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Obesity is a pandemic associated with lifestyles changes. These include excess

intake of obesogenic foods and decreased physical activity. Brain areas, like

the lateral hypothalamus (LH), ventral tegmental area (VTA), and nucleus

accumbens (NAcc) have been linked in both homeostatic and hedonic control

of feeding in experimental models of diet-induced obesity. Interestingly,

these control systems are regulated by the lateral septum (LS), a relay of

γ-aminobutyric (GABA) acid neurons (GABAergic neurons) that inhibit the

LH and GABAergic interneurons of the VTA. Furthermore, the LS has a

diverse receptor population for neurotransmitters and neuropeptides such as

dopamine, glutamate, GABA and corticotropin-releasing factor (CRF), among

others. Particularly, CRF a key player in the stress response, has been related to

the development of overweight and obesity. Moreover, evidence shows that

LS neurons neurophysiologically regulate reward and stress, although there

is little evidence of LS taking part in homeostatic and hedonic feeding. In

this review, we discuss the evidence that supports the role of LS and CRF on

feeding, and how alterations in this system contribute to weight gain obesity.
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Introduction

Obesity is a global disease that has led the World Health
Organization (WHO) to declare it a pandemic. Obesity is
defined as an abnormal or excessive fat accumulation, which is
detrimental to health, as there is an energy imbalance between
calories consumed and calories expended. Quantitatively, the
definition associated with the body mass index (BMI), which
considers the height and weight of individuals, has defined the
condition of obesity when the BMI is greater than 30 kg/m2

(World Health Organization [WHO], 2021). In addition, obesity
has genetic and metabolic components, showing a higher
prevalence in the offspring of obese parents, especially in
developed societies (Cammarano et al., 2022). One of the
most highly studied factors that lead to obesity is exposure
to palatable hypercaloric diets, rich in lipids, carbohydrates
and salt, and pro-obesogenic. In addition, low physical activity
has led to an increase in life-threating sedentarism, favoring
malnutrition, obesity development and metabolic diseases
such as diabetes, dyslipidemia and hypertension (Wanderley
and Ferreira, 2010; Barnes, 2011). At the pathological level,
overweight (25 kg/m2 > BMI < 30 kg/m2), contribute at
least 2.8 million deaths each year (World Health Organization
[WHO], 2021), and negatively affect children and adolescents
by increasing the risk of chronic non-communicable diseases
(NCDs), such as coronary heart disease, metabolic syndrome,
and diabetes in adulthood (Bibbins-Domingo et al., 2007).
All this epidemiological data, plus the high availability of
processed foods in developed countries, favoring a hedonic
feeding behavior and neurophysiological signals that regulate
satiation and hunger (Berthoud and Munzberg, 2011; Egecioglu
et al., 2011; Lee and Dixon, 2017). In this context, understanding
how obesogenic food intake affects brain areas associated
with feeding control is a question that has not been fully
elucidated.

Stress and related factors

Stress has been defined as a destabilizing factor of
homeostasis, which leads organisms to generate adaptive
responses, including the activation of autonomic nervous
system and the hypothalamic-pituitary-adrenal (HPA) axis,
affecting peripheral organs and brain areas such as the prefrontal
cortex (PFC), amygdala, hippocampus and hypothalamus
(McEwen and Akil, 2020). In this sense, several investigations
have shown that stress causes adaptive plasticity in the brain,
in which local neurotransmitters, and systemic hormones,
interact to produce structural and functional changes in
neural circuit (Patel et al., 2019). However, when demands
related to chronic stress become constant, the body adapts
to these new demands and these new changes can lead
to pathophysiological conditions in other systems, such as

depression (Van Praag, 2005; Patel et al., 2019), cardiovascular
diseases (Steptoe and Kivimaki, 2012), eating disorders (e.g.,
bulimia and anorexia nervosa; Lo Sauro et al., 2008; Groesz et al.,
2012) and obesity (Patterson and Abizaid, 2013).

