheres into a score, such as left putamen and right
putamen) and showed their average Dice score in the form
of histogram in Figure 6. The results show that MHNet
exhibits high registration accuracy whether based on the
overall brain structure or based on the ROIs.

3.2. Ablation Result. This section aims to verify the impact
of the improved Inception module and the hierarchical
forecast structure on registration performance. Our three
network variants and their registration performance were
listed in Table 3. In the variant “MHNet1 (w/o Incep),”
we removed the improved inception module and replaced
it with a normal 3D convolution in the same place, keep-
ing the number of input feature maps and the number of
output feature maps unchanged. In MHNet2, we removed
the multiscale hierarchical forecast structure. “w/o Incep
+HF” is a variant that removes the improved inception
module and the hierarchical prediction structure alto-
gether, that is, leaving only the basic encoder-decoder
network structure. Quantitative metrics show that the
addition of these components to our network substantially
improves registration accuracy.

3.3. Efficacy of Dataset Augmentation. The magnitude and
diversity of the training data have a direct impact on the
training effect of the neural network. In order to confirm
whether the dataset augmentation method proposed in this
paper can generate real and effective training data and have
a positive impact on the performance of the proposed net-
work, we conducted the following experiment. We trained
MHNet directly on the unexpanded dataset and performed
registration evaluations on the same test images. The base-
lines also conducted the same experiment. The experimental
results (see Table 4) show that the dataset augmentation
method proposed in this paper is effective in improving
registration performance. MHNet learned more features
and spatial information from the intermediate images
between the reference images and the moving images, which
improved its prediction ability. At the same time, the exper-
imental data of baselines also shows that the approach has
universal applicability, not only limited to MHNet.

4. Discussion

Registration based on human brain images can accurately
map important brain structural regions from the brain atlas
to patients’ brain images during surgery, which is crucial for
assisting doctors in rational surgical planning. In this study,
we proposed an unsupervised deep learning registration
network for brain MRI, which integrated a multiscale feature
extraction module and hierarchical prediction strategy to
find the optimal dense registration field, and evaluated it
on the published LPBA40 dataset. The quality of the regis-
tration algorithm is generally evaluated from two aspects:
accuracy and time consumption. In terms of accuracy, look-
ing at the data in Table 1, we can see that compared with the
other four existing registration methods, the method
proposed in this paper exhibits the highest registration accu-
racy, which indicates that the proposed network has an
excellent performance in aligning brain MR images. Because
of the addition of the multiscale feature extraction Inception
module, MHNet has a stronger ability to perceive the local
area. From Figure 5, it is not difficult to see that although
SyN also has a good registration performance, the deformed
image generated by SyN is mostly a large global transforma-
tion in the local area. While the human cerebral cortex has
many wrinkles and sulcus, so their registration needs more
fine deformation. VoxelMorph uses single small-scale con-
volution kernels, which can make fine small deformations

Table 1: Average Dice scores of Affine, SyN, VoxelMorph-1,
VoxelMorph-2, MIDIR, and MHNet.

Method Avg. Dice Time (s)

Affine 0:642 ± 0:017
SyN 0:706 ± 0:013 782 (CPU)

MIDIR 0:680 ± 0:010 1.06 (GPU)

VoxelMorph-1 0:699 ± 0:011 0.08 (GPU)

VoxelMorph-2 0:704 ± 0:011 0.24 (GPU)

MHNet 0:707 ± 0:010 0.29 (GPU)
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Reference Moving
Deformation field

MHNet

MIDIR Voxel morph-1SyN Voxel morph-2

Figure 5: Visualization results of several registration methods employed in this paper. The first row shows, from left to right, the reference
image, moving image, and the meshed deformation field and deformed image produced by the MHNet. The second row shows the deformed
images of the moving image warped by SyN, MIDIR, VoxelMorph-1, and VoxelMorph-2.

Table 2: Names of brain ROIs selected in the LONI LPBA40 dataset.

Number Name Number Name

1 Insular cortex 7 Middle temporal gyrus

2 Lingual gyrus caudate 8 Angular gyrus

3 Putamen 9 Middle occipital gyrus

4 Hippocampus 10 Gyrus rectus

5 Inferior frontal gyrus 11 Cerebellum

6 Superior parietal gyrus 12 Brainstem
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Figure 6: Histogram of Dice scores for anatomical structures of interest for SyN, MIDIR, VoxelMorph-1, VoxelMorph-2, and MHNet.
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in local areas, but at the same time lacks the overall learning
ability of local areas. However, MHNet has both of these
capabilities. Other deep learning models rely only on convo-
lution layers at the end of the network to predict the
deformation field. The feature maps learned by the end con-
volutional layers contain deep abstract features extracted
from images, but such features are prone to missing some
spatial location information. They lack the design of similar
hierarchical forecast structure, which makes their registra-
tion accuracy suffer constraints when deforming complex
areas. In addition, during the training of the network, the
gradient is back-propagated layer by layer, and the addition
of the hierarchical forecast structure provides an expressway
for propagation, which is conducive to the update of param-
eters. At the same time, through the observation of the
gridded deformation field, we can realize that the deforma-
tion field predicted by MHNet has folding at the local voxel
(white marked areas). Although MHNet has a higher
improvement than MIDIR in registration accuracy and
speed, the deformation field obtained by MIDIR is a diffeo-
morphic mapping with inverse consistency, which is lacking
in MHNet. Therefore, our next work needs to pay more
attention to the study of regularization and adopt stricter
smoothing constraints on the model.

Under the same equipment, we have listed the time con-
sumption of the algorithms mentioned in this paper in
Table 1. When the registration accuracy gap is small, time
consumption is the biggest advantage of MHNet over SyN.
When using the SyN algorithm for registration experiments,
step size needs to be manually adjusted several times to find
the optimal value. However, MHNet can almost meet the
needs of real-time registration and eliminates the process
of manual parameter adjustment, which is very important
for clinical medical research with high timeliness require-
ments. The time consumption of VoxelMorph is slightly less
than that of MHNet, but this is negligible. At this time, the
registration accuracy can better reflect the advantage of the

method. Although MHNet is currently only used for brain
MRI registration, it has the potential to register other organ
and modal images.

5. Conclusions

This study presented an unsupervised learning-based full con-
volutional neural network for deformable image registration,
called MHNet, which can quickly predict the deformation
field without prior knowledge. By adding an improved Incep-
tion module and hierarchical prediction structure to the
network, the problems of the narrow receptive field, the inabil-
ity to update network parameters in a timely and effective
manner during training, and slow convergence can be solved
to a certain extent. We also used dataset augmentation to
improve the performance of MHNet again. By comparing
with other traditional or deep learning-based methods,
MHNet has been proven to have superior performance in
terms of registration accuracy and time consumption.
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