Neurobiologically, the HPA axis integrates the physiological
response to stress. A stressful stimulus, regardless in nature
stimulates parvocellular neurons in the paraventricular nucleus
of the hypothalamus (PVN; Smith and Vale, 2006). These
neurons release corticotrophin releasing factor (CRF) and
arginine vasopressin (AVP) on the pituitary stimulating specific
receptors (GPCRs) expressed on corticotropic cells to synthesize
and release adrenocorticotropic hormone (ACTH) into the
systemic circulation. Then, ACTH activates melanocortin-2
receptor in the adrenal cortex, stimulating the steroidogenesis
of glucocorticoids (Smith and Vale, 2006). Glucocorticoids
are the main endocrine effectors of the HPA axis, and their
levels are highly regulated not only by feedback inhibition at
the pituitary and hypothalamus, but also at the hippocampus
(Hipp), nucleus of the solitary tract, and pre-limbic cortex
(Sapolsky et al., 1984; Blanchard et al., 1993; McEwen and Akil,
2020).

Stress and food intake

Stress is enough to initiate a highly catabolic physiological
response, mobilizing stored energy, thus affecting anabolic
processes such as feeding, thirst, and reproduction (Michel et al.,
2003; Wingfield and Sapolsky, 2003). However, it is not known
whether, the metabolic stress induced by obesogenic diets, nor
the chronic stress response might contribute to initiate or
reinforce hyperphagic behaviors in obese individuals, showing
that CRF system is involved in the regulation of energy balance
and the pathophysiology of obesity (Sominsky and Spencer,
2014). CRF was discovered in 1981 as part of the endocrine
pathway that regulates ACTH and glucocorticoids (Vale et al.,
1981). The CRF system includes CRF and urocortins (UCN;
1, 2, and 3) such as endogenous ligands, CRF receptors type
1 (CRF1) and type 2 (CRF2), and CRF binding protein (CRF-
BP; for revision see Slater et al., 2016b). The affinity of CRF
and UCN1 for the CRF1 and CRF2 are similar, while the UCN2
affinity for CRF2 is approximately 5,000 times greater than for
CRF1. UCN2 and UCN3 are mainly considered selective agonist
for CRF2 (Dautzenberg et al., 2019).

CRF receptors are widely expressed in other brain
regions and peripheral organs, and therefore, CRF has
extrahypothalamic effects, beyond HPA axis regulation (for
revision see Deussing and Chen, 2018). For instance, it has
been shown that systemic and central administration of CRF
or UCN significantly decreases food intake, which could be
reversed with the administration of a CRF2 antagonist, but not
with the administration of a CRF1 antagonist (Smagin et al.,
1998). In this context, administration of ASV-30, a selective
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CRF2 antagonist, to rats with diet-induced obesity has been
shown to reduce the anorexigenic effects of CRF or UCN (Cullen
et al., 2001). CRF and UCN are endogenous ligands of CRF
receptors, so part of the decrease in food intake may be due
to the associated activation of the HPA axis and elevation of
plasma corticosteroids. On the other hand, it has been shown
that UCN3, a selective agonist of CRF2, regulates feeding
behaviors (for revision see Zhang et al., 2019). For example,
both intracerebroventricular administration of UCN3 has been
shown to reduce food intake in mice and rats (Pelleymounter
et al., 2004; Chen et al., 2010). Interestingly, the hypothalamic
expressions of UCN3 and CRF2, in lean rats, are high and low
in ad libitum and fasted feeding condition, respectively (Poulin
et al., 2012). However, the UCN3 and CRF2 expression levels
are constant in obese rats (Poulin et al., 2012). Possibly this
and other differences in CRF system could be participating
in the maintenance of the obesity condition, especially under
conditions of physiological stress such as chronic fasting.

In fact, in patients with anorexia nervosa, characterized
by a significant decrease in food intake, the CRF and
corticosteroids levels are elevated in plasma (Gross et al., 1994).
CRF has been described as a potent anorexigenic agent and,
therefore, increasing its bioavailability inhibits food intake.
However, the end product of the HPA axis, corticosteroids,
triggers orexigenic-type responses, as it influences eating
behavior that might lead to excess malnutrition, and therefore
obesity (Dallman et al., 2007). In addition, intraventricular
injection of glucocorticoids in adrenalectomized (ADX) rats
stimulates the CRF system, increasing caloric intake, especially
carbohydrate consumption (Kumar and Leibowitz, 1988), while
administration of corticosteroids has been shown to increase the
intake of highly palatable foods (Bell et al., 2000). In Zucker
rats (Duclos et al., 2005) and ob/ob mice, both genetic models
of obesity, an increase in plasma levels of corticosteroids has
been observed (Makimura et al., 2000; Duclos et al., 2005).
While ADX in ob/ob mice normalized food intake (Makimura
et al., 2000). In addition, the protracted exposure to a highly-
palatable diet was associated with the development of stress-
related behaviors, improving when the highly-palatable diet is
changed back to chow diet (Sharma et al., 2013). However,
the motivation toward palatable rewards was not normalized,
associating with a decrease and increase in the expression of
CRF1 and brain-derived neurotrophic factor (BDNF) in the
nucleus accumbens (NAcc), respectively (Sharma et al., 2013).
Interestingly, it has been shown that stress-induced CRF system
modulate the activity of dopaminergic neurons, affecting the
dopamine (DA) release (a neurotransmitter associated with
pleasure) in limbic areas such as NAcc and lateral septum (LS;
Sotomayor-Zarate et al., 2013; Sotomayor-Zarate et al., 2015;
Slater et al., 2016a). In summary, the evidence suggests that the
CRF system is related to energy homeostasis, and any alteration
in this system will impact food intake behavior.

The lateral septum

The LS is a structure that is interconnected with brain areas
involved to cognition, motivation, autonomic regulation, stress
and feeding (Gray, 1977; Sheehan et al., 2004; Patel, 2022). It is
part of a subcortical structure that delimits the midline of the
brain called “septum” and is divided into two parts: the septum
pellucidum and septum verum (Andy and Stephan, 1968). The
septum verum is divided into medial (MS) and lateral (LS)
parts, which differ in their connectivity and functions (Swanson
and Cowan, 1979). The MS is cellularly heterogeneous, being
composed mainly of excitatory glutamatergic and modulatory
cholinergic neurons (Brashear et al., 1986) with bidirectional
connections to the Hipp, a key structure involved in learning,
memory, and mood regulation (Raisman, 1966; Takeuchi et al.,
2021). The LS is constituted predominantly of GABAergic
neurons and interneurons, mainly receiving glutamatergic input
from the Hipp and projecting GABAergic output to the lateral
hypothalamus (LH), between other brain connections (Risold
and Swanson, 1997a,b).

Anatomically, LS is located in the subcortical forebrain,
between the lateral ventricles, slightly dorsorostral to the nucleus
accumbens (NAcc), dorsocaudal to the hypothalamus and
ventral to corpus callosum (Swanson and Cowan, 1979). LS
has been considered a neural relay station in the forebrain,
related to the control of motivation, anger, stress and autonomic
regulation (for revision see Sheehan et al., 2004; Figure 1).
Also, LS integrates emotions, localization, cognitive information
and motivation by rewarding stimuli (Rizzi-Wise and Wang,
2021). The pioneering work of Olds and Milner showed that
LS is able to support self-stimulation suggesting its role on
the reward system (Olds and Milner, 1954). In addition,
Brady and Nauta (1953) suggest that the septum plays a
prominent role in controlling stress-induced behavior. The role
of LS in addiction has been poorly explored. Sotomayor et al.
showed that systemic morphine administration increases LS
DA extracellular levels through a decrease in GABA levels
in ventral tegmental area (VTA; Sotomayor et al., 2005). In
addition, LS GABAergic neurons activate the firing of VTA DA
neurons, through the inhibition of VTA GABA interneurons
(Luo et al., 2011; Vega-Quiroga et al., 2018; Figure 1). Finally, LS
GABA neurons express receptors for several neurotransmitters
and neuropeptides that modulate it neural activity, such as
vasopressin (Garate-Perez et al., 2021), norepinephrine (NE;
Scopinho et al., 2008), ghrelin (Terrill et al., 2018), glucagon-like
peptide 1 (GLP-1; Terrill et al., 2016) and CRF (Sotomayor-
Zarate et al., 2013), between others.

Lateral septum and feeding

Despite the inhibitory role of LS on LH (an orexinergic
nucleus involved in homeostatic control of feeding), the role
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FIGURE 1

Schematic representation of the main LS connections associated with motivation, stress, emotional and feeding behaviors. (A) Representative
connectivity in normal weight condition: LS GABAergic efferents regulate activity of LH and VTA neurons, impacting behaviors such as hunger
and motivation. (B) Representative connectivity in obese condition: Our proposal shows that LS CRF system is downregulated, reducing the
activity of LS GABAergic efferents. This reduced activity favors hyperactivation and hypoactivation of LH and VTA, leading to hyperphagia and
less reward for foods. Blue, glutamatergic neurons; Red, GABAergic neurons; Black, dopaminergic neurons; Green, CRFergic neurons; NAcc,
nucleus accumbens; LH, lateral hypothalamus; PVN, paraventricular nucleus; VTA, ventral tegmental area. This figure was created with
BioRender.com under subscription and have a license of Biorender to use the figure in journal publications.

of LS in feeding has been poorly studied. Pankey et al. found
opposing results on septal lesions and body weight. Lesion
of the septal area in male rats produced weight loss, while
in female rats induced weight gain (Pankey et al., 2008).
On the other hand, the noradrenergic system in the LS is
involved in feeding behavior. The LS microinjection of NE
increases food intake and this effect is blocked when it is co-
microinjected an α1-adrenergic receptor antagonist (Scopinho
et al., 2008). LS is strongly activated by glutamatergic input
from the cornus ammonis area 3 (CA3) of ventral hippocampus
(vHipp), increasing LH GABA release from LS projection
(for revision see Rizzi-Wise and Wang, 2021). It should be
noted that LH activation triggers hunger behavior through
intrahypothalamic GABAergic projections from LH to PVN,
where anorexigenic neurons are inhibited (Boudaba et al., 1996).
In this context, the LS activation would inhibit the activity
of LH neurons and the associated behaviors. The importance
of the Hipp-LS-LH pathway in the feeding control has been
recently tested using Designer Receptors Exclusively Activated
by Designer Drugs (DREADD)-based chemogenetic tools. One
hand, the chemogenetic activation expressing hM3Dq in CA3-
vHipp glutamatergic efferents to LS reduce food intake (Sweeney
and Yang, 2015) and the chemogenetic activation (expressing
hM3Dq) or inhibition (expressing hM4Di) of LS GABAergic
neurons produce a reduction and increase in food intake,
respectively (Sweeney and Yang, 2016). On the other hand, the
chemogenetic activation (expressing hM3Dq) in LS neurotensin
neurons that project to LH decreases food intake (Azevedo
et al., 2020). Recently, it has been shown that the activation
of LS neurotensin neurons that project to the nucleus tuberalis

lateralis, a nucleus located posterior part of the hypothalamus,
reduce the intake of palatable foods (rich in fat and sucrose) and
sweet solutions (sucrose and Ensure) in ad libitum and fasted
condition (Chen et al., 2022).

Regard to neuropeptide systems that could regulate
the activity of LS neurons, it has been shown that LS
microinjection of GLP-1 decreases control food intake, while LS
microinjections of antagonists of GLP-1 receptors only increases
palatable food intake (Terrill et al., 2019). Recently, it has been
shown that acute restraint stress increases the activity of LS
neurons that express the GLP-1 receptor, decreasing food intake
in male mice fed a control diet (Bales et al., 2022). However, in
obese male mice the restraint stress does not increase the activity
of LS GLP-1R neurons or produce hypophagia (Bales et al.,
2022). Finally, the LS microinjection of µ-receptor agonists such
as morphine and DAMGO reduces and increases the latency to
eat and food intake, respectively (Calderwood et al., 2022).

The lateral septum - corticotropin
releasing factor system on feeding

CRF1 mRNA expression has been found predominantly in
the forebrain, olfactory regions, cerebellum, anterior pituitary
corticotroph cells and in the PVN parvocellular zone (Bravo
et al., 2011). On the other hand, CRF2 is expressed in the
anterior hypothalamic area (AHA), ventromedial hypothalamus
(VMH), nucleus tractus solitarius (NTS), dorsal raphe nucleus,
and LS (Van Pett et al., 2000; Deussing and Chen, 2018). In this
context, LS is a brain nucleus with high density of CRF, UCN1,
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and UCN3 containing nerves fibers from hypothalamic (PVN
and supraoptic nuclei) and extra-hypothalamic areas (Edinger-
Westphal), respectively (Joseph and Knigge, 1983; Swanson
et al., 1983; Bittencourt et al., 1999).

At neurophysiological level, LS is considered as a brain
relay station that plays an important role in regulate the limbic
system, interpretation of several sensory inputs involved in
stress, anxiety, motivation and homeostasis, between others
(Calhoon and Tye, 2015). Furthermore, different types of
stressors such as food deprivation, predator odor, subordination
stress, exposure to aversive sounds, and chronic exposure
to drugs of abuse, significantly activate the LS (Martin and
Timofeeva, 2010; Mirrione et al., 2014). LS CRF receptors
promote plasticity to exogenous stimuli such as chronic
exposure to drugs of abuse. In this context, electrophysiological
studies show that LS CRF2 activation decreases postsynaptic
excitatory currents in rats chronically exposed to cocaine (Liu
et al., 2004). In addition, in vivo optogenetic activation and
inhibition of LS CRF2 evoked and suppressed anxiety-like
behaviors, respectively (Anthony et al., 2014). On the other
hand, chronic unpredictable stress (14 days) increases LS CRF2

mRNA (Malta et al., 2021).
Regard to food intake, LS UCN infusions produce a

reduction in food intake, that it is prevented with the infusions
of Astressin-2B, a potent and selective CRF2 antagonist (Bakshi
et al., 2007). Acute stress exposure has been associated with
anorexigenic and anhedonic responses to food (Foster et al.,
2009), while chronic stress exposure increases or decreases
eating behavior, generating under- and overeating phenotypes
(Calvez and Timofeeva, 2016). However, chronic exposure to
hypercaloric diets and stressors promote the development of
overeating disorders in humans and binge eating behaviors
in rodents (Mathes et al., 2009). Highly palatable foods have
a positive valence that promotes a positive emotional state,
decreasing negative emotions induced by stress and anxiety
(Blasio et al., 2013). These effects trigger maladaptive behaviors
to seek and eat palatable foods, promoting a positive feedback
loop to alleviate chronic stress and favor overweight and
obesity (Ulrich-Lai, 2016). In addition, the exposure to chronic
stress stimulates the expression of relaxin-3, an orexinergic
neuropeptide, that contribute to amplifying the palatable food
intake (Calvez and Timofeeva, 2016; Calvez et al., 2017). In this
sense, LS presents a high expression of CRF receptors, receives
inputs from CRFergic neurons and it has an important role in
regulating the neural activities in LH and VTA, which make it a
good candidate to study feeding processes in stress conditions.

Summary and conclusion

The LS has been implicated in the regulation of motivation
and feeding. This nucleus expresses several receptors for
neurotransmitters and neuropeptides involved in feeding

control, including CRF, neuropeptide Y, ghrelin, β-endorphin
and GLP-1, between others. The main GABAergic projection of
the LS goes to the LH, inhibiting it and reducing food intake.
Furthermore, others LS GABAergic projections go to the VTA,
increasing the firing of DA neurons. The septal connection
shows us an integrative role of this nucleus on homeostatic and
hedonic control feeding. However, the regulatory role of the LS
on food intake has not been evaluated in obesity, so evaluating
whether the lateral septum has a role in the pathophysiology of
obesity or whether it can be considered a therapeutic target to
treat this disease, are focuses of interest for our research group.
